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I. INTRODUCTION

IT IS well known, also according to the definitions given in
the International Vocabulary of Metrology (VIM) [1] and

the Guide to the expression of Uncertainty in Measurement
(GUM) [2], that a measurement result is “a set of quantity 
values being attributed to a measurand together with any
other available relevant information” [1]. Consequently, the
identification and evaluation of this “other available relevant 
information” represents one of the fundamental and widely
discussed issues in the measurement science [3]–[5]. Gen-
erally, as stated again in the VIM, a measurement result 
is “expressed as a single measured quantity value and a
measurement uncertainty” [1]. It is therefore recognized that a 
measured value provides incomplete knowledge of the measur-
and, and measurement uncertainty quantifies how incomplete
this knowledge is.

The GUM [2] follows a strict probabilistic approach to the
definition and evaluation of uncertainty. However, recently,
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Fig. 1. Example of RFV (red + purple lines) and its PDs: rint(x) (purple
line), rran(x) (green line), and rext(x) (red line).

questions have been raised as to whether the probability is
always capable of representing incomplete knowledge [6]; and
a more modern mathematical approach to represent incomplete
knowledge has been proposed [6], [7] in terms of evidence and
possibility. This interesting approach has been recently applied
to uncertainty in measurement, as a possible way to overcome
the limitations of the GUM probabilistic approach [8]–[17] and
has already been applied in some interesting cases [18]–[24].

Within this new approach, random-fuzzy variables (RFVs)
have been defined to represent and combine measurement
results affected by both random and nonrandom contributions
to uncertainty [12]–[17]. An RFV is defined by two possibility
distributions (PDs) [12]: the internal one rint(x) considers the
nonrandom contributions to uncertainty, whilst the external
one rext(x) considers also the random contributions. The exter-
nal PD is obtained by combining the internal PD rint(x) with
a PD rran(x) (random PD in the following), which considers
only the random contributions to uncertainty [12]. An example
of RFV and its PDs is shown in Fig. 1.

Generally, in measurement practice, a random contribution
is expressed by means of a probability distribution function
(PDF). This PDF can be experimentally evaluated, or assumed
on the basis of a priori knowledge. When the random con-
tribution is expressed in terms of a PDF, it is possible to
find its corresponding PD rran(x) by applying a suitable 1-D
probability–possibility transformation [25]–[28]. On the other
hand, the internal PD is directly built from the available
metrological information [15].

When measurement results, expressed in terms of RFVs,
have to be combined, different operators have to be applied
to the internal and random PDs, in order to preserve the
specificity of the different ways random and nonrandom
contributions propagate through the measurement process.



The combination of internal PDs is quite straightforward in 
the possibility theory [29], and is not covered by this paper. 
On the contrary, the combination of the random PDs is not 
straightforward. Indeed, random effects are more effectively 
represented and propagated within the probability theory, 
which remains the most effective mathematical tool to handle 
random contributions to measurement uncertainty. On the 
other hand, when multiple random and nonrandom effects 
have to be taken into account, probability is not the most 
effective tool any longer and possibility appears to be more 
promising [6]. To cover these cases, a method should be 
defined to propagate random effects also in the possibility 
domain, while preserving their random nature.

In the recent literature, the use of t-norms is suggested 
for combining the random PDs [10], [30], [31]. In fact, 
t-norms are associative functions [32] that can be used to 
build a joint PD with given marginal PDs, and, once the 
joint PD is built, the combination of the marginal PDs is 
easily performed in the possibility theory by means of Zadeh’s 
extension principle [33].

Two problems still exist in the construction of a joint 
PD with given marginals by means of t-norms. First, the 
resulting joint PD strongly depends on the considered t-norm, 
and, therefore, the choice of one particular t-norm instead 
of another should be justified. A first attempt was made 
in [31], where the results of the combination of random PDs 
induced by a particular t-norm have been compared with those 
obtained with Monte Carlo simulations, which are themselves 
approximations of the true results.

In this paper, a more in-depth comparison is performed, 
since the joint PD induced by a particular t-norm is directly 
compared with a reference joint PD. The reference joint PD 
is provided by a 2-D probability–possibility transformation, 
which was recently proposed by the authors [28], and allows 
one to build the corresponding joint PD of a given joint PDF. 
This joint PD can be taken as the reference joint PD, since 
it expresses the same information content as the original joint 
PDF [28]. Therefore, the more the joint PD provided by a 
t-norm is similar to the reference joint PD, the more the 
propagation of random contributions in the possibility domain 
is similar to the propagation of the same contributions in the 
probability domain.

An additional problem is related to the construction of the 
joint PD when the two random contributions show a depen-
dence, i.e., in the case of correlated random contributions. Also 
this problem is addressed in this paper, with specific reference 
to a particular class of possibility distributions.

This paper covers the problem of identifying the “best”
t-norm for the construction of a joint PD starting from two
marginal PDs induced by probability distributions. It does not
cover any specific practical example since it does not add
any additional relevant information to the theoretical analysis.
However, a simple but significant application of the identified
“best” t-norm can be found in [34].

II. CONSTRUCTION OF JOINT DISTRIBUTIONS

Both in the probability and possibility frameworks, joint
distributions express the same type of information content.

From joint distributions, it is easy to obtain information about
the two marginal distributions, which express the probabil-
ity of each random contribution independently of the other,
and the dependence (correlation) of the two contributions.
The problem arises when the inverse problem is considered:
i.e., the construction of joint distributions starting from their
marginal distributions. This is not immediate, not even in the
probability domain, except for uncorrelated distributions or
correlated normal distributions. In this section, this problem
is discussed separately for the probabilistic and possibilistic
frameworks.

A. Construction of Joint PDFs

In probability theory, the joint PDF pX,Y of two generically
correlated random variables X and Y is obtained as

pX,Y (x, y) = pX (x) · pY |X=x(y) = pY (y) · pX |Y=y(x) (1)

where pX and pY are the marginal distributions of pX,Y , and
pY |X=x and pX |Y=y are the conditional probability distribu-
tions of Y , given X = x , and X , given Y = y, respectively.
Therefore, the joint PDF pX,Y is uniquely identified only
if the two distributions pX and pY |X=x (or the other two
corresponding distributions) are known. Unfortunately, starting
from the distributions of X and Y , it is possible to obtain
pY |X=x only in two cases: i.e., when X and Y are independent
(uncorrelated) random variables, since in this case pY |X=x =
pY holds; or when X and Y are normally distributed and their
covariance σX,Y is known. In fact, if X ∼ N (μx , σx ) and
Y ∼ N (μy, σy), pY |X=x is a normal distribution, too, with
mean and standard deviation given by

μY |X=x = μY + ρX,Y
σY

σX
(x − μX )

σY |X=x = σY

√
1 − ρ2

X,Y (2)

where ρX,Y is the linear correlation coefficient between X and
Y , given by ρX,Y = σX,Y /(σXσY ).

In all other cases, the information about X and Y probability
distributions and their correlation is not sufficient to define a
specific pY |X=x , and, therefore, the joint PDF pX,Y cannot be
obtained.

B. 2-D Probability–Possibility Transformation

A first way to obtain a joint PD is to apply a 2-D
probability–possibility transformation [28] to a given joint
PDF. As an example, Fig. 2 shows a normal joint PDF
(left plot) and the corresponding joint PD induced by this
transformation (right plot).

Following this transformation, a joint PD expressing the
same information content as the original joint PDF is obtained.
In fact, this transformation is aimed at preserving the max-
imum amount of information associated with the marginal
distributions and the information about their correlation [28].
For this reason, the joint PD induced by the 2-D transformation
can be considered as the reference joint PD in the comparison
of the methods for the construction of a joint PD with given
marginals.



Fig. 2. Example of application of the 2-D probability–possibility transfor-
mation.

C. Construction of Joint PDs

To build a joint PD rX,Y of given marginal distributions rX

and rY , a similar equation as (1) can be invoked

rX,Y (x, y) = T (rX (x), rY |X=x(y)) = T (rY (y), rX |Y=y(x))
(3)

where rY |X=x and rX |Y=y are the conditional possibility dis-
tributions of Y given X = x , and X given Y = y, respectively,
and T is a t-norm. Therefore, the joint PD rX,Y is uniquely
identified only if the two distributions rX and rY |X=x (or
the other two corresponding distributions) are known and a
specific t-norm is chosen.

A t-norm [35]–[37] is a function T : [0, 1]×[0, 1] → [0, 1]
which satisfies the following mathematical properties.

1) Commutativity: T (a, b) = T (b, a).
2) Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d .
3) Associativity: T (a, T (b, c)) = T (T (a, b), c).
4) Number 1 as the identity element: T (a, 1) = a.

A more general operator than the product in (1) is considered
here, because, in possibility theory, more degrees of free-
dom can be exploited than in probability theory, to combine
incomplete knowledge [36]. t-Norms represent an effective
mathematical tool to combine possibility distributions and
generalize the product operation, which can be indeed defined
as a particular t-norm [35]. In this respect, (3) results in a
generalization of (1), since a t-norm has been used instead of
the product operator.

All t-norms differ from each other in the way they associate,
in the 2-D space, the information contained in the marginal
PDs, i.e., in the shape of the resulting joint possibility distri-
bution. Therefore, the choice of a specific t-norm in (3) can
deeply affect the shape of rX,Y and, hence, the way random
contributions propagate in the possibility domain.

To investigate which t-norm provides the most similar joint
PD to the reference joint PD, the most widely employed
t-norms are considered in this paper to build the joint PD
according to (3), and are reported here for the convenience of
the reader, starting from the following fundamental ones:

Tmin(a, b) = min {a, b}
Tprod(a, b) = a · b

TL(a, b) = max {a + b − 1, 0}

TD(a, b) =
⎧
⎨
⎩

b, if a = 1
a, if b = 1
0, otherwise

(4)

where Tmin is the min t-norm, Tprod is the prod t-norm,
TL is the Lukasiewicz’s t-norm, and TD is the drastic

t-norm [35], [36]. These t-norms show important properties.
Without entering into the mathematical details, Tmin is the
largest possible t-norm, TD is the smallest possible t-norm,
Tprod is the prototype of the subclass of strict t-norms
(continuous and strictly monotone t-norms), and TL is the
prototype of the subclass of nilpotent t-norms [35], [37].
Moreover, these four t-norms are strictly ordered according to
the inequality Tmin > Tprod > TL > TD . An in-depth survey
on t-norms and their properties can be found in [35] and [37].

A further generalization of the concept of t-norm is provided
by the class of parameterized families of t-norms [35], [38].
In this class, a single equation identifies every member of one
family: each single member can be obtained by changing the
value of a parameter (γ ) in the equation. Using this class in
(3), rX,Y is obtained as a function of γ , and, therefore, it is
possible to vary the γ value to change the shape of rX,Y ,
so that it better approximates that of the reference joint PD.
For this reason, the most important parameterized families of
t-norms are also considered in this paper, and are here reported
for the convenience of the reader and the sake of completeness

T DP
γ (a, b)= a · b

max {a, b, γ } , γ ∈ [0, 1]

T F
γ (a, b)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Tmin(a, b), if γ = 0
Tprod(a, b), if γ = 1
TL(a, b), if γ = +∞
logγ

(
1 + (γ a−1)·(γ b−1)

γ−1

)
, otherwise

T H
γ (a, b)=

⎧
⎨
⎩

TD(a, b), if γ = +∞
0, if γ = a = b = 0

a·b
γ+(1−γ )·(a+b−a·b), otherwise

T SS
γ (a, b)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tmin(a, b), if γ = −∞
(aγ + bγ − 1)1/γ , if γ < 0
Tprod(a, b), if γ = 0
(max {0, aγ + bγ − 1})1/γ , if γ > 0
TD(a, b), if γ = +∞

T D
γ (a, b)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if a = 0 or b = 0
TD(a, b), if γ = 0
Tmin(a, b), if γ = +∞

1

1+
[(

1−a
a

)γ +
(

1−b
b

)γ ]1/γ , otherwise

T Y
γ (a, b)=

⎧
⎪⎪⎨
⎪⎪⎩

TD(a, b), if γ = 0
Tmin(a, b), if γ = +∞
max

{
0, 1 − [(1 − a)γ

+(1 − b)γ ] 1
γ
}
, otherwise

(5)

where T DP
γ is the Dubois and Prade t-norm family [39],

T F
γ is the Frank t-norm family [40], T H

γ is the Hamacher
t-norm family [41], T SS

γ is the Schweizer and Sklar t-norm
family [42], T D

γ is the Dombi t-norm family1 [44], and T Y
γ

is the Yager t-norm family [45]. In the above equations, γ
values range in [0,∞], if not specified otherwise.

1A further generalization of the Dombi t-norm family has been recently
proposed in [43], yielding a two-parameter operator class. However, this class
of operators has not been considered in this paper because the considered one-
parameter t-norms appear to be a satisfactory tradeoff between performance
and complexity in parameter optimization.



Each t-norm family reported in (5) satisfies specific math-
ematical properties that have been widely discussed in 
[35] and [38]. The reader is referred to the same for further 
details, which are not essential to fully perceive the follow-
ing considerations. According to the discussion reported in 
the literature [35], [46]–[48], the t-norm family defined by 
Frank [40] appears to be the most suitable one to be employed 
in the construction of the joint PD (3). The first interesting 
mathematical property is that the Frank family represents also 
a family of copulas [46] in the probability domain. Copulas 
are mathematical tools used for the construction of joint PDFs 
with fixed marginals [46]. Therefore, as a family of t-norms 
in the possibility domain, they are expected to be also suitable 
tools to build joint PDs with fixed marginals, in a similar 
way as joint PDFs are built. Moreover, the Frank family is 
a continuous and strictly decreasing family with respect to 
γ [35] and its bounds (obtained for γ = 0 and γ = ∞) are  the  
largest and smallest allowed for copulas (Fréchet bounds [46]). 
Therefore, very different shapes for rX,Y can be obtained by 
varying γ . Finally, as a family of copulas, the Frank fam-
ily shows interesting statistical properties in the probability 
domain [47], [48], and is expected to show the same properties 
also in the possibility domain, as a t-norm family. In the next 
section, its performances in building a joint PD similar to the 
reference joint PD will be compared with the performances of 
all other reported t-norms and families of t-norms.

As stated at the beginning of this section, the joint PD in 
(3) is uniquely identified only if a specific t-norm is chosen 
and the two distributions rX and rY |X=x are known. To our 
knowledge, the definition of rY |X=x is straightforward only 
in the simplest case in which X and Y are independent 
(uncorrelated), since rY |X=x = rY holds. In the general case of 
correlated random variables X and Y , the information about 
X and Y possibility distributions and their correlation is not 
sufficient to define a specific rY |X=x , and, therefore, the joint 
PD rX,Y cannot be obtained.

To extend the applicability of (3) to the case of correlated 
random variables, a method is presented to build rY |X=x when 
the PDs rX and rY are induced by normal distributions pX 
and pY through the 1-D probability–possibility transforma-
tion [26]–[28]. If rX and rY are induced by normal distribu-
tions, it is possible to assume that the construction of rY |X=x 
follows similar rules as the construction of pY |X=x when pX 
and pY are normal distributions [see (2)]. In particular, an 
equation similar to (2) can be obtained for the possibility 
domain, considering that the mean values of pX and pY 
directly translate, in the possibility domain, into the mean 
values μX and μY of the α-cuts of rX and rY , and the ratio 
between pY and pX variances equals the ratio of rY and rX 
α-cuts amplitudes, i.e., σY /σX = ĀY / Ā X . When rX and rY are 
induced by normal distributions, μX , μY , and  Ā X / ĀY assume 
the same values for each level α, and therefore they do not 
depend on α.2

2It can be readily proved that μX and μY do not depend on α if rY and 
rX are symmetric distributions. Similarly, it can be readily proved that the 
ratio Ā X / ĀY does not depend on α if rY and rX distributions have the same 
shape. This can be proved considering the geometrical properties of such 
distributions.

On the basis of these considerations and taking into account
(2), the mean value μY |X=x and amplitude ĀY |X=x of the
α-cuts of rY |X=x can be defined as follows:

μY |X=x = μY + ρX,Y
ĀY

ĀX
(x − μX )

ĀY |X=x

ĀY
=

√
1 − ρ2

X,Y (6)

where ρX,Y is the linear correlation coefficient between
X and Y .

Following (6) and (3), it is hence possible to build the joint
PD of correlated random variables X and Y if the associated
PDs rX and rY are induced by normal PDFs. Also, this method
will be numerically validated in the next section.

III. COMPARISON OF THE DIFFERENT t-NORMS

A. Comparison Methodology

The following comparison methodology has been devised to
evaluate the performances of each t-norm in the construction
of the joint PD. First of all, a joint PDF pX,Y of given marginal
distributions pX and pY is obtained according to (1), and is
transformed into its equivalent join PD r̂X,Y according to the
2-D probability–possibility transformation [28]. This joint PD,
having been obtained by direct transformation of the joint PDF,
will serve as the reference PD in evaluating how good the
considered t-norm is in approximating it.

In a second step, the 1-D probability–possibility transforma-
tion [26]–[28] is applied to transform distributions pX and pY

into their equivalent possibility distributions rX and rY , and
their joint PD rX,Y is built according to (3) for all considered
t-norms. Finally, every rX,Y is compared with the reference
joint PD r̂X,Y by evaluating the differences among the volumes
bounded by the rX,Y and r̂X,Y surfaces and the x, y-plane. In
particular, the following volume error is used:

e =
√√√√

∫∫ (
r̂X,Y (x, y) − rX,Y (x, y)

)2
dxdy∫∫

r̂X,Y (x, y)2dxdy
. (7)

In this definition, the difference r̂X,Y (x, y) − rX,Y (x, y) is
squared to avoid compensating the negative differences with
the positive ones throughout the integration process. Therefore,
e = 0 only when r̂X,Y = rX,Y . Moreover, the denominator
term in (7) leads to a normalized volume error, since e = 1
when rX,Y = 0.

Six case studies are considered in the comparison of the
volume errors introduced by the t-norms, composed by the
possible two-to-two combinations between the most common
types of PDFs to be considered in (1), i.e., uniform PDFs,
normal PDFs, and triangular PDFs. Different types of mar-
ginal probability distributions pX and pY , and consequently
the different equivalent rX and rY distributions, have to be
considered because the volume error introduced by a specific
t-norm depends on the type of rX and rY distributions.

B. Case of Uncorrelated Random Contributions

Table I shows the volume errors e when Tmin, Tprod, and
TL are considered in (3). For each t-norm, the table lists



TABLE I

VOLUME ERRORS INDUCED BY Tmin, Tprod , AND TL

Fig. 3. Comparison of the α-cuts of the reference joint PD in Fig. 2 (red
lines) and the α-cuts of the corresponding joint PD induced by Tmin (green
lines). Their levels α are also shown. The initial considered PDFs are both
normal.

Fig. 4. Comparison of the α-cuts of the reference joint PD in Fig. 2 (red
lines) and the α-cuts of the corresponding joint PD induced by Tprod (green
lines). Their levels α are also shown. The initial considered PDFs are both
normal.

also the average value eAVG of the volume errors over the
considered case studies. This value represents a rough index of
the overall performance of the considered t-norm. The volume
errors induced by the drastic t-norm TD are not reported
since their values are much higher than the others, and hence
meaningless. These errors are due to the drastic method with
which TD associates rX and rY in the 2-D space, according to
its definition in (4).

It can be seen that Tmin introduces large volume errors
for all considered types of probability distributions, leading
to an average volume error of about 26%. Moreover, the
simulations have shown that the rectangular α-cuts of rX,Y

provided by the min t-norm include the α-cuts of r̂X,Y for all
the considered case studies. Therefore, they are always larger
than the reference ones, in accordance with the definition
of the min t-norm as the largest t-norm. This is shown in
Fig. 3 for the two normal PDFs case study, where the α-
cuts of the reference joint PD in Fig. 2 and the α-cuts of the
corresponding joint PD induced by Tmin are plotted.

Tprod is the t-norm introducing the smallest errors and
provides even zero errors when two uniform PDFs are con-
sidered. This means that the same operator used in the two

Fig. 5. Volume errors versus the variations of γ for t-norms T DP
γ , T F

γ , T H
γ ,

T SS
γ , T D

γ , and T Y
γ . pX and pY are, respectively, uniform and triangular (blue

line); uniform and normal (green line); uniform and uniform (red line); normal
and triangular (cyan line); normal and normal (magenta line); triangular and
triangular (brown line). Average volume error: eAVG (black line).

different probability and possibility contexts leads to the same
joint PDs when uniform PDF are considered. For all other
case studies, the joint PDs rX,Y and r̂X,Y are significantly
different, leading to an average volume error of about 10%.
Moreover, the simulations have shown that the α-cuts of rX,Y

provided by the prod t-norm are included in the α-cuts of r̂X,Y

for all the considered case studies, except for the uniform–
uniform case study for which the α-cuts of rX,Y and r̂X,Y are



TABLE II

VOLUME ERRORS INTRODUCED BY t-NORM FAMILIES

Fig. 6. Comparison of the α-cuts of the reference joint PD in Fig. 2 (red
lines) and the corresponding joint PD induced by T F

γ=0.05 (green lines).
Their levels α are also shown. The initial considered PDFs are both normal.

equal. Therefore, they are always smaller than or equal to the
reference ones. This is shown in Fig. 4 for the two normal
PDFs case study, where the α-cuts of the reference joint PD
in Fig. 2 and the α-cuts of the corresponding joint PD induced
by Tprod are plotted.

The errors introduced by TL are always greater than those
introduced by Tmin and Tprod. This is in agreement with the
ordering TL < Tprod < Tmin, which implies that the α-cuts of
the joint PD built by TL are even smaller than those built by
Tprod.

To obtain smaller values for the average volume error, a
t-norm should be employed such that the resulting α-cuts
of rX,Y are smaller than those provided by Tmin and larger
than those provided by Tprod. Therefore, the desired t-norm
T ∗ shall satisfy Tprod < T ∗ < Tmin. In this respect, the
Frank parametric family of t-norms is expected to show better
performances in the construction of the joint PD than the
ordinary t-norms. In fact, by varying the value of its parameter
γ in the range [0, 1], several t-norms can be obtained showing
an intermediate behavior between Tmin and Tprod.

This is confirmed by the simulation results shown in Fig. 5,
where the volume errors e are plotted versus the values of γ
for the t-norm families defined in (5). For each t-norm family,
the volume errors associated with the six case studies are
reported with different colors. All reported volume errors vary

continuously with γ variations and show a relative minimum.
Therefore, for each t-norm family and case study, it is possible
to find the optimum γ value that minimizes e.

The optimum γ values and the resulting errors are listed
in Table II. The first two families, i.e., T DP

γ and T F
γ , intro-

duce the smallest volume errors, which range in the interval
0%–5%. Therefore, with T DP

γ and T F
γ , joint PDs rX,Y very

similar to the reference joint PDs r̂X,Y are obtained. This is
also confirmed, in a visual perspective, by Fig. 6, where the
α-cuts of the reference joint PD in Fig. 2 and the α-cuts of
the corresponding joint PD induced by T F

γ=0.05 are shown,
when the considered initial PDFs are both normal. Similar
figures as Fig. 6 are obtained for the other case studies, but
are not reported here for the sake of brevity. The last four
families show volume errors in the range 0%–12%, but still
lower than the errors introduced by Tprod. Moreover, the first
four families show zero errors when two uniform PDFs are
considered, because, for particular γ values, they degenerate
into Tprod.

Since it is not always convenient, or even possible, to change
the γ value on the basis of the considered PDF type, it is
possible to find a unique γ value for each t-norm family
that minimizes the average of the volume errors over the
considered case studies (eAVG). In this respect, each black
line in Fig. 5 represents the eAVG values versus the γ values
for a specific t-norm family. Also these lines show a relative
minimum. The γ values minimizing eAVG, as well as the
resulting volume errors, are listed in Table III.

The comparison of Tables II and III allows one to state
that, by choosing only one γ value for all considered case
studies, larger volume errors are obtained, as expected. The
first three t-norm families yield, in this case, similar average
errors (about 6%). In particular, T F

γ yields the smallest eAVG,
meaning that it provides, on average, the most similar joint
PD to the reference one.

Further considerations can be made by recalling that some
t-norm families (T DP

γ , T F
γ , T H

γ , and T SS
γ ) degenerate into

Tprod for some γ values and, hence, can lead to zero



TABLE III

VOLUME ERRORS INTRODUCED BY t-NORM FAMILIES WITH THE γ VALUES MINIMIZING THE AVERAGE ERRORS

TABLE IV

VOLUME ERRORS INTRODUCED BY t-NORM FAMILIES WHEN A DIFFERENT γ VALUE IS CHOSEN IN THE CASE OF UNIFORM PDFS

TABLE V

VOLUME ERRORS INTRODUCED BY t-NORM FAMILIES WHEN

CORRELATED RANDOM VARIABLES ARE CONSIDERED

errors when two uniform PDFs are considered (see Table II
and Fig. 5). Therefore, whenever it is known that the initial
PDFs are uniform, these t-norm families can be used, with
their appropriate values of γ , to obtain the correct joint PD.
For all other case studies, it is possible to find different
optimum γ values minimizing the average volume errors, as
shown in Table IV. Once again, T F

γ appears to be the best
t-norm family to approximate the reference joint PD because
of its small volume error. T DP

γ provides a small average
volume error, too.

C. Case of Correlated Random Contributions

If the two considered random contributions are not inde-
pendent, it is assumed here that they are normally distrib-
uted. In fact, only if pX and pY are normal distributions
and their correlation is expressed by the linear correla-
tion coefficient ρ, it is possible to find pX,Y according to

Fig. 7. Comparison of the α-cuts of a reference joint PD of correlated random
variables (ρ = 0.8) (red lines) and the corresponding joint PD induced by
T F
γ=0.05 (green lines). Their levels α are also shown. The initial considered

PDFs are both normal.

(1) and (2) and, hence, to transform it into the reference
joint PD. On the other side, thanks to (6) and (3), it is possible
to evaluate the approximating joint PD induced by a specific
t-norm when the initial possibility distributions are induced by
normal PDFs.

Assuming a linear correlation coefficient ρ = 0.8,3 the
t-norms Tmin, Tprod, and TL lead to volume errors of 21.7%,
15.9%, and 49.5%, respectively. Analyzing these values and
comparing them with those in the norm–norm column in
Table I, it can be stated that the correlation of the marginal
distributions does not significantly affect the volume errors
and, therefore, the considerations made in Section III-B are
still valid. Moreover, the fact that the volume errors are the
same for the cases of uncorrelated and correlated contributions
suggests that the method to build joint PDs of correlated
random contributions (6) can represent an effective transla-

3The numerical simulations have been performed for different ρ values
in the range [−1, 1]. Since it has been checked that the value of ρ does
not significantly affect the volume errors, only the results corresponding to
ρ = 0.8 are reported here for the sake of brevity.



tion to the possibility domain of the method to build joint 
PDFs of correlated random contributions (2) in the probability 
domain.

The minimum volume errors induced by the t-norm families 
for the correlated case are reported in Table V together with 
the optimum γ values that lead to these errors. Comparing 
these values with the norm–norm column in Table II, it can 
be checked that the correlation of the marginal distributions 
does not significantly affect neither the volume errors nor 
the optimum γ values. Therefore, the comments made in 
Section III-B about the t-norm families and their performances 
are still valid. This is also confirmed, from a visual perspective, 
by Fig. 7, where the α-cuts of a reference joint PD of 
correlated random variables (ρ = 0.8) and the α-cuts of
the corresponding joint PD induced by Tγ

F=0.05 are shown.
Fig. 7 confirms also the validity of the proposed method to 
build joint PDs of normally distributed correlated random 
contributions.

IV. CONCLUSION

In this paper, a method to build the joint possibil-
ity distribution of random contributions to uncertainty has 
been discussed. Since the joint PD strongly depends on 
the choice of the particular employed t-norm, the perfor-
mances of the most popular t-norms and t-norm families 
have been evaluated by comparing the resulting joint PD 
with a reference joint PD. According to theoretical consid-
erations and numerical analysis, the Frank t-norm family 
appears to be particularly suitable for the construction of the 
joint PD.

Moreover, the optimum γ values to be used with this family, 
and the other families, have been defined for the most common 
types of marginal distributions. From a practical point of view, 
the choice of the optimum γ value depends on the available 
information about the type of the original marginal PDFs. If 
this information is available, a different optimum γ value can 
be chosen for the different types of marginal PDFs. On the 
contrary, if this information is not available, a γ value can 
be chosen that is, on average, the optimum value with respect 
to the most common types of marginal PDFs, as proposed in 
Section III-B.

Finally, the method to build the joint PDF of correlated 
random contributions, when their distribution is normal, has 
been translated to the possibility domain. The effectiveness 
of the possibility-domain method has been confirmed, once 
again, by numerical analysis.
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