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This work shows the development and characterization of a fiber optic tactile sensor based on Fiber Bragg Grating (FBG) technology.
The sensor is a 3 x 3 array of FBGs encapsulated in a PDMS compliant polymer. The strain experienced by each FBG is transduced
into a Bragg wavelength shift and the inverse characteristics of the sensor were computed by means of a feedforward neural network.
A 21mN RMSE error was achieved in estimating the force over the 8 N experimented load range while including all probing
sites in the neural network training procedure, whereas the median force RMSE was 199 mN across the 200 instances of a Monte
Carlo randomized selection of experimental sessions to evaluate the calibration under generalized probing conditions. The static
metrological properties and the possibility to fabricate sensors with relatively high spatial resolution make the proposed design
attractive for the sensorization of robotic hands. Furthermore, the proved MRI-compatibility of the sensor opens other application

scenarios, such as the possibility to employ the array for force measurement during functional MRI-measured brain activation.

1. Introduction

Tactile sensors transduce quantities, such as force, pressure,
temperature, vibration, and slip, through the physical inter-
action with the object.

The first interest in touch-sensing technology arose
between the end of the seventies and the beginning of the
eighties, when researchers started investigating its application
in the field of robotics [1, 2]. Tactile sensors were considered
crucial to provide information about the interaction between
robotic tools and environment, leading to a growing interest
in systems able to reproduce the sense of touch: for instance,

if a task is performed using a robotic manipulator, sensory
feedback similar to those possessed by humans is essential
to explore and interact with the environment (including
humans and objects). Therefore, huge efforts were made to
design and develop tactile sensors that are specific for force
and pressure measurements during contact events.

The area of tactile sensing interested many application
fields since 1999, as reviewed by Lee and Nicholls [3]: in par-
ticular, biomedical applications were considered as the new
domain where tactile sensing was likely to play a role. Along
this pathway, during the last decades touch-sensing technolo-
gies attracted interest within various biomedical scenarios



[4, 5], which can be summarized in three main categories:
minimal access surgery [6], prosthetics and artificial skin [7],
and smart interfaces for biomechanical measurements (8, 9].
Recently, attention in tactile sensing technologies further rose
due to the spread of hand-held consumer touch-based devices
such as smart phones and tablets.

A number of technologies were investigated for the devel-
opment of tactile sensors, including principles of sensing such
as piezoresistivity, piezoelectricity, and capacitance change;
anyway a set of requirements independent of the technology
can be identified for tactile sensors for force and pressure
measurement inspired for the human tactile system, for
example, the capability of detecting both static and dynamic
forces, high spatial resolution and small size, compliant
sensing surface, low hysteresis, high repeatability, and low
discrimination threshold. All these features should be owned
by the sensing system in compliance with the specific purpose
[10] and be reflected in the calibration method, either with
model-based approaches [11, 12] or with neural networks
13, 14].

Many efforts have been lavished by researchers to merge
the aforementioned principles of sensing with microfabri-
cation technology, because of several valuable features (e.g.,
small size, high sensitivity, accuracy and precision, and low
power consumption) of microfabricated devices for artificial
tactile sensing in biomedical applications [15].

Nevertheless, standard technologies are not able to over-
come some issues, such as hysteresis, power consumption,
and immunity to electromagnetic interferences. Therefore,
novel materials and sensing elements (e.g., based on optics,
fluidics, and ionic polymer metal composites) are under
continuous investigation.

In particular, fiber optic sensors are gathering increasing
interest for tactile sensing applications, due to their valuable
features, such as reduced mass (few grams), small dimensions
(usually the diameter is about 300-500 ym, but fibers with
diameter of 10 ym can be employed), flexibility, immunity to
electromagnetic interferences, and compatibility in Magnetic
Resonance (MR) environments.

MR imaging (MRI) is a popular imaging technique used
for both diagnostics and therapeutics in medicine. During
MRI-based procedures, the monitoring of patient physiolog-
ical parameters (e.g., temperature and breathing frequency)
can provide crucial information about the patient conditions;
therefore MRI-compatible sensors are attractive. A particular
application of MRI is the functional MRI (fMRI), which
assesses the brainy activities during specific task, aiming to
map the physiological behavior and to understand how nor-
mal functions are disrupted in disease. Within this scenario,
MRI-compatible force sensors allow measuring force during
movements in humans and quantify the kinematics of motor
task performance during fMRI [16].

Fiber optic sensors are the MRI-compatible tool par excel-
lence, since the material used to fabricate the optical fibers
does not perturb magnetic fields inside the MR-scanner,
preserving the quality of diagnostic information [17, 18].

Fiber optic tactile sensors can be based on different
principles of sensing, for instance, interferometry [19], micro-
and macrobending [20, 21], hybrid optoelectronic solutions
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[22], and Fiber Bragg Grating (FBG) technology [23, 24] that
we consider highly attractive and that was evaluated in the
present study.

FBGs are short segments of optical fiber, which are ad
hoc fabricated to be sensitive to strain. Optical fibers provided
with FBGs merge the above-described features of plain opti-
cal fibers with peculiar characteristics, such as the use of the
wavelength shift as sensing signal. This feature of FBG sensors
avoids the issue of light intensity fluctuations and allows
producing an array within the same fiber. Also, FBGs guaran-
tee fast response, negligible hysteresis, and the possibility to
discriminate uniform and nonuniform load adopting FBGs
with special design (e.g., long-period, chirped, and tilted).
The main drawback of FBGs is related to the simultaneous
sensitivity to strain and temperature that can, however, be
compensated by using additional FBGs in particular config-
urations to act as reference temperature sensors [25, 26].

FBGs were deeply investigated since 2006 to be housed
in microsurgical tools, catheters, and needle biopsy [23] and,
recently, also for the design of distributed tactile sensors
for mimicking skin-like surfaces [26, 27]. Gastaldo and
colleagues [28] compared tactile sensors based on FBGs with
sensors composed of strain gauges and infrared sensors,
showing the ability of FBG-based sensors to distinguish the
application point of the load and the shape of different contact
objects. Heo and colleagues [26] proposed two different
designs for FBG-based tactile sensors, respectively, for low
spatial resolution applications (mimicking human body skin)
and high spatial resolution applications (as for finger skin).
The two systems, characterized in the force range up to 5N,
showed a nonlinear calibration curve and tailored designs.

In this work we describe the simple design and charac-
terization of a FBG-based tactile sensor array. The analysis of
the response of the array while varying the probing location
was carried out to assess the ability of the sensors to detect
and discriminate loads in generalized conditions. A neural
network was used to fit an inverse model of the device via
a backpropagation training function, in order to quantita-
tively evaluate the system potential use as a measurement
instrument. This machine learning approach was introduced
with the aim of obtaining the sensor inverse characteristics
by means of a learn-by-example method, rather than by
identifying a set of parameters that minimize the average
error of a model-based function [28]. In comparison to
model-based approaches, the chosen solution has limitations
in its ability to explain the physics of the system; however, it is
more robust with respect to possible fabrication defects that
may cause deviation from the nominal mechanotransduction
characteristics of the sensing system [13].

Finally, we investigated the compatibility of the developed
sensor array for potential employment in functional MRI-
measured brain activities during tactile tasks. To this aim, the
FBG-based array was scanned with 1.5 T MRI.

2. Sensor Description

2.1. Fiber Bragg Grating Transduction Principle. The trans-
duction principle of a FBG sensor is based on the phe-
nomenon of radiation diffraction: when light propagates
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FIGURE I: (a) 3D sketch of FBG-based array. (b) Cross section of FBGs assembly and support. (c) Picture of completed array, with

Polydimethylsiloxane (PDMS) coating.

along a fiber housing a Bragg grating, a narrow range of wave-
lengths, centered around the so-called Bragg wavelength, A,
is diffracted in the backward direction, whereas the other
wavelengths are not disturbed. The Bragg wavelength A,
depends on the effective refractive index of the fiber core, n.4,
and on the spatial period of the grating, A, according to

Ag=2-ng- A 0

If the FBG experiences strain, ¢, or temperature variation, AT,
the Bragg wavelength will experience a shift A 5, as expressed

by
Adg=c -e+cp - AT, (2)

where ¢, is the strain-optic coefficient and ¢ is the coefficient
of temperature. If AT is negligible, a force F, applied to the
FBG causes a strain which, in turn, causes a shift of the Bragg
wavelength. Therefore, (2) can be simplified as follows:

Mg =c -e(F,). (3)

2.2. FBG Sensor Array Design and Fabrication. In the devel-
oped system, 9 FBGs were integrated into a 3 x 3 sensors’
array (Figure 1). Each optical fiber, which constitutes the row
of the array, housed three FBGs, with A5 0f 1533 nm, 1541 nm,
and 1549 nm, respectively. The different A of the three FBG
sensors embedded into each fiber allowed separating their
outputs. The fibers had an external diameter of 250 ym, and
FBGs had length of 10 mm. The fibers were bonded to a
plastic support by means of epoxy adhesive (Araldite 2011).
The plastic support was built using a rapid prototyping printer
(Project 3000, 3D Printer Inc.). Each sensitive segment was
designed like a fixed beam, supported by the plastic support.

The FBGs placed on the same fiber have a distance of
11 mm, whereas the fibers were placed at relative distance
of 15mm (Figure1(a)). In order to prevent fibers from
mechanical crack, nine safety zones were designed on the
surface of the plastic support, each in correspondence with
the FBGs (Figure 1(b)).

The fibers were encapsulated within a 2 mm thick layer
of Polydimethylsiloxane (PDMS) [29]. The PDMS (Sylgard
184, Dow Corning, US) was obtained mixing the curing agent
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FIGURE 2: (a) Experimental setup including (1) FBG-based array, (2) material testing machine, (3) optical spectrum analyzer, and (4) PC to
collect data. (b) Close-up view of (1) the FBG sensor array, (2) the two translational stages, and (3) the cylindrical indenter. (c) Schematic of
FBG sensor array with detail of indenter positions, in correspondence with the center of FBGs (black circles) and at different distances from

the central one (gray circles).
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FIGURE 3: Architecture of the neural network that was implemented and trained to estimate the inverse function of the FBG sensor array.

with the prepolymer in a 1:10 ratio, was cured at room
temperature for 48 hours, and had 850 kPa Young’s modulus.

3. Methods for the Evaluation of
the Sensor Array

The FBG-based array was experimentally evaluated to obtain
the inverse relationship between the applied force F, and
the wavelength shift AA; via a quasi-static protocol. The
sensor response was evaluated with different indentation
locations. Some metrological properties, such as repeatability
and accuracy, were estimated.

3.1. Experimental Setup and Protocol. A cylindrical probe,
with external diameter of 5mm (surface of 16 mm?), was
used to apply semistatic deformation to the surface of the
array. The material testing machine (Instron, 5900 series),
suitable to apply compression to the sensor surface, was
used to move the indenter along the z-axis with constant
speed of 0.l mm-s ', and the compression force was measured
by a load cell (measurement range from —-10N to 10N
and accuracy of 0.25% of reading value) with sampling
frequency of 10 Hz. Two translational stages (PT1, Thorlabs,
with differential micrometer drive 150-811 ST) were used to
translate the sensor along two perpendicular directions, x-
and y-axes, with the aim of accurately controlling the position
of the indenter above the desired surface coordinates. The
change of Ay (e.g., AAg) experienced by the FBGs during
the compression tests was measured by means of an opti-
cal spectrum analyzer (OSA, Optical Sensing Interrogator,
sml125, Micron Optics, resolution of 1 pm) and acquired by

a graphical user interface (LabVIEW, National Instruments).
The indentation force F, was servo-controlled up to 8N,
and the force measured by the load cell was synchronized
with the values of AA; measured by the OSA. Data sampling
frequency was 10 Hz.

During the indentation experiments the probe was
applied in 12 selected sites of the sensor surface (Figure 2(c))
with the aim of retrieving an inverse relationship between
the F, applied to the sensor surface and the Az experienced
by the FBG. Each experiment was repeated 3 times per each
indentation site, thus obtaining a dataset with 36 sessions.

The MRI compatibility of the sensor array was tested by
placing the sensor array within MRI scanner (GE, Optima
MR360 1.5T). Images of the sensor were acquired by 1.5T
scan, using a T2-weighted sequence.

3.2. Data Analysis Methods. The inverse function of the
sensor array was estimated by means of a feedforward neural
network (Figure 3, implemented with the Neural Network
Toolbox in Matlab) composed of 9 input neurons (each
associated to the output wavelength of a FBG sensor), 49
hidden neurons, and 1 output neuron (estimating the applied
force F,). The internal layer of the network was dimensioned
so as to have a hidden neuron per each half-pitch of the
3 x 3 lattice of FBG sensors (per each row of sensors: 3
hidden neurons for the FBG sensors, plus 2 for the in-
between positions, plus 2 for the external positions, therefore
obtaining 7 x 7 hidden neurons in total). The Levenberg-
Marquardt backpropagation method was used to train the
network, with Mean Squared Error (MSE) performance
function and 1000 training epochs as a maximum.
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FIGURE 4: (a) Compression force F, as a function of time, applied during the test. (b) Change of Bragg wavelength AA as a function of time,

registered by the OSA.

A first assessment was carried out by training the network
including all the 36 indentation experiments and randomly
selecting 25% of the time-samples of each indentation posi-
tion as training data, 50% as validation data, and 25% as
test data. The MSE performance, the error histogram, and
the regression performance were evaluated for the training,
validation, and test data.

A second more challenging assessment was carried out
in order to evaluate the network ability to generalize with
respect to the point of application of the load. To this aim,
a Monte Carlo method was used, randomly dividing (with
the Matlab randperm function) the 36 indentation sessions
to 18 network-calibration sessions and 18 network-evaluation
sessions, with 200 repetitions of the randomized calibra-
tion/evaluation procedure. For the network-evaluation ses-
sions, we computed the distribution and the 25th, 50th, and
75th percentile of the mean and standard deviation of the
errors that were obtained by estimating the applied force F,
via the neural network.

4. Results

The indentation force F, was tracked by the FBGs via a
coherent modulation AAy of the wavelength registered by
the OSA (Figure 4). Such modulation was monotonic and
highly repeatable (Figure 5). The repeatability was quantified
through the percentage value of the standard deviation, e%,
calculated as the ratio between the standard deviation and the
mean value of AA, equal to 1.6% for FBGL. The modulation of
Bragg wavelength was dependent on the indentation position
with respect to the FBG sensor: the larger the distance
between the indentation site and the FBG sensor, the lower
the AL measured by the grating (Figure 6).

When evaluating the neural network according to the
first procedure described in Section 3.2, a 21 mN root mean
squared error (RMSE) was achieved in the validation set
(433 mN* MSE, Figure 7), without offset in the error distribu-
tion (Figure 8) and with high regression quality as confirmed
by the R coeflicients being very close to 1 for the calibration,
validation, and test data sets and for all datasets grouped
together (Figure 9).

When evaluating the neural network according to the sec-
ond, more challenging, procedure described in Section 3.2,
the 25th, 50th, and 75th percentile of RMSE of the estimated

FIGURE 5: Repeatable monotonic modulation of wavelength AA 4, for
FBG], as a function of the indentation force F,.

force were 124 mN, 199 mN, and 354 mN, respectively, across
200 instances of the randomized selection of experimental
sessions (Figure 10), whereas the 25th, 50th, and 75th per-
centile of the mean error of the estimated force were —38 mN,
3 mN, and 34 mN, respectively (Figure 11).

Lastly, the test of the sensor array inside of MRI scanner
proves the features of MRI safety and MRI compatibility of
the sensor, since the sensor did not produce any artifacts on
the images.

5. Discussion and Conclusions

This study presented the design and preliminary evaluation of
FBG-based tactile sensor array. Its basic working principle,
already assessed in the literature of this field, has been
further investigated in terms of the following: (1) simplified
fabrication process, (2) proved MRI-compatibility, and (3)
force coding by means of feedforward neural network.

The sensor had a simple design and fabrication process,
requiring the following: three fibers to house FBGs, a plastic
support fast manufactured by 3D printer, and a PDMS
compliant polymeric material to cover and protect sensors
as well as to distribute the load above the array surface. The
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FIGURE 6: Wavelength shift of FBG5 while applying the normal force
in 3 different positions (~5mm and 10 mm probe coordinates, +
mark; -5mm and 5mm probe coordinates, o mark; -5 mm and
0 mm probe coordinates, * mark).
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FIGURE 7: Mean squared error validation performance achieved
for the training, validation, and test sets while training the neural
network. This performance is related to the initial assessment in
which the network was trained by considering all the 36 indentation
experiments and randomly selecting 25% of the time-samples of
each indentation position as training data, 50% as validation data,
and 25% as test data.

sensor did not require a specific fabrication of the sensitive
part surface (e.g., mesa in polymeric layer, as in [26]), and
a quasi-static indentation protocol has been implemented
to characterize the array in the measurement range 0-8 N,
close to the requirements of tactile sensing for prosthetics
[30].

The feedforward neural network allowed achieving 2 mN
RMSE error in the force estimation over the 8 N experi-
mented load range while including all probing sites in the
training procedure. While estimating sensor performance
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FIGURE 8: Error histogram for the inverse function implemented via
the neural network, for training, validation, and test sessions. This
performance is related to the initial assessment in which the network
was trained by considering all the 36 indentation experiments and
randomly selecting 25% of the time-samples of each indentation
position as training data, 50% as validation data, and 25% as test
data.

under more challenging generalized probing conditions, the
25th, 50th, and 75th percentile of RMSE were 124 mN,
199 mN, and 354 mN, respectively, across 200 instances of a
Monte Carlo randomized selection of experimental sessions.

Lastly, the sensor array was tested to be MRI compatible,
since it did not produce any adverse imaging artifacts. This
feature makes the sensor array suitable to be employed during
tests of functional MRI, aiming at concurrent measurement
of the brain activation of human subject and the applied
forces, for neuroscience investigations [16, 31].

Considering other sensing principles from the well-
established ones, such as piezoresistive, piezoelectric, and
capacitive sensors, to the innovative ones, such as elec-
troactive polymers and fluidic sensors, FBGs offer many
advantages. The main added value of FBG-based sensors,
along with the absence of electromagnetic interferences and
MR compatibility, is related to the possibility of increasing
the number of FBGs within the array. Indeed, as the number
of sensors increases, wiring issues become relevant, but the
ease of housing a number of FBGs within the same fiber
allows reducing the encumbrance of the wiring. Also, another
advantage is the wide measurement range in comparison to
several tactile sensors developed for robotic or prosthetic
purposes [32-35], which have been characterized within a
measurement range typically limited up to 2.5N. A limita-
tion of FBG technology could be represented by the need
for temperature compensation, since FBGs are sensitive to
both mechanical strain and temperature change, showing a
behavior similar to strain gauges. Therefore, specific designs
are invoked to arrange FBG for temperature reference mea-
surement in positions that do not experience strain and
whose change of Bragg wavelength could be only due to
temperature changes [36]. Particular configurations aim to
compensate the optical output of the other FBGs in the
same array, dedicated to strain measurement. On the other
hand, under specific design conditions, it is possible to take
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FIGURE 9: Regression performance of the inverse function implemented via the neural network, for training, validation, test, and all sessions.
This performance is related to the initial assessment in which the network was trained by considering all the 36 indentation experiments and
randomly selecting 25% of the time-samples of each indentation position as training data, 50% as validation data, and 25% as test data.

advantage of this intrinsic feature of FBGs, which can be used
to implement a multimodal tactile sensor, providing both
strain and temperature information [37, 38].

The encouraging results and the attractive performances
of the feedforward neural network lead to the investigation

of more accurate fabrication processes of the proposed proto-
type, with the aim of minimizing chirping effect during FBG
strain, controlling cross-talk among sensors, and evaluating
the optimal design for the compensation of temperature
influence.
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