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Exact free vibration analysis of Lévy FGM plates with higher-order shear

and normal deformation theories

Lorenzo Dozio

Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa, 34, 20156, Milano, Italy

Abstract

First-known exact solutions are derived for free vibration of thick and moderately thick functionally graded

rectangular plates with at least one pair of opposite edges simply-supported on the basis of a family of

two-dimensional shear and normal deformation theories with variable order. The boundary-value problem

is first expressed in a compact unified form which is invariant with respect to the order of the kinematic

theory. The Lévy method applied to this compact form yields a set of governing equations written in terms

of invariant matrices, which are then appropriately expanded according to the order of the plate model. The

resulting equations are put into a state-space representation and the frequency values are finally obtained

by substituting the general solution of the state equation into the set of boundary conditions and solving

the related homogeneous system. After discussing the way of recovering the through-the-thickness modal

displacement and stress distribution at any point of the plate and how the effective elastic properties of

the graded plate are computed, some numerical results are presented using various higher-order theories.

Comparisons with exact three-dimensional and other two-dimensional approaches are provided for two-

constituents metal-ceramic plates. New exact results for functionally graded plates with six combinations

of boundary conditions are also obtained. They can be useful as valuable sources for validating other

approaches and approximate methods.

Key words: Free vibration, exact solutions, Lévy plates, functionally graded material, higher-order plate

theories.

1. Introduction

Functionally graded materials (FGMs) are receiving increasing attention in recent years since they offer

great promise in many engineering applications. For example, due to their smooth spatial variation of

material properties, they are attractive for advanced thermal barrier coatings in engine components and

spacecraft heat shields. Conventional thermal barrier systems consisting of a discrete layer of ceramic
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material bonded to a metallic structure could be replaced by a FGM structure with ceramic-rich material

placed at the high temperature regions and metal-rich material located where high mechanical properties

are needed. By doing so, large interlaminar stresses originating at the interface between distinct materials

could be avoided.

The above mentioned interest motivated a huge amount of research in the characterization, modelling

and analysis of FGM structures, with particular attention to plates and shells. An extensive literature review

on FGM plates has been recently provided by Jha et al. [1], with a strong emphasis on available methods of

estimating effective properties of FGMs and on thermo-elastic, vibration and stability analysis. Since more

than 190 works published since 1998 are critically examined and classified, interested readers are warmly

referred to [1] for a comprehensive overview of ongoing research on functionally graded plates.

Generally speaking, recent studies on FGM plates are focused on three main topics: homogenization

models and schemes to simplify FGM complicated heterogeneous microstructures, kinematic models to

accurately describe the mechanical behavior of plates made of FGM, and solution techniques to provide

numerical evaluation of their static and dynamic response. This work addresses the second and third topic

by presenting the first-known exact vibration solutions of rectangular FGM plates having at least two

opposite edges simply-supported on the basis of a family of two-dimensional (2-D) theories with shear and

normal deformation effects. Effective elastic properties of the FGM plate are computed by means of the

classical rule-of-mixtures or the Mori-Tanaka homogenization scheme [2], as explained later.

It is well known that exact analysis of structural elements is relevant in providing valuable comparison

to study convergence and accuracy of approximate solution methods. In addition, analytical models may

be highly appealing to speed up the preliminary structural design when many parametric and optimization

studies are carried out. Exact solutions for free vibrations of plates are only available for a limited set of

geometrical and material configurations. The case under study in this work belongs to that set and involves

a rectangular plate having FGM properties varying smoothly through the thickness and with one pair of

opposite edges simply-supported and the remaining edges having any combination of free, simple support or

clamped conditions. Rectangular plates with at least two opposite edges simply-supported are often denoted

in the literature as Lévy plates since they can be analyzed by employing the so-called Lévy solution method.

Lévy developed in 1899 an exact method for bending analysis of isotropic rectangular plates based on the

expansion of the displacement field in a single trigonometric series along the direction normal to the pair

of opposite simply-supported edges. The same approach can be applied as well to specially orthotropic and

FGM plates and to dynamic problems. It is noted that the method was actually introduced by Voigt for

solving the free vibration problem of isotropic plates six years before Lévy published his work on bending

analysis [3].

Exact vibration solutions of FGM plates are rather limited in the open literature. A remarkable three-

dimensional (3-D) exact solution is presented by Vel and Batra [4]. Free and forced vibrations of thin and
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thick simply-supported plates with arbitrary variation of material properties in the thickness direction are

studied. Benchmark values are obtained from 3-D elasticity for two-constituents metal-ceramic FG plates

and used to assess the accuracy of the classical plate theory (CPT) and the first-order shear deformation

theory (FOST). It is shown that both theories may be inadequate for FGM plates since CPT completely

neglects the effects of transverse shear strains and FOST solutions are strongly dependent on the estimates

of the shear correction factor.

In order to overcome the limitations of traditional theories, many higher-order theories have been pro-

posed in the literature with the aim of providing accurate 2-D models without the need of a cumbersome full

3-D analysis. Higher-order 2-D plate models can be considered as refinements of FOST, where the assumed

displacement field of FOST is typically enriched with higher-order terms as Taylor’s series expansion of the

thickness coordinate. The highest power in the Taylor’s expansion is denoted as order of the theory. It is

possible to distinguish between higher-order shear deformation theories (HOSTs), where in-plane displace-

ments are assumed to be at least a parabolic expression of the thickness coordinate and the out-of-plane

displacement to be constant, and higher-order shear and normal deformation theories (HOSNTs), where

thickness stretching is allowed by including also power series expansion of the transverse displacement. Two

excellent examples of application of higher-order theories to FGM plates are proposed by Matsunaga [5]

and Jha et al. [6]. Matsunaga [5] investigates a general 2-D HOSNT which takes into account the effects of

shear deformations, transverse extensibility and rotary inertia. Exact free vibration and stability analysis of

rectangular fully simply-supported FG metal-ceramic plates is performed by the Navier method. It is shown

by comparison with 3-D results that HOSNTs can provide accurate solutions both for frequency values and

buckling stresses. Jha et al. [6] present a comprehensive study of shear deformation theories of different

order with and without normal deformation effects for free vibration analysis of FGM plates. The analysis

is limited to Navier solution for plates with all edges simply-supported. It is shown through many numerical

examples that HOSNTs are required to achieve the accuracy of 3-D elasticity solutions, especially when the

side-to-thickness ratio of the plate is less than 10.

Papers on exact vibration analysis of rectangular FGM plates with boundary conditions other than

all simply-supported are very few. Thin functionally graded plates are considered by Hasani Baferani et

al. [7]. Both Navier and Lévy-type solutions are obtained based on the classical plate theory and the effects

of boundary conditions on the vibration characteristics are discussed. An exact closed-form solution is

presented by Hosseini-Hashemi et al. [8] for moderately thick Lévy FGM plates. The analysis is performed

using the first-order shear deformation theory with a shear correction factor taken as 5/6 and numerical

results are presented for six different combinations of boundary conditions. The same authors report a

study in Ref. [9] where an exact analytical vibration solution of thick FGM plates is derived on the basis

of the third-order shear deformation theory proposed by Reddy [10]. In this way, no shear correction factor

is needed. It is shown that the Reddy’s model yields a slightly improved accuracy with respect to FOST.
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Hasani Baferani et al. [11] use the same third-order plate model to present Lévy-type solutions of rectangular

FGM plates resting on elastic foundation.

From the previous review, it is evident the lack of exact solutions of Lévy FGM plates based on HOSNTs.

This is probably due to the mathematical complexity of the problem, which is related to the coupling between

in-plane and out-of-plane motion induced by the through-the-thickness variation of elastic properties and

the number of highly-coupled differential equations of motions arising from the relatively high number of

kinematic variables in the assumed displacement field. Moreover, all previous approaches rely on governing

equations and solution procedures which are specific to the particular plate theory adopted. Therefore, if the

theory is changed, the mathematical formulation and, in some cases, the corresponding solution technique

should be adapted accordingly.

The aim of this work is to present a powerful unified approach capable of providing in an easy and

automatic way exact vibration solutions of Lévy FGM plates on the basis of an entire family of HOSNTs

with variable order. The formulation here proposed can be considered as an extension to FGM plates of what

recently presented in Ref. [12] for laminated plates. As shown in Section 2, by writing the assumed plate

model using an index notation related to the order of expansion of in-plane and out-of-plane displacements,

the equations of motion and boundary conditions can be expressed in a compact form which is invariant with

respect to the order of the kinematic theory. Section 3 shows how the Lévy method applied to the previous

form yields a set of governing equations written in terms of 3 × 3 matrices, called fundamental nuclei of

the formulation, which again do not depend on the order of the theory. The nuclei are then appropriately

expanded according to the order of the plate model and the resulting equations are put into a first-order

state-space representation. The frequency values are finally obtained by substituting the general solution of

the state equation into the set of boundary conditions and solving the related homogeneous system. After

discussing the way of recovering the through-the-thickness modal displacement and stress distribution at

any point of the plate and how the effective elastic properties of the graded plate are computed, some

numerical results are presented in Section 6 using various HOSNTs. Comparisons with exact 3-D and other

2-D approaches are provided for two-constituents metal-ceramic plates with various boundary conditions

along with new exact results which can serve as benchmark cases for approximate methods.

2. The boundary-value problem

Consider a rectangular plate of length a, width b and uniform thickness h in the unstressed reference

configuration. The plate is made of elastic and isotropic functionally graded material with properties vary-

ing smoothly in the z thickness direction only. In the absence of external forces, the principle of virtual
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displacements (PVD) may be written as follows

∫

Ω

h/2
∫

−h/2

(

δǫT
p σp + δǫT

n σn

)

dzdΩ = −

∫

Ω

h/2
∫

−h/2

δuTρ(z)
∂2u

∂t2
dzdΩ (1)

where

u(x, y, z, t) =
[

u(x, y, z, t) v(x, y, z, t) w(x, y, z, t)
]T

(2)

is the displacement vector at any point (x, y, z) of the plate, Ω = [0, a] × [0, b] is the middle surface, ρ(z) is

the mass density, and the stress and strain vectors are partitioned into in-plane and out-of-plane (normal)

components as follows

σp =
[

σxx σyy τxy

]T

, ǫp =
[

ǫxx ǫyy γxy

]T

σn =
[

τxz τyz σzz

]T

, ǫn =
[

γxz γyz ǫzz

]T

The linear strain-displacements relations are expressed in matrix notation as

ǫp = Dpu, ǫn = Dnu +
∂

∂z
u (3)

where

Dp =











∂/∂x 0 0

0 ∂/∂y 0

∂/∂y ∂/∂x 0











, Dn =











0 0 ∂/∂x

0 0 ∂/∂y

0 0 0











A family of 2-D higher-order shear and normal deformation plate theories is introduced as follows

u(x, y, z, t) = F0(z)u0(x, y, t) + · · · + FN (z)uN (x, y, t)

= Fτ (z)uτ (x, y, t)
(4)

where τ = 0, 1, 2, . . . , N is the theory-related index, Fτ (z) are appropriate thickness functions, and

uτ (x, y, t) =
[

uτ (x, y, t) vτ (x, y, t) wτ (x, y, t)
]T

(5)

is the vector of generalized kinematic coordinates in the assumed displacement model. Note that in Eq. (4)

the Einstein convention is used with an implied summation over the index τ . Note also that normal

deformation effects are allowed by the expansion of the transverse displacement w. Various theories of

different order can be obtained by selecting N and the type of thickness functions. Specific theories will be

considered later in Section 6 where the numerical analysis is presented. The mathematical formulation is

derived in the following be referring to the general case expressed by Eq. (4).

Substituting Eq. (4) into the strain-displacement relations (3) and the PVD equation (1) yields
∫

Ω

[

(Dpδuτ )
T

Rpτ + (Dnδuτ )
T

Rnτ + δuT
τ Rnτz

]

dΩ =

−

∫

Ω

δuT
τ Iρτs

∂2us

∂t2
dΩ

(6)
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which holds for any τ and s ranging from 0 to N . In the above equilibrium equation, the following stress

resultants are introduced

Rpτ =



















Rxxτ

Ryyτ

Rxyτ



















=

h/2
∫

−h/2

Fτσpdz (7)

Rnτ =



















Rxzτ

Ryzτ

Rzzτ



















=

h/2
∫

−h/2

Fτσndz (8)

Rnτz
=



















Rxzτz

Ryzτz

Rzzτz



















=

h/2
∫

−h/2

dFτ

dz
σndz (9)

and the thickness integrals Iρτs is defined as

Iρτs =

h/2
∫

−h/2

ρ(z)FτFsdz (10)

After integrating by parts Eq. (6) and exploiting the arbitrariness of δuτ over the plate domain Ω, the

equations of motion can be written in terms of stress resultants as

δuτ :
∂Rxxτ

∂x
+

∂Rxyτ

∂y
−Rxzτz

= Iρτs
∂2us

∂t2

δvτ :
∂Rxyτ

∂x
+

∂Ryyτ

∂y
−Ryzτz

= Iρτs
∂2vs

∂t2

δwτ :
∂Rxzτ

∂x
+

∂Ryzτ

∂y
−Rzzτz

= Iρτs
∂2ws

∂t2

(11)

for s = 0, 1, . . . , N . It is worth noting that, according to the compact index notation introduced above,

three equations of the form (11) are written for each index τ leading to a system of 3(N + 1) equations of

motion. Using the summation convention over the index s, each equation contains (N + 1) inertial terms

in the right-hand side. From the boundary terms arising from integration by parts of Eq. (6), the following

geometric and equilibrium conditions along plate edges are obtained

along x = 0, a























uτ = 0 or Rxxτ = 0

vτ = 0 or Rxyτ = 0

wτ = 0 or Rxzτ = 0

(12)

along y = 0, b























uτ = 0 or Rxyτ = 0

vτ = 0 or Ryyτ = 0

wτ = 0 or Ryzτ = 0

(13)
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Note again that Eqs. (12) and (13) are written for each value of index τ .

The constitutive equation of an isotropic FG material with varying properties along the thickness direc-

tion may be written as

σp = Cpp(z)ǫp + Cpn(z)ǫn

σn = CT
pn(z)ǫp + Cnn(z)ǫn

(14)

where the matrices of stiffness coefficients are given by

Cpp(z) =











C11(z) C12(z) 0

C12(z) C22(z) 0

0 0 C66(z)











(15)

Cpn(z) =











0 0 C13(z)

0 0 C23(z)

0 0 0











(16)

Cnn(z) =











C55(z) 0 0

0 C44(z) 0

0 0 C33(z)











(17)

and

C11 = C22 = C33 =
E(z) [1 − ν(z)]

[1 + ν(z)] [1 − 2ν(z)]

C12 = C13 = C23 =
E(z)ν(z)

[1 + ν(z)] [1 − 2ν(z)]

C44 = C55 = C66 =
E(z)

2 [1 + ν(z)]

(18)

in which E(z) and ν(z) are, respectively, the Young’s modulus and Poisson’s ratio as a function of the

thickness coordinate. Methods used in this work to estimate them are presented in Section 5.

By inserting Eq. (14) into Eqs. (7-9) and using again the strain-displacement relations, the equations of

motion expressed in Eq. (11) for each index τ can be compactly written in terms of displacement coordinates
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as follows
[

I00
11τs

∂2

∂x2
+ I00

66τs

∂2

∂y2
− I11

55τs

]

us +
(

I00
12τs + I00

66τs

) ∂2vs

∂x∂y

+
(

I01
13τs − I10

55τs

) ∂ws

∂x
= Iρτs

∂2us

∂t2

(

I00
12τs + I00

66τs

) ∂2us

∂y∂x
+

[

I00
66τs

∂2

∂x2
+ I00

22τs

∂2

∂y2
− I11

44τs

]

vs

+
(

I01
23τs − I10

44τs

) ∂ws

∂y
= Iρτs

∂2vs

∂t2

(

I01
55τs − I10

13τs

) ∂us

∂x
+

(

I01
44τs − I10

23τs

) ∂vs

∂y

+

[

I00
55τs

∂2

∂x2
+ I00

44τs

∂2

∂y2
− I11

33τs

]

ws = Iρτs
∂2ws

∂t2

(19)

where

Iαβ
ijτs =

h/2
∫

−h/2

Cij(z)
dαFτ

dzα

dβFs

dzβ
dz (20)

are thickness integrals involving the stiffness material properties.

Accordingly, the boundary conditions along x = 0, a can be written as































uτ = 0 or I00
11τs

∂us

∂x
+ I00

12τs

∂vs

∂y
+ I01

13τsws = 0

vτ = 0 or I00
66τs

(

∂us

∂y
+

∂vs

∂x

)

= 0

wτ = 0 or I01
55τsus + I00

55τs

∂ws

∂x
= 0

(21)

and along y = 0, b as


































uτ = 0 or I00
66τs

(

∂us

∂y
+

∂vs

∂x

)

= 0

vτ = 0 or I00
12τs

∂us

∂x
+ I00

22τs

∂vs

∂y
+ I01

23τsws = 0

wτ = 0 or I01
44τsvs + I00

44τs

∂ws

∂y
= 0

(22)

3. Exact solution

Exact Lévy-type solutions of the boundary-value problem described by Eqs. (19), (21) and (22) can be

obtained if the plate is at least simply-supported at two opposite edges. Without any loss of generality, let

consider the FGM plate being simply supported at y = 0 and y = b. The edges at x = 0 and x = a may

be free, simply-supported or clamped. The condition of simple support along one edge is specified herein as

null tangential and transverse displacements and null normal stress. Therefore, according to what derived
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in the previous section, the displacement field must satisfy the following equations

uτ = 0

I00
12τs

∂us

∂x
+ I00

22τs

∂vs

∂y
+ I01

23τsws = 0

wτ = 0

(23)

along y = 0 and y = b for any theory-related index τ, s = 0, . . . , N . A solution for free harmonic motion of

the FGM plate satisfying the above boundary conditions is sought in the following form

us =



















usm(x) sin (βmy)

vsm(x) cos (βmy)

wsm(x) sin (βmy)



















ejωmt (m = 1, 2, . . . ) (24)

where ωm denotes the unknown eigenfrequency corresponding to m and βm = mπ/b. Substituting the Lévy-

type solution (24) into Eqs. (19) yields the following system of second-order ordinary differential equations

Lτs
2

d2usm

dx2
− Lτs

1

dusm

dx
− Lτs

0 usm = 0 (m = 1, 2, . . . ) (25)

where

usm(x) =
[

usm(x) vsm(x) wsm(x)
]T

(26)

is the vector of unknown amplitudes and

Lτs
2 =











I00
11τs 0 0

0 I00
66τs 0

0 0 I00
55τs











(27)

Lτs
1 =











0 ℓ12 ℓ13

ℓ21 0 0

ℓ31 0 0











(28)

Lτs
0 =











ℓ11 0 0

0 ℓ22 ℓ23

0 ℓ32 ℓ33











(29)
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in which

ℓ12 = βm

(

I00
12τs + I00

66τs

)

ℓ13 =
(

I10
55τs − I01

13τs

)

ℓ21 = −βm

(

I00
12τs + I00

66τs

)

ℓ31 = −
(

I01
55τs − I10

13τs

)

ℓ11 = β2
mI00

66τs + I11
55τs − Iρτsω

2
m

ℓ22 = β2
mI00

22τs + I11
44τs − Iρτsω

2
m

ℓ23 = βm

(

I10
44τs − I01

23τs

)

ℓ32 = βm

(

I01
44τs − I10

23τs

)

ℓ33 = β2
mI00

44τs + I11
33τs − Iρτsω

2
m

(30)

Note again that, similarly to Eq. (19), the differential equations (25) along x direction are written in

compact notation for each pair (τ, s) and therefore they do not depend on the order N of the assumed plate

theory. The same invariance property with respect to N holds for the corresponding 3 × 3 matrices Lτs
n

(n = 0, 1, 2), which are called, for this reason, fundamental nuclei of the formulation.

Doing the same for the boundary conditions at edges x = 0 and x = a, the following equations are

obtained

Bτs
1

dusm

dx
(0) + Bτs

0 usm(0) = 0

Bτs
1

dusm

dx
(a) + Bτs

0 usm(a) = 0
(m = 1, 2, . . . ) (31)

where Bτs
n (n = 0, 1) are the 3 × 3 boundary-related fundamental nuclei of the formulation. They are

expressed according to the type of edge conditions at x = 0 and x = a. If the edge is clamped, the

displacement field is enforced to be null. Therefore, Bτs
n reduce to

Bτs
1 = 0, Bτs

0 = I (32)

For a free edge, natural boundary conditions of null stress resultants must be satisfied. Accordingly, the

boundary-related nuclei are given by

Bτs
1 =











I00
11τs 0 0

0 I00
66τs 0

0 0 I00
55τs











Bτs
0 =











0 −βmI00
12τs I01

13τs

βmI00
66τs 0 0

I01
55τs 0 0











(33)
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Finally, a simply-supported edge at x = 0 or x = a is represented by

Bτs
1 =











I00
11τs 0 0

0 0 0

0 0 0











Bτs
0 =











0 −βmI00
12τs I01

13τs

0 1 0

0 0 1











(34)

As already stated, Equations (25) and (31) are written in terms of fundamental nuclei for each pair (τ, s).

In order to obtain the governing equations and related boundary conditions of the FGM plate according

to the assumed kinematic theory, a simple expansion procedure is applied. By varying the theory-related

indices τ and s over the range 0, . . . , N , the nuclei are expanded so that a final system of equations and

related boundary conditions for m = 1, 2, . . . is obtained as follows















































L2
d2um

dx2
− L1

dum

dx
− L0um = 0

B1
dum

dx
(0) + B0um(0) = 0

B1
dum

dx
(a) + B0um(a) = 0

(35)

where

Ln =

















L00
n L01

n . . . L0N
n

L10
n L11

n . . . L1N
n

...

LN0
n LN1

n . . . LNN
n

















Bn =

















B00
n B01

n . . . B0N
n

B10
n B11

n . . . B1N
n

...

BN0
n BN1

n . . . BNN
n

















(36)

are square matrices of dimension 3(N + 1), and

um(x) =
[

uT
0m(x) uT

1m(x) . . . uT
Nm(x)

]T

(37)

A state space approach is employed to solve the free vibration problem by converting Eqs. (35) into a
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first-order representation as follows






















dzm

dx
= Azm

Bzm(0) = 0

Bzm(a) = 0

(38)

where

zm(x) =







dum/dx

um







(39)

and

A =





L2 0

0 I





−1 



L1 L0

I 0



 , B =
[

B1 B0

]

(40)

The general solution of Eq. (38) can be expressed as

zm(x) = eAxcm (41)

where cm is a vector of constants to be determined from boundary conditions. Using a spectral decomposition

of the exponential matrix, the solution can be written as

zm(x) = VDiag
(

eλix
)

V−1cm (42)

where V is the matrix of eigenvectors of A and λi are the corresponding eigenvalues. Replacement of

solution (42) into the system of boundary equations in Eq. (38) yields a homogeneous system

Hcm = 0 (x = 0, a) (43)

where

H = BVDiag
(

eλix
)

V−1 (44)

The natural frequencies associated with the m-th mode are determined by setting the determinant of H

equal to zero. Since H = H(ωm), an iterative numerical procedure is employed to derive the frequency

parameters.

4. Modal displacement and stress distributions

Once the frequency values are computed, modal displacement and stress distributions at any point

(ξ, η, ζ) of the plate can be recovered. The procedure for the m-th mode involves the following steps:

1. Matrix A in Eq. (40) is evaluated at the natural frequency ωm.

2. Matrix H is computed from Eq. (44) at coordinate ξ.

3. The homogeneous system in Eq. (43) is solved for the non-trivial vector of coefficients cm and the

corresponding state vector zm(ξ) is computed using Eq. (42).
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4. The vector um(ξ) containing the amplitudes uτm(ξ) is extracted form the state vector and the modal

displacements are recovered from Eqs. (4) and (24) as

u(ξ, η, ζ) = Fτ (ζ)uτm(ξ) sin(βmη)

v(ξ, η, ζ) = Fτ (ζ)vτm(ξ) cos(βmη)

w(ξ, η, ζ) = Fτ (ζ)wτm(ξ) sin(βmη)

(45)

5. The vector dum(ξ)/dx containing the amplitudes duτm(ξ)/dx is extracted form the state vector and

the modal in-plane stress components are derived by substituting the strain-displacement relations (3)

into the constitutive equations (14). This yields

σxx(ξ, η, ζ) =

[

C11(ζ)Fτ (ζ)
duτm

dx
(ξ)

− βmC12(ζ)Fτ (ζ)vτm(ξ) + C13(ζ)
dFτ

dz
(ζ)wτm(ξ)

]

sin(βmη)

σxy(ξ, η, ζ) = C66(ζ)Fτ (ζ)

[

dvτm

dx
(ξ) + βmuτm(ξ)

]

cos(βmη)

σyy(ξ, η, ζ) =

[

C12(ζ)Fτ (ζ)
duτm

dx
(ξ)

− βmC22(ζ)Fτ (ζ)vτm(ξ) + C23(ζ)
dFτ

dz
(ζ)wτm(ξ)

]

sin(βmη)

(46)

6. The modal transverse shear and normal stresses are evaluated by integrating the 3-D equations of

motion of the FGM plate in the thickness direction so that the stress boundary conditions on the top

and bottom surfaces can be satisfied. The 3-D equilibrium of the plate may be written in the following

form

σxz =

z
∫

−h/2

[

ρü −
∂σxx

∂x
−

∂σxy

∂y

]

dz + Cx

σyz =

z
∫

−h/2

[

ρv̈ −
∂σxy

∂x
−

∂σyy

∂y

]

dz + Cy

σzz =

z
∫

−h/2

[

ρẅ −
∂σxz

∂x
−

∂σyz

∂y

]

dz + Cz

(47)

where Cx, Cy and Cz are integration constants. After computing dzm(ξ)/dx from Eq. (38) and

imposing null conditions of transverse stresses at plate top and bottom, the modal stresses are given

13



by

σxz(ξ, η, ζ) =

[

−ω2
mIρτ (ζ)uτm(ξ) − I0

11τ (ζ)
d2uτm

dx2
(ξ)

+ βmI0
12τ (ζ)

dvτm

dx
(ξ) − I1

13τ (ζ)
dwτm

dx
(ξ)

+ βmI0
66τ (ζ)

dvτm

dx
(ξ) + β2

mI0
66τ (ζ)uτm(ξ)

]

sin(βmη)

σyz(ξ, η, ζ) =

[

−ω2
mIρτ (ζ)vτm(ξ) − βmI0

12τ (ζ)
duτm

dx
(ξ)

+ β2
mI0

22τ (ζ)vτm(ξ) − βmI1
23τ (ζ)wτm(ξ)

+ I0
66τ (ζ)

d2vτm

dx2
(ξ) + βmI0

66τ (ζ)
duτm(ξ)

dx

]

cos(βmη)

σzz(ξ, η, ζ) =

[

−ω2
mIρτ (ζ)wτm(ξ) − I0

55τ (ζ)
d2wτm

dx2
(ξ)

− I1
55τ (ζ)

duτm

dx
(ξ) + β2

mI0
44τ (ζ)wτm(ξ)

+ βmI1
44τ (ζ)vτm(ξ)

]

sin(βmη)

(48)

where

Iρτ (ζ) =

ζ
∫

−h/2

ρ(z)Fτ (z)dz (49)

and

Iα
ijτ (ζ) =

ζ
∫

−h/2

Cij(z)
dαFτ

dzα
(z)dz (50)

5. Effective material properties

Many methods are available to estimate the effective properties of functionally graded materials fabri-

cated by mixing two discrete phases of materials. Due to inaccurate knowledge of particles geometry and

distribution, they are often based only on the volume fraction distribution of the dispersed phase [4]. As-

suming a two-constituents FGM plate involving mixture of a metal and a ceramic, the volume fraction of

the ceramic phase is here assumed to be given by the following power-law function

Vc(z) = V bot
c +

(

V top
c − V bot

c

)

(

1

2
+

z

h

)p

(51)

where V bot
c and V top

c are the volume fractions of the ceramic phase on the bottom and top surfaces of the

plate, respectively, and p is the parameter describing the profile across the thickness. The volume fraction

of the metal phase is given by

Vm(z) = 1 − Vc(z) (52)
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Therefore, the effective mass density of the FGM plate is obtained as

ρ(z) = ρmVm(z) + ρcVc(z) (53)

where ρm and ρc are the mass densities of the metal and ceramic phase, respectively.

The effective elastic moduli are estimated in this work according to two common procedures, the rule-

of-mixtures and the Mori-Tanaka scheme. It is worth noting that the mathematical formulation presented

in previous sections is completely general and other homogenization procedures can be adopted. According

to the rule-of-mixtures, the effective Young’s modulus and Poisson’s ratio are expressed in the same way as

the mass density. It follows that

E(z) = EmVm(z) + EcVc(z) (54)

ν(z) = νmVm(z) + νcVc(z) (55)

The above relations are very simple but they can be very approximate [13]. A slightly more complicated

scheme which yields more accurate estimates of the effective elastic moduli is the Mori-Tanaka homogeniza-

tion procedure [2]. First, it involves the computation of the effective bulk modulus K and shear modulus G

starting from the bulk and shear moduli of the metal and ceramic phase as follows

K(z) = Km +
Vc(z) (Kc − Km)

1 + Vm(z)Kc−Km

Km+km

(56)

G(z) = Gm +
Vc(z) (Gc − Gm)

1 + Vm(z)Gc−Gm

Gm+gm

(57)

where

km =
4

3
Gm gm =

Gm (9Km + 8Gm)

6 (Km + 2Gm)
(58)

Then, the effective elastic moduli at any point z along the thickness of the FGM plate are determined using

the following relations

E(z) =
9K(z)G(z)

3K(z) + G(z)
(59)

ν(z) =
1

2

3K(z)− 2G(z)

3K(z) + G(z)
(60)

6. Numerical analysis

Some free vibration results are presented in this section according to the proposed exact formulation. The

numerical analysis is carried out using a family of HOSNTs where the in-plane and out-of-plane displacements

of the plate are expanded as Taylor’s series of the thickness coordinates, i.e.,

Fτ (z) = zτ (61)
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In particular, three theories of different order N are evaluated. For the sake of brevity, they are denoted as

HOSNT-n, where n is the number of kinematic variables included in the plate model. The three theories

correspond to N = 2, 3 and 4 in Eq. (4) and are written explicitly in the following:

HOSNT-9:



















u = u0 + zu1 + z2u2

v = v0 + zv1 + z2v2

w = w0 + zw1 + z2w2

(62)

HOSNT-12:



















u = u0 + zu1 + z2u2 + z3u3

v = v0 + zv1 + z2v2 + z3v3

w = w0 + zw1 + z2w2 + z3w3

(63)

HOSNT-15:



















u = u0 + zu1 + z2u2 + z3u3 + z4u4

v = v0 + zv1 + z2v2 + z3v3 + z4v4

w = w0 + zw1 + z2w2 + z3w3 + z4w4

(64)

It is noted that the first-order theory HOSNT-6 is not considered since a constant distribution of transverse

normal strain arising from the linear expansion of the transverse displacement introduces a severe thickness

locking problem [14], especially for thin and moderately thick plates. As explained in Ref. [14], in order

to avoid locking, HOSNT-6 can be used with the condition of null transverse normal stresses. In this way,

HOSNT-6 is actually reduced to FOST.

The mathematical formulation here presented is first compared with exact 3-D natural frequencies ob-

tained by Vel and Batra [4] for a square simply-supported Al/ZrO2 plate of various length-to-thickness

ratio a/h and different power-law exponents p. Constituent materials of the FGM plate have the following

properties:

Al : Em = 70 GPa, νm = 0.3, ρm = 2702 kg/m
3

ZrO2 : Ec = 200 GPa, νc = 0.3, ρc = 5700 kg/m
3

Table 1 shows the dimensionless fundamental frequency λ = ωh
√

ρm/Em for moderately thick (a/h =

20 and 10) and thick (a/h = 5) plates with p = 1 and for thick plates with a/h = 5 and p = 2, 3, 5.

Elastic properties of the graded plate are computed using the Mori-Tanaka homogenization scheme as

in Ref. [4]. Present exact results are also compared with analytical solutions in Ref. [8] obtained using

FOST and with numerical values provided by Neves et al. [15] and Qian and Batra [13] using different

HOSNTs. In particular, results in Ref. [15] are computed with the radial basis functions collocation technique

and analysis in Ref. [13] is performed with the meshless local Petrov-Galerkin method. It is also noted

that in Ref. [8] the material properties of the FGM plate are estimated by the rule-of-mixtures. From

Table 1 it can be observed that all present exact solutions are in excellent agreement with 3-D analysis

for moderately thick plates. When the length-to-thickness ratio decreases, the error of the plate model
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HOSNT-9 increases and theories of higher order are required to achieve highly accurate results. Note also

that, for a/h = 5, the discrepancy between HOSNT-9 and 3-D elasticity solutions increases with increasing

power-law exponent p. However, the error remains acceptable with a difference below 2% for the cases under

investigation. To further validate the present formulation, Figure 1a and 1b show the through-the-thickness

modal distribution of the normalized in-plane stress σxx(a/2, b/2)/max|σxx(a/2, b/2)| and transverse normal

stress σzz(a/2, b/2)/max|σzz(a/2, b/2)|, respectively, when a/h = 5 and p = 3. The exact modal stress profile

reported in Ref. [4] is compared with that estimated from Eqs. (46) and (48) using HOSNT-15. It is clearly

seen that they agree well. The unsymmetric and non-linear distribution of the in-plane stress arising from

the variation of the material properties along the thickness direction is also pointed out.

Another numerical validation of the present approach is provided in Table 2 for the same plate considered

before. The attention is now focused on the estimation of the natural frequency of the first three thickness

modes. Present results are tabulated only for HOSNT-15. It is shown that the assumed fourth-order 2-D

plate model is capable of providing a very good correlation with elasticity solution in all cases. From this and

the previous analysis, it can be argued that HOSNT-15 exhibits an accuracy comparable to 3-D formulation.

Therefore, the corresponding solutions will be taken as accurate references in the studies presented below.

Table 3 shows the first ten natural frequencies of the square Al/ZrO2 simply-supported plate with p = 1

and various length-to-thickness ratios. Dimensionless values λ = ωh
√

ρm/Em are computed using HOSNT-

9, HOSNT-12 and HOSNT-15. To the best author’s knowledge, no exact 3-D results or other analytical 2-D

solutions are available for this particular case. Therefore, the values computed by 2-D meshless methods in

Refs. [13] and [15] are used as reference for checking the correctness of the proposed formulation. At the

same time, the accuracy of the above numerical approaches can be evaluated by comparison with the present

exact analysis. From Table 3 it is observed that HOSNT-12 and HOSNT-15 give the same values for all

modes when the plate is moderately thick (a/h = 20 and 10). For plates with a/h = 5, frequencies computed

by HOSNT-12 and related to predominantly flexural modes are slightly higher than those of HOSNT-15

and the difference increases for modes at higher frequencies. By comparison with HOSNT-15, it is shown

that HOSNT-9 is accurate when a/h = 20 and acceptable for plates with a/h = 10. Therefore, including

higher-order terms in the kinematic model has no significant contribution for those cases. However, when

the plate gets thicker, the difference becomes considerable, especially if higher frequencies are of interest.

For example, the discrepancy between HOSNT-9 and HOSNT-15 is 1.8% for the fourth mode and increases

to about 3% for mode 10. Table 3 also shows that the numerical method developed by Neves et al. [15] is

highly accurate. On the contrary, values provided by Qian and Batra [13] are generally underestimated with

respect to HOSNT-15. This may be due to the fact that, as stated by the authors, the Poisson’s ratio has

been taken as 0.3 throughout the plate, instead of the value given by Eq. (60) according to the Mori-Tanaka

procedure.

After extensive validation of the present formulation for simply-supported plates, free vibration anal-
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ysis of moderately thick and thick Lévy FGM plates is now discussed. Six different combinations of

clamped (C), free (F) and simply-supported (S) conditions at x = 0, a are considered in the following:

simply-supported/simply-supported, simply-supported/clamped, clamped/clamped, free/free, free/simply-

supported and free/clamped. Each combination will be shortly indicated by a two-letter notation corre-

sponding to edge conditions at x = 0 and x = a. For example, FC stands for a Lévy plate with free edge at

x = 0 and clamped edge at x = a.

First, a comparison with the analytical study of Hosseini-Hashemi [8] is performed for SC and CC

square Al/Al2O3 plates with a/h = 20 and a/h = 5. The elastic properties of Alumina are assumed to be

the following:

Al2O3 : Ec = 380 GPa, νc = 0.3, ρc = 3800 kg/m
3

Elastic properties of the graded plate are here computed according to the rule-of-mixtures as in Ref. [8].

Table 4 reports the first two frequency parameters λ = ωa2
√

ρc/Ec corresponding to m = 1 and m = 2,

for different values of power-law exponent p. For the sake of brevity, only results computed on the basis

of HOSNT-15 are tabulated. It is shown that, for both SC and CC plates, FOST generally underestimates

frequency parameters when p = 1 and p = 2, whereas values higher than those of HOSNT-15 are obtained

for larger p. Such inconsistency may be due to the value of the shear correction factor, which is arbitrarily

taken as 5/6 [8]. Note also that the over-correction of FOST for p = 1, 2 is more pronounced in thick plates.

The next two examples aim at presenting new results of Lévy FGM plates, which can be also useful as

benchmarks for future numerical studies.

Figures 2 and 3 display non-dimensionalized modal stresses σxx and σzz versus the power-law index

p corresponding to the fundamental mode of a Al/ZrO2 square plate with a/h = 5. The whole set of

boundary conditions described above is encompassed. The longitudinal and transverse normal stress values

are computed as follows

σxx =
σxx(a/2, b/2, h/2)a2

10Emw(a/2, b/2, 0)h
(65)

σzz =
σzz(a/2, b/2, 0)a4

Emw(a/2, b/2, 0)h3
(66)

Through-the-thickness variation of the elastic moduli are estimated according to the Mori-Tanaka scheme

and the stress distributions are obtained using HOSNT-15. It is seen that the largest effect of different

boundary conditions is to shift the minimum value attained by σxx as p increases from 1 to 5. In particular,

Fig. 2 shows that the minimum value of σxx occurs at p ≈ 2 for SS plates and moves to p ≈ 2.4 and p ≈ 3

for SC and CC plates, respectively. On the contrary, the maximum of σzz is rather insensitive to changes

in the boundary conditions and occurs for p slightly greater than 2.

The last analysis deals with the numerical case considered by Vel and Batra [4] and selected as first

validation case at the beginning of this section. However, the exact vibration analysis is here extended
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to different plate boundaries and performed using 2-D theories. Table 5 shows the non-dimensionalized

fundamental frequency of Al/ZrO2 plates with a/h = 20, 10, 5 and p = 1, 2, 3, 5 for each combination of edge

conditions. As a result, a comprehensive set of results is generated. The observations made before on fully

simply-supported plates are also valid when different boundary conditions are considered. HOSNT-9 is to

be preferred for moderately thick plates since it provides comparable accuracy to theories of higher order

with less number of kinematic variables. For thick plates having a/h = 5, HOSNT-12 and HOSNT-15 are

in general significantly more accurate, especially when clamped edges are involved.

7. Conclusions

Exact free vibration analysis of moderately thick and thick Lévy FGM plates using two-dimensional

higher-order kinematic theories with both shear and normal deformation effects is presented. The formula-

tion relies on a powerful indicial notation and the state-space approach so that the burden of deriving the

governing equations and the corresponding solution each time a different plate model is assumed is highly

reduced. In this way, new exact frequency results computed on the basis of kinematic theories of different

orders can be easily obtained in a somehow automatic manner.

The numerical analysis is carried out in this work using a specific family of higher-order shear and

normal deformation theories and the elastic properties of the graded plate are estimated by the Mori-Tanaka

procedure or the rule-of-mixtures. Anyway, the mathematical formulation is written in general terms and

can be directly applied to other plate models and material homogenization schemes.

The present approach is first validated on fully simply-supported FGM plates by comparison with exact

3-D solutions and other 2-D frequency results. Then, some examples of FGM plates with at least two

opposite edges simply-supported are provided for the first time. It is shown that theories of high order are

highly recommended in the following cases:

1. the length-to-thickness ratio a/h of the FGM plate is below 10;

2. frequency modes higher than the fundamental one are to be estimated with accuracy;

3. the FGM plate is characterized by a large value of the power-law exponent describing the variation of

elastic properties through the thickness;

4. the FGM plate involves one or two clamped edges.

By comparison with some exact solutions available in the literature, it is also noted that the first-order shear

deformation theory underestimates the frequency values in many cases. Such effect, which is probably due

to the value of the shear correction factor, is strongly dependent on the boundary conditions, the power-law

exponent and the length-to-thickness ratio of the FGM plate.
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A rather comprehensive set of exact frequency results corresponding to the fundamental frequency of

various square FGM plates with six combinations of boundary conditions is provided. The tabulated values

may serve as valuable sources for validating other approaches and approximate methods.
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Table 1: Comparison of fundamental frequency λ = ωh
p

ρm/Em for square simply-supported Al/ZrO2 plates.

p = 1 a/h = 5

Model a/h = 20 a/h = 10 a/h = 5 p = 2 p = 3 p = 5

Exact 3D [4] 0.0153 0.0596 0.2192 0.2197 0.2211 0.2225

HOSNT-15 0.0154 0.0596 0.2191 0.2196 0.2211 0.2225

HOSNT-12 0.0154 0.0596 0.2193 0.2198 0.2211 0.2226

HOSNT-9 0.0154 0.0597 0.2213 0.2225 0.2245 0.2263

Ref. [15] 0.0153 0.0596 0.2193 0.2200 0.2215 0.2230

Ref. [13] 0.0149 0.0584 0.2152 0.2153 0.2172 0.2194

Ref. [8] 0.0158 0.0619 0.2276 0.2264 0.2276 0.2291

Table 2: Comparison of thickness mode frequencies λ = ωh
p

ρm/Em for square simply-supported Al/ZrO2 plates.

p = 1 a/h = 5

Thickness mode Model a/h = 20 a/h = 10 a/h = 5 p = 2 p = 3 p = 5

2 Exact 3D [4] 0.1456 0.2912 0.5823 0.5711 0.5660 0.5610

HOSNT-15 0.1456 0.2911 0.5820 0.5709 0.5659 0.5610

3 Exact 3D [4] 0.2454 0.4901 0.9752 0.9564 0.9478 0.9398

HOSNT-15 0.2452 0.4899 0.9748 0.9560 0.9476 0.9396

4 Exact 3D [4] 2.0598 2.0750 2.1346 2.0150 1.9530 1.9075

HOSNT-15 2.0594 2.0745 2.1341 2.0159 1.9548 1.9095

Figure 1: The fundamental through-the-thickness stress mode shape for a Al/ZrO2 simply-supported square plate with p = 3

and a/h = 5. (a) Normalized in-plane stress σxx(a/2, b/2)/max|σxx(a/2, b/2)|. (b) Normalized transverse normal stress

σzz(a/2, b/2)/max|σzz(a/2, b/2)|. Legend: –, present analysis with HOSNT-15; ◦, exact 3D values from Ref. [4].

Figure 2: Non-dimensional stress σxx (a) and σzz (b) versus p corresponding to the fundamental mode of a Al/ZrO2 square

plate with a/h = 5 and various boundary conditions. Legend: —– SS; −. SC; −− CC.

Figure 3: Non-dimensional stress σxx (a) and σzz (b) versus p corresponding to the fundamental mode of a Al/ZrO2 square

plate with a/h = 5 and various boundary conditions. Legend: —– FF; −. FS; −− FC.
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Table 3: First 10 natural frequencies λ = ωh
p

ρm/Em of square simply-supported Al/ZrO2 plates with p = 1 and various

thickness ratios.

Mode

a/h Model 1 2 3 4 5 6 7 8 9 10

20 HOSNT-15 0.0154 0.0377 0.0377 0.0596 0.0740 0.0740 0.0950 0.0950 0.1030 0.1030

HOSNT-12 0.0154 0.0377 0.0377 0.0596 0.0740 0.0740 0.0950 0.0950 0.1030 0.1030

HOSNT-9 0.0154 0.0379 0.0379 0.0597 0.0742 0.0742 0.0955 0.0955 0.1030 0.1030

Ref. [13] 0.0149 0.0377 0.0377 0.0593 0.0747 0.0747 0.0769 0.0912 0.0913 0.1029

Ref. [15] 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030

10 HOSNT-15 0.0596 0.1425 0.1425 0.2059 0.2059 0.2191 0.2674 0.2674 0.2911 0.3359

HOSNT-12 0.0596 0.1425 0.1425 0.2059 0.2059 0.2193 0.2674 0.2674 0.2911 0.3360

HOSNT-9 0.0597 0.1435 0.1435 0.2059 0.2059 0.2213 0.2704 0.2704 0.2911 0.3405

Ref. [13] 0.0584 0.1410 0.1410 0.2058 0.2058 0.2164 0.2646 0.2677 0.2913 0.3264

Ref. [15] 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364

5 HOSNT-15 0.2191 0.4116 0.4116 0.4820 0.4820 0.5820 0.6996 0.8228 0.8281 0.8281

HOSNT-12 0.2193 0.4116 0.4116 0.4824 0.4824 0.5820 0.7004 0.8228 0.8293 0.8293

HOSNT-9 0.2213 0.4116 0.4116 0.4906 0.4906 0.5820 0.7159 0.8229 0.8496 0.8496

Ref. [13] 0.2152 0.4114 0.4114 0.4761 0.4761 0.5820 0.6914 0.8192 0.8217 0.8242
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Table 4: First two natural frequencies λ = ωa2
p

ρc/Ec corresponding to m = 1 and m = 2 of square Al/Al2O3 plates

with different boundary conditions and thickness ratios. Elastic properties of the graded plate are computed according to the

rule-of-mixtures.

Boundary Power law index (p)

conditions a/h m Mode Model 1 2 5 8 10

SC 20 1 1 HOSNT-15 5.4207 4.9117 4.6318 4.5554 4.4791

FOST [8] 5.3926 4.9019 4.6382 4.5443 4.4854

2 HOSNT-15 13.208 11.987 11.249 11.020 10.867

FOST [8] 13.159 11.956 11.283 11.040 10.893

2 1 HOSNT-15 11.707 10.612 10.002 9.7980 9.6707

FOST [8] 11.667 10.601 10.016 9.8068 9.6779

2 HOSNT-15 19.189 17.407 16.313 15.931 15.728

FOST [8] 19.136 17.380 16.379 16.016 15.800

5 1 1 HOSNT-15 4.6763 4.2055 3.8285 3.7061 3.6504

FOST [8] 4.6356 4.1996 3.8916 3.7746 3.7146

2 HOSNT-15 9.5960 8.6448 7.4598 6.9970 6.8172

FOST [8] 9.8739 8.9239 8.1442 7.8438 7.7031

2 1 HOSNT-15 9.3272 8.3553 7.4948 7.2181 7.1067

FOST [8] 9.2165 8.3310 7.6567 7.4012 7.2768

2 HOSNT-15 13.805 12.322 10.867 10.398 10.223

FOST [8] 13.571 12.249 11.142 10.717 10.521

CC 20 1 1 HOSNT-15 6.5914 5.9806 5.6243 5.5225 5.4462

FOST [8] 6.5585 5.9612 5.6332 5.5152 5.4423

2 HOSNT-15 15.448 13.997 13.106 12.801 12.648

FOST [8] 15.390 13.981 13.167 12.869 12.693

2 1 HOSNT-15 12.343 11.198 10.536 10.307 10.180

FOST [8] 12.305 11.181 10.555 10.330 10.193

2 HOSNT-15 20.894 18.934 17.687 17.280 17.051

FOST [8] 20.816 18.904 17.785 17.376 17.136

5 1 1 HOSNT-15 5.3714 4.8147 4.3216 4.1626 4.0973

FOST [8] 5.3039 4.8032 4.4127 4.2604 4.1865

2 HOSNT-15 10.915 9.7296 8.5287 8.1454 8.0038

FOST [8] 10.712 9.6759 8.7548 8.3957 8.2345

2 1 HOSNT-15 9.5833 8.5764 7.6618 7.3676 7.2515

FOST [8] 9.4561 8.5466 7.8331 7.5610 7.4307

2 HOSNT-15 14.314 12.763 11.188 10.679 10.495

FOST [8] 14.040 12.670 11.473 11.011 10.802
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Table 5: Exact dimensionless fundamental frequency λ = ωh
p

ρm/Em of square Al/ZrO2 plate with various side-to-thickness

ratios a/h, power-law exponents p and different combinations of boundary conditions along x direction. Elastic properties of

the graded plate are computed using the Mori-Tanaka homogenization scheme.

Boundary conditions

a/h p Model SS SC CC FF FS FC

20 1 HOSNT-9 0.0154 0.0183 0.0222 0.0075 0.0091 0.0099

HOSNT-12 0.0154 0.0183 0.0222 0.0075 0.0091 0.0099

HOSNT-15 0.0154 0.0183 0.0222 0.0075 0.0091 0.0099

2 HOSNT-9 0.0155 0.0185 0.0225 0.0076 0.0093 0.0100

HOSNT-12 0.0155 0.0185 0.0224 0.0076 0.0093 0.0100

HOSNT-15 0.0155 0.0185 0.0224 0.0076 0.0093 0.0100

3 HOSNT-9 0.0158 0.0188 0.0227 0.0077 0.0094 0.0101

HOSNT-12 0.0156 0.0186 0.0226 0.0077 0.0094 0.0101

HOSNT-15 0.0156 0.0186 0.0226 0.0077 0.0094 0.0101

5 HOSNT-9 0.0159 0.0189 0.0230 0.0077 0.0094 0.0102

HOSNT-12 0.0159 0.0189 0.0229 0.0077 0.0094 0.0101

HOSNT-15 0.0159 0.0189 0.0229 0.0077 0.0094 0.0101

10 1 HOSNT-9 0.0597 0.0705 0.0845 0.0296 0.0356 0.0385

HOSNT-12 0.0596 0.0703 0.0839 0.0295 0.0356 0.0384

HOSNT-15 0.0596 0.0701 0.0839 0.0295 0.0356 0.0384

2 HOSNT-9 0.0604 0.0711 0.0851 0.0299 0.0360 0.0389

HOSNT-12 0.0601 0.0708 0.0843 0.0299 0.0359 0.0387

HOSNT-15 0.0601 0.0706 0.0843 0.0299 0.0359 0.0387

3 HOSNT-9 0.0611 0.0720 0.0860 0.0302 0.0365 0.0394

HOSNT-12 0.0607 0.0714 0.0850 0.0301 0.0364 0.0391

HOSNT-15 0.0607 0.0714 0.0849 0.0301 0.0364 0.0391

5 HOSNT-9 0.0617 0.0726 0.0868 0.0306 0.0369 0.0398

HOSNT-12 0.0614 0.0720 0.0855 0.0305 0.0368 0.0395

HOSNT-15 0.0614 0.0720 0.0855 0.0305 0.0368 0.0395

5 1 HOSNT-9 0.2212 0.2524 0.2897 0.1133 0.1351 0.1440

HOSNT-12 0.2192 0.2487 0.2840 0.1125 0.1341 0.1428

HOSNT-15 0.2191 0.2486 0.2836 0.1125 0.1341 0.1426

2 HOSNT-9 0.2225 0.2531 0.2897 0.1141 0.1361 0.1449

HOSNT-12 0.2197 0.2485 0.2825 0.1133 0.1348 0.1433

HOSNT-15 0.2196 0.2482 0.2819 0.1133 0.1348 0.1431

3 HOSNT-9 0.2245 0.2550 0.2915 0.1154 0.1374 0.1462

HOSNT-12 0.2211 0.2495 0.2829 0.1143 0.1360 0.1444

HOSNT-15 0.2211 0.2492 0.2824 0.1143 0.1359 0.1443

5 HOSNT-9 0.2262 0.2568 0.2930 0.1164 0.1368 0.1475

HOSNT-12 0.2226 0.2506 0.2836 0.1153 0.1370 0.1454

HOSNT-15 0.2225 0.2504 0.2831 0.1153 0.1370 0.1452
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