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Planning Natural Repointing Manoeuvres for Nano-Spacecraft
Craig Maclean Daniele Pagnozzi James D. Biggs

Advanced Space Concepts Laboratory, Department of Mechanical & Aerospace Engineering, University of
Strathclyde, Glasgow, G1 1XJ, UK

Abstract—In this paper the natural dynamics of a rigid body
are exploited to plan attitude manoeuvres for a small spacecraft.
By utilising the analytical solutions of the angular velocities and
making use of Lax pair integration, the time evolution of the
attitude of the spacecraft in a convenient quaternion form is
derived. This enables repointing manoeuvres to be generated by
optimising the free parameters of the analytical expressions, the
initial angular velocities of the spacecraft, to match prescribed
boundary conditions on the final attitude of the spacecraft.
This produces reference motions which can be tracked using
a simple proportional-derivative controller. The natural motions
are compared in simulation to a conventional quaternion feed-
back controller and found to require lower accumulated torque.
A simple obstacle avoidance algorithm, exploiting the analytic
form of natural motions, is also described and implemented in
simulation. The computational efficiency of the motion planning
method is discussed.
Keywords. Geometric mechanics, motion planning, nano-
spacecraft.

NOMENCLATURE
A1,A2,A3 Basis of the Lie algebra on su(2)
c Constant angular velocity (rad/s)
Cd Drag coefficient of spacecraft
F Isomorphism from Special Unitary

group SU(2) to the unit quater-
nions H

h̄w Reaction wheel angular momentum
vector (kgm2/s)

H Rotational kinetic energy (Joules)
î, ĵ, k̂ Basis of the body reference frame
Î, Ĵ, K̂ Basis of the Geocentric Equatorial

reference frame
IN Accumulated torque of reaction

wheels (Nms)
J Inertia matrix of spacecraft (kgm2)
Js Symmetric moment of inertia of

spacecraft (kgm2)
Jw Moment of inertia of reaction

wheels (kgm2)
Kω ,Kq Gain matrices
L Lax Pair operator
M Magnitude of angular momentum

of spacecraft (kgm2/s)
Mrz Residual dipole of spacecraft in z

body axis (Am2)
n̂c Unit vector of cone centreline
n̂p Unit vector of spacecraft body x-

axis
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N̄e External torque vector (Nm)
N̄w Reaction wheel torque vector (Nm)
p1, p2, p3 Increments to optimal angular ve-

locities (rad/s)
q̄ Quaternion vector
q̄d Desired quaternion vector
q̄e Quaternion error vector
r̄CoP/CoM Centre of mass to centre of pres-

sure vector (m)
R̂, T̂ , N̂ Basis of the RTN reference frame
R(t) Rotation matrix on SU(2)
ū Control signal vector
T Manoeuvre time (seconds)
δc Half angle of obstacle cone (rad)
δp Angle between spacecraft body x-

axis and cone centreline unit vec-
tors (rad)

ρ Reflectivity of spacecraft
τ Stabilisation time (seconds)
ϕ1,ϕ2,ϕ3 Euler angles (rad)
ω̄ Inertially referenced body rate vec-

tor (rad/s)
ω̄e Angular velocity error vector

(rad/s)
ω̄w Reaction wheel angular velocity

vector (rad/s)
Ω Skew symmetric angular velocity

matrix

I. INTRODUCTION

Small spacecraft, such as UKube-1, are limited both in the
size of their actuators and in their on-board computational
capacity. As a result a low torque, computationally efficient
means of repointing these nano-spacecraft is required.
In this paper an analytical motion planning algorithm for
axisymmetric and asymmetric rigid spacecraft, based around
the natural motion of a free rigid body, is derived in the
framework of geometric mechanics and applied to the attitude
control of nano-spacecraft in order to assess its effectiveness
and the feasibility of future on-board implementation.
The attitude control of a rigid body has been widely studied.
Initial approaches focussed on a series of discrete single axis
slews. However these methods were costly in terms of time and
fuel and so new methods were sought. Open loop controls [1],
[2] were proposed as simple, low-cost solutions for spacecraft,
but these methods are highly sensitive to uncertainties and
disturbances. Despite this, open loop controls may be suitable
for spacecraft attitude control in low disturbance environments
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with coarse pointing requirements [3]. Meanwhile Sidi [4]
proposed augmenting single-axis open loop “bang-off-bang”
controls with linear feedback near the origin, thus maintaining
relatively low control effort while improving stability. Shortest
angular path eigenaxis slews were proposed as simple, near
time-optimal solutions [5], [6], [7], but they are in general
not fuel-optimal. Other time-efficient retargeting methods have
been proposed by Wie [8] and Verbin [9], which additionally
consider actuator and pointing constraints. Nonlinear optimal
control methods that use the calculus of variations and dy-
namic programming have also been applied to the spacecraft
attitude control problem. However while these methods, such
as those that require the numerical solution of the Hamilton-
Jacobi-Bellman (HJB) equation, give globally optimal and the-
oretically superior solutions they are difficult to implement on-
board a spacecraft [10] as they are computationally intensive.
As a result, simple proportional-derivative (PD) controllers
such as the quaternion feedback controllers [11], [12] continue
to dominate the practical control of spacecraft due to the
ease of gain tuning and low implementation risk. Recent
inverse optimal control methods negate the need to solve the
HJB equation by finding a control Lyapunov function which
is itself a solution of the HJB, and designing the control
around this [13]. This approach has been combined with the
minimisation of control norms to form low energy attitude
manoeuvres [14], [15]. Other guidance methods include the
tracking of references generated by computationally efficient
artificial potential functions (APFs) to reorientate spacecraft
[16]. Mengali [17] extended this work by utilising artificial
potential functions in the manoeuvring of spacecraft with
sensitive optical equipment such as star trackers, which must
reach the target attitude while avoiding luminous objects such
as the Sun and Earth’s Moon.
This work is motivated by the need to find a compromise be-
tween the computational simplicity of proportional-derivative
control and the optimality of non-linear controllers, in an
extension of the work presented in [18], [19]. In free space
and choosing appropriate initial conditions, the spacecraft will
naturally drift towards a certain orientation in a set period
of time. Therefore these “natural motions” are an intuitive
basis around which to design spacecraft attitude manoeuvres.
In this paper the dynamics of a rigid body are exploited to
derive analytical expressions for the time evolution of the
attitude of the spacecraft in quaternion form. Despite suffering
from the problem of ambiguity, quaternions are singularity
free and computationally efficient, and so are the most widely
used form of attitude representation on-board spacecraft [20].
Boundary conditions on the attitude of the spacecraft are
matched through parametric optimisation of the initial space-
craft angular velocities, and the resulting references are tracked
using a simple proportional-derivative controller. It is shown
via comparison with a quaternion feedback control that the
references require low accumulated torque to track. In addi-
tion, the set of curves which match the boundary conditions
on the final pointing direction can be probed to create a simple
obstacle avoidance algorithm.
The main contributions of the paper are:

1) While the classical global solution is on the attitude
dynamics, in this paper the kinematics for both ax-
isymmetric and asymmetric spacecraft are derived an-
alytically for global motion planning implementation in
convenient quaternion form. The classical solutions, to
the authors’ knowledge, can only be found expressed
locally in terms of Euler angles [21], [22], [23].

2) The analytical equations are implemented in a simple
motion planning algorithm to produce easily trackable
reference motions for a spacecraft, and it is shown that
the motion planning algorithm is additionally capable of
providing constrained slews.

3) The strengths and weaknesses of the proposed method
are evaluated through extensive numerical simulations,
and it is shown that the natural motions provide substan-
tial savings in accumulated torque over a conventional
quaternion feedback benchmark.

The paper is structured as follows. In Section II, the spacecraft
model is introduced, including the alternative kinematics on
the Lie group SU(2) which enable a more elegant solution to
the free body motion to be derived. In Section III, the general
motion planning framework is first described, before the spe-
cific cases of the axisymmetric and asymmetric spacecraft are
derived. The practical implementation of the motion planning
method is discussed in Section IV, including the extension to
obstacle avoidance. Simulation results are presented in Section
V where the natural motions are compared to conventional
quaternion feedback control, and the suitability of the method
for on-board implementation is discussed in Section VI. Fi-
nally, we conclude with Section VII and a discussion of areas
of future research.

II. MODELS

While in reality spacecraft have flexible modes, in this paper
the assumption is made that the spacecraft can be treated as
a rigid body. This assumption is feasible for small Cubesat
spacecraft as they contain few moving parts and generally do
not carry liquid propellant. The general equations describing
the attitude control problem are then that of a rigid body with
external torques describing the effect of the disturbances.

A. Reference Frame Definitions

The spacecraft under consideration is in orbit around the
Earth. The centre of the Earth is chosen as the origin of a
Geocentric Equatorial co-ordinate system with basis vectors
Î, Ĵ, K̂. As in [24], the X-axis lies in the equatorial plane
towards the vernal equinox direction, the Z-axis points in the
direction of the North pole and the Y-axis lies in the equatorial
plane and completes the orthonormal reference frame. The co-
ordinate system is shown in Figure 1.
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Figure 1: Geocentric Equatorial and RTN co-ordinate systems.

Also shown in Figure 1 is the Radial-Transverse-Normal
(RTN) reference frame used to describe the orbit of the
spacecraft. In this reference frame R̂ is parallel with the radial
vector, N̂ is parallel with the orbit normal and T̂ completes
the orthonormal frame.
A body fixed reference frame (BRF) with basis î, ĵ, k̂ is rigidly
attached to the centre of mass of the spacecraft, as shown in
Figure 2.

Figure 2: Body and RTN co-ordinate systems.

B. Kinematic Model

The attitude kinematics of the spacecraft can be parame-
terised using quaternions:

dq̄
dt

=
1
2

Ωq̄ (1)

where q̄ = [q0 q1 q2 q3]
T denotes the quaternions which

represent the attitude of the spacecraft in the body frame with
respect to the inertial frame, and dq̄

dt their rate of change. The
skew symmetric matrix Ω is given by:

Ω =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

 (2)

where ω̄ = [ω1 ω2 ω3]
T are the angular velocities of the

spacecraft body frame with respect to the inertial frame. The
quaternions must satisfy the constraint q2

0 +q2
1 +q2

2 +q2
3 = 1.

The quaternion differential equations are used as they do not

suffer from problems with singularities or imaginary numbers.
This representation is equivalent to the kinematic matrix
representation on the Special Unitary group SU(2):

dR(t)
dt

= R(t)(ω1A1 +ω2A2 +ω3A3) (3)

where R(t)∈ SU(2) represents the orientation of the spacecraft
and A1,A2,A3 form a basis for the Lie algebra su(2) of the
Lie group SU(2):

A1 =
1
2

(
i 0
0 −i

)

A2 =
1
2

(
0 1
−1 0

)

A3 =
1
2

(
0 i
i 0

)
(4)

where i is an imaginary number. The Lie algebra’s commu-
tator, called the Lie bracket, is defined by [X ,Y ] = Y X −XY
with X ,Y ∈ su(2) such that [A1,A2] = A3, [A2,A3] = A1 and
[A1,A3] = −A2. The rotation matrix R(t) ∈ SU(2) is of the
form:

R(t) =
(

z1 z2
−z̄2 z̄1

)
(5)

with z1,z2 ∈ C and z̄1, z̄2 their complex conjugates such that
|z1|2 + |z2|2 = 1. Physically the basis A1,A2,A3 describe the
infinitesimal motion of the spacecraft in the roll, pitch and
yaw directions respectively.
Klein [25] discovered that for the symmetric Lagrange and
toy top (a symmetric rigid body in a constant gravitational
field) simpler solutions can be obtained when SU(2) rather
than SO(3), the set of 3×3 rotation matrices, is used as the
configuration space. Thus in this paper SU(2) is used as the
configuration space as it enables the equations of motion to be
expressed and solved in convenient Lax pair form. In addition
SU(2) is isomorphic to the unit quaternions [26] which enables
the solution to be expressed in quaternion form.
The two sets of kinematic equations (1) and (3) are equivalent
with the isomorphism, F : SU(2) ↔ H, from the Special
Unitary group to the unit quaternions:

F :
(

z1 z2
−z̄2 z̄1

)
↔ z1 + z2 · j = q0e+q1i+q2j+q3k (6)

defining the coordinate change. The complex numbers
z1 = q0 + iq1,z2 = q2 + iq3 are regarded in their quaternion
form z1 = q0e + q1i,z2 = q2e + q3i subject to the usual
quaternionic multiplication rules. For more details of this
isomorphism see [27] pp. 169-171.

C. Dynamic Model

Euler’s rotational equations of motion for a rigid spacecraft
are defined as:

J · ˙̄ω + ω̄× J · ω̄ = N̄e + N̄w (7)

where J denotes the moment of inertia matrix of the spacecraft,
ω̄ and ˙̄ω the angular velocity and angular acceleration vectors



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX, MONTH YEAR

Table I: Physical properties of spacecraft

Principal inertias of axisymmetric spacecraft A J1 = 0.0109kgm2

J2 = J3 = Js = 0.05kgm2

Principal inertias of asymmetric spacecraft B J1 = 0.0109kgm2

J2 = 0.0504kgm2

J3 = 0.0506kgm2

Drag coefficient Cd = 3
Reflectivity ρ = 0.6
Residual dipole in z-body axis Mrz = 10×10−3Am2

CoP/CoM offset || r̄CoP/CoM ||= 0.02m

Table II: Reaction wheel data

Wheel inertias Jw = 1.499×10−5kgm2

Maximum wheel torque 1×10−3Nm
Rate limit 1×10−2Nm/s
Nominal wheel momentum 7×10−3Nms@4460rpm

of the spacecraft body frame with respect to the inertial
frame, N̄e = [N1e N2e N3e]

T the external torques and N̄w =
[N1w N2w N3w]

T the reaction wheel torques. Assuming that
the body frame originates from the spacecraft centre of mass
and is coincident with the principal axes of the spacecraft,
Euler’s equations reduce to:

ω̇1 =
N1e+N1w+(J2−J3)ω2ω3

J1

ω̇2 =
N2e+N2w+(J3−J1)ω3ω1

J2

ω̇3 =
N3e+N3w+(J1−J2)ω1ω2

J3

(8)

where J1,J2 and J3 are the principal moments of inertia of the
spacecraft.

D. Spacecraft Model

We primarily focus on two spacecraft based on the UKube-
1; one of which is axisymmetric and the other slightly asym-
metric. The properties of these spacecraft are listed in Table I.
We assume that the spacecraft is equipped with simple reaction
wheels. The wheel data is based on the Sinclair Interplanetary
picosatellite reaction wheels1, and the wheel properties are
shown in Table II. The wheels apply a control torque:

Nw =− ˙̄hw− ω̄× h̄w (9)

This simplified model can be easily integrated to yield the
wheel angular momenta h̄w = [h1w h2w h3w]

T and wheel
velocities ω̄w = [ω1w ω2w ω3w]

T .

E. Environmental Model

The spacecraft is subjected to disturbance torques due to
gravity gradient [20], SRP and air drag [28], and the residual
dipole of the spacecraft2. The magnetic field is modelled
using a simple dipole model [29], rotated to mirror the offset
between the geographic and geomagnetic poles. The spacecraft

1http://www.sinclairinterplanetary.com/reactionwheels
2http://www.dept.aoe.vt.edu/ cdhall/courses/aoe4065/NASADesignSPs/sp8018.pdf

is considered to be on a 600km altitude circular orbit beginning
at the vernal equinox position, unless stated otherwise.
The environmental model is required to assess the practical
performance of the natural motions, derived subsequently for
the free rigid body in Section III, when applied to a spacecraft
in a non-ideal environment.

III. ANALYTIC DERIVATION OF THE REFERENCE MOTIONS

In this section analytical equations for the torque-free
attitude motion of axisymmetric and asymmetric spacecraft
are derived using Lax Pair integration in global quaternion
form. The general motion planning framework will first
be described, before the specific cases of the axisymmetric
and asymmetric spacecraft are considered. These analytical
equations will form the basis of the natural motion planning
algorithm for spacecraft attitude manoeuvres.

A. General Framework

Firstly, we note that in the absence of external torques the
following quantities are constant:

H = 1
2

(
J1ω2

1 + J2ω2
2 + J3ω2

3
)

M2 = (J1ω1)
2 +(J2ω2)

2 +(J3ω3)
2 (10)

These correspond to the Hamiltonian, in this case the total
rotational kinetic energy of the spacecraft, and the Casimir
function, in this case the magnitude of the angular momentum
of the spacecraft.
In order to derive the global solution in terms of quaternions,
we utilise the local solution in terms of euler angles.

Lemma 1. The euler angles representing the local orientation
of the spacecraft can be written as functions of the angular
velocities [21], [22], [23]:

ϕ1 =
∫ M(2H−J1ω1

2)
M2−(J1ω1)2 dt

ϕ2 = arccos( J1ω1
M )

ϕ3 = arctan( J2ω2
J3ω3

)

(11)

where 0≤ ϕ2 ≤ π and −π/2 < ϕ3 < π/2.

Proof. The Euler equations (7) can be written in Lax pair
form on SU(2) as [30], [31]:

dL(t)
dt

= [L(t),ω] (12)

where:
L(t) = J1ω1A1 + J2ω2A2 + J3ω3A3

ω = ω1A1 +ω2A2 +ω3A3

(13)

It is well known that the Lax Pair equation and the kinematic
equations are connected through the relation:

L(t) = R(t)−1L(0)R(t) (14)



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX, MONTH YEAR

and it is this relation that we use to solve for the corresponding
rotations. Here L(0) is the matrix L(t) at t = 0 and is therefore
a matrix with constant entries. Writing the dynamics and
kinematics in the language of classical mechanics and making
use of Lax pair integration provides a natural and elegant
means of deriving analytically the expressions for the time
evolution of the quaternions. Equivalently we can write:

R(t)L(t)R(t)−1 = L(0) (15)

where R(t)L(t)R(t)−1 describes the conjugacy class of L(t).
Thus for simplicity and to obtain more explicit solutions it
suffices to integrate the particular solution:

R(t)L(t)R(t)−1 = MA1 (16)

where M is the conserved Casimir function from (10). This
enables us to write:

L(t) = MR(t)−1A1R(t) (17)

As exp(−ϕ1A1)A1 exp(ϕ1A1) = A1, we say that exp(ϕ1A1) is
the stabilizer of A1 [27]. It is therefore convenient to introduce
the coordinate form:

R(t) = exp(ϕ1A1)exp(ϕ2A2)exp(ϕ3A1) (18)

Substituting (18) into (17) yields:

L(t) =
iM
2

(
cosϕ2 e−iϕ3 sinϕ2

eiϕ3 sinϕ2 −cosϕ2

)
(19)

Equating (19) with L(t) in (13) results in the following system
of equations:

J1ω1 = M cosϕ2
J2ω2 + iJ3ω3 = Me−iϕ3 sinϕ2
−J2ω2 + iJ3ω3 = Meiϕ3 sinϕ2

(20)

which can be immediately solved to provide the expression
for ϕ2 in (11). Now, adding the bottom two equations in (20)
yields:

2iJ3ω3 = M sinϕ2(e−iϕ3 + eiϕ3) (21)

While subtracting the bottom two equations in (20) gives:

2J2ω2 =−M sinϕ2(−e−iϕ3 + eiϕ3) (22)

Equations (21) and (22) can be simplified by making use of
the identities:

cos(θ) = eiθ+e−iθ

2
sin(θ) = eiθ−e−iθ

2i

(23)

which results in the following:

iJ3ω3 = M sin(ϕ2)cos(ϕ3)
J2ω2

i =−M sin(ϕ2)sin(ϕ3)
(24)

Dividing these two equations we obtain:

tan(ϕ3) =
J2ω2

J3ω3
(25)

Solving, we arrive at the expression for ϕ3 in (11). To obtain
an expression for ϕ1, we first rearrange (3) to yield:

R(t)−1 dR(t)
dt

= ω1A1 +ω2A2 +ω3A3 (26)

Then, substituting the expressions for ϕ2 and ϕ3 into (18), and
subsequently into (26), with some computation we find that:

ϕ̇1 =
Mω1(M2− (J1ω1)

2)−MJ2J3(ω3ω̇2−ω2ω̇3)

J1ω1(M2− (J1ω1)2)
(27)

Using the expressions for ω̇2 and ω̇3 in (7) for the free body
(i.e. N̄e = N̄w = 0), the constants (10) and simplifying we arrive
at the expression for ϕ1 in (11). �
Substituting (11) into (18) and pulling the solution back to the
identity via:

R(t) = RintR(0)−1R(t) (28)

provides the solution on the Special Unitary group SU(2). In
this expression Rint is the initial orientation and R(0)−1 is the
inverse of R(t) at t = 0. Finally, using the isomorphism (6)
and comparing the real and imaginary parts yields the globally
defined analytical quaternion equations for the free motion of
a rigid body.
We now utilise the equations above to derive the globally
defined analytic equations for the free motion of the spacecraft
in the axisymmetric and asymmetric cases.

B. Axisymmetric Spacecraft

In this subsection we state the equations for the free motion
of an axisymmetric spacecraft, derived using the procedure in
Section III-A.

Lemma 2. The time evolution of the quaternions (q̄ =
[q0 q1 q2 q3]

T ) related to the free motion of an axisym-
metric body can be written in the form:

q0 = cos(x(t))cos(ϕ1
2 )− y(t)sin(x(t))sin(ϕ1

2 )

q1 = sin(x(t))cos(ϕ1
2 )+ y(t)cos(x(t))sin(ϕ1

2 )

q2 = sgn(ω3(0))
√

1− y(t)2 sin(ϕ1
2 )sin(z(t))

q3 = sgn(ω3(0))
√

1− y(t)2 sin(ϕ1
2 )cos(z(t))

(29)

where:

x(t) = c(Js−J1)
2Js

t

y(t) = J1c
M

z(t) = x(t)+ tan−1(ω2(0)
ω3(0)

)

ϕ1 = (M(2H− J1c2)/(M2− (J1c)2)t

(30)

Proof. The analytical expressions for the angular velocities
of an axisymmetric spacecraft, where J2 = J3 = Js, are well
known and are given by [20]:

ω1 = c

ω2 = sgn[ω3(0)]σ sin(λ t + tan−1
(

ω2(0)
ω3(0)

)
)

ω3 = sgn[ω3(0)]σ cos(λ t + tan−1
(

ω2(0)
ω3(0)

)
)

(31)

where:
λ = c J1−Js

Js

σ2 = 2H−J1c2

Js

(32)
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Substituting these expressions into (11) and then into (18),
and pulling the solution back to the identity via (28) yields
the solution on SU(2). Using the isomorphism (6) gives
the expressions for the evolution of the quaternions in the
axisymmetric case � See [18].

Remark 1. The sign function sgn(ω3(0)) in (29) and (31)
is added to ensure that the initial first derivatives of these
equations match the initial first derivatives of their numerical
counterparts. That is, to ensure that the first derivatives of
(29) and (31) at time t = 0 match the first derivatives of (1)
and (7), with zero external torques, at t = 0.

C. Asymmetric Spacecraft

In this subsection we state the equations for the free motion
of an asymmetric spacecraft, derived using the procedure in
Section III-A.

Lemma 3. The time evolution of the quaternions (q̄ =
[q0 q1 q2 q3]

T ) related to the free motion of an asym-
metric body can be written in the form:

q0 = F1 (cos(ϕ1
2 )F3− sin(ϕ1

2 )F4)

q1 = F1 (sin(ϕ1
2 )F3 + cos(ϕ1

2 )F4)

q2 = F2 (cos(ϕ1
2 )F3 + sin(ϕ1

2 )F4)

q3 = F2 (sin(ϕ1
2 )F3− cos(ϕ1

2 )F4)

(33)

where

ϕ1 =
M
J1

t +κΠ(n; ϑ |m)+D,

F1 = S1

√
1+x(t)

2 ,

F2 = S2

√
1−x(t)

2 ,

F3 = S3
1√

1+y?(t)2
,

F4 = S4
y?(t)√

1+y?(t)2
,

Si =±1, for i = 1,2,3,4,

y?(t) = y(t)
1+
√

1+y(t)2
,

x(t) = J1ω1
M ,

y(t) = J2ω2
J3ω3

.

(34)

where Π(n; ϑ |m) is the incomplete elliptic integral of the third
kind with

n = s1/M2

f (t) =±√s2α t +C11
m = s1/s2
ϑ = am( f (t),m)
κ =±

(
2HJ1−M2

)
/(MJ1

√
s2α)

(35)

when | s1/s2 |≤ 1. When | s1/s2 |> 1 we have that:

n = s2/M2

f (t) =±√s1α t +
√

s1
s2

C11

m = s2/s1
ϑ = am( f (t),m)
κ =±

(
2HJ1−M2

)
/(MJ1

√
s1α)

(36)

where am(·,m) is the Jacobi amplitude, D is a constant of
integration and ω1,ω2,ω3 are the free rigid body angular
velocities.

Proof. The free rigid body angular velocities ωi can be
expressed in the analytic form [26], [32]:

ωi =

√
si

Ji
sn
(
±√αs jt +Ci,

si

s j

)
(37)

when
| si

s j
|≤ 1

or

ωi =

√s j

Ji
sn
(
±
√

αsit +
√

si

s j
Ci,

s j

si

)
(38)

otherwise3.
The function sn(·, ·) is a Jacobi elliptic function and the

constants Ci are defined by

Ci = sn−1
(

Jiωi(0)√
si

,
si

s j

)
(39)

with

si =
−β +

√
β 2−4αχ

2α
s j =

−β −
√

β 2−4αχ

2α
(40)

and
α =− (Ji−J j)(Ji−Jk)

J jJk

β =
4J jJkH−2Ji(J j+Jk)H+2JiM2−(J j+Jk)M2

JiJ jJk

χ =− (2J jH−M2)(2JkH−M2)
J2

i J jJk

(41)

where the indexes do not represent a sum; i, j and k follow a
“circular notation”, which means they appear in a consecutive
recursion (e.g. i=1, j=2, k=3 or i=2, j=3, k=1 etc. ...) See
[32]. Substituting these expressions into (11) and then (18),
and pulling the solution back to the identity via (28) yields
the solution on SU(2). Using the isomorphism (6) gives
the expressions for the evolution of the quaternions in the
axisymmetric case � See [19].

Remark 2. The sign ± in (37) is dependent on the initial
conditions. For implementation the sign has to be chosen so
that the sign of the first derivative of (37) at the initial time
t = 0:

ω̇i(0) =±
√

αs j

√
si

Ji
cn
(

Ci,
si

s j

)
dn
(

Ci,
si

s j

)
(42)

3Using the relation:
√

µ sn(ζ ,µ ) = sn(
√

µ ζ ,µ−1 )
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is matched to the sign of the Euler equations (7), with zero
external torques, at t = 0.

Remark 3. The Si functions are sign functions. To implement
the equations it is enough to consider only S1 or S2 and
S3 or S4 respectively. The sign functions can be set by
comparison with the known initial first derivative of the
quaternions (1).

IV. PRACTICAL IMPLEMENTATION OF MOTION PLANNING
METHOD

With the analytical equations for the free motion of an
axisymmetric and an asymmetric rigid body derived in
quaternion form, we now construct a method to utilise these
solutions in a motion planning algorithm. This requires
the specification of an appropriate cost function and the
implementation of some means of optimising the free
parameters of the analytical solutions to match the set
boundary conditions. A method of adapting the motion
planning method to yield simple constrained manoeuvres is
also presented.

A. Parametric Optimisation

In order to utilise the analytical expressions for the angular
velocities and the globally defined quaternions for motion
planning, the equations were entered into the program Math-
ematica. A cost function of the form:

min
ω̄(0)
{|| (q̄− q̄(T )) ||} (43)

was constructed, where ω̄(0) are the initial angular velocities,
q̄ is the current quaternion value, q̄(T ) is the target quaternion
at time t = T and T is the manoeuvre time. This cost function
minimises the norm of the error between the current quaternion
and the target quaternion by changing the initial angular
velocities. It follows that a parametric optimisation can be
carried out to find the values of the initial angular velocities
ω̄(0) required to bring the spacecraft to the target q̄(T ) in a
fixed time.
The inbuilt Mathematica direct search method “Differen-
tialEvolution”, was used for the parametric optimisation as it
proved the most effective at minimising the final pointing error
in comparison to the other inbuilt solvers “RandomSolution”,
“SimulatedAnnealing” and “NelderMead”. This method was
chosen in order to assess the suitability of using the natural
motions of the rigid body as the basis for designing attitude
motions. A deeper investigation would be required to identify
the most suitable method of determining the required initial
angular velocities if the references were to be generated on-
board a nano-spacecraft. However this is outwith the scope of
this paper.
The optimal values of the initial angular velocities, ω̄∗(0),
resulting from the optimisation can then be input into the ana-
lytical equations for the angular velocities and quaternions to
generate the reference tracks for a natural motion manoeuvre.

B. Extension to constrained repointing

Often a spacecraft is required to perform a constrained slew:
that is, to repoint while avoiding or tracking certain objects.
For example camera lenses can be damaged if they are pointed
directly at a bright object such as the Sun or the Earth’s Moon,
while in contrast for power generation purposes it may be
necessary to maintain a certain minimum angle between a solar
array and the Sun throughout a manoeuvre. By probing the set
of the natural motions which satisfy the boundary conditions
on the final orientation of the spacecraft, q̄(T ), the method
proposed in Section IV-A can be easily extended to achieve
such constrained slews.
Assuming that a camera is mounted along the spacecraft body
x-axis, a bright object such as the Sun creates a “cone” which
the x-axis unit vector must not intercept during a repointing
manoeuvre. This constraint can be formalised as [17]:

δp , arccos(n̂p · n̂c)> δc (44)

That is, the angle δp between the unit vectors of the spacecraft
body x-axis, n̂p, and the centreline of the cone, n̂c, must
be greater than the half-angle of the cone δc throughout the
manoeuvre.
Given the proposed method outlined above in Section IV-A,
without a constraint on the pointing direction the parametric
optimisation will return the optimal initial angular velocities
ω1
∗(0),ω2

∗(0),ω3
∗(0). In the case that this returns a motion

that intersects a forbidden region (δp < δc for any t ∈ [0,T ]
) we introduce the parameters p1, p2, p3 as increments to
the angular velocities ω1

∗(0),ω2
∗(0),ω3

∗(0), where −ε <
p1, p2, p3 < ε and ε is a parameter which can be tuned. We
then optimise the objective function:

min
p1,p2,p3

{|| (q̄− q̄(T )) ||} (45)

to find an alternative natural motion manoeuvre from q̄ to
q̄(T ). The parameter ε is then incremented iteratively to
obtain a solution such that δp > δc∀t. This leads to a new set
of initial angular velocities ω1

∗∗(0) = ω1
∗(0)+ p1,ω2

∗∗(0) =
ω2
∗(0) + p2,ω3

∗∗(0) = ω3
∗(0) + p3 being obtained, which

bring the spacecraft from q̄ to q̄(T ) with δp > δc∀t. These
angular velocities can then be input into the analytical
expressions for the angular velocities and quaternions to
generate reference tracks for the constrained natural motion
manoeuvre.

V. NATURAL MOTION PLANNING SIMULATIONS

The natural motion planning method described above was
tested in simulation to assess the strengths and limitations of
the method. As proportional-derivative (PD) controllers are
the most commonly used means of carrying out repointing
manoeuvres due to their simplicity and ease of gain tuning, a
PD controller [11], [14] was chosen as a benchmark:

ū = −Kω ω̄e−Kqq̄e (46)

In this expression ū is the desired control signal and Kω = kω J
and Kq = kqJ are constant gain matrices. The gains are multi-
plied by the inertia matrix so that the gains are proportionally
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higher on the axes with higher moments of inertia, simplifying
the gain tuning process such that only two parameters need to
be tuned. The angular velocity error is given by ω̄e = ω̄− ω̄d ,
and the quaternion error by:

q̄e =


q0d q1d q2d q3d
−q1d q0d q3d −q2d
−q2d −q3d q0d q1d
−q3d q2d −q1d q0d

 q̄ (47)

where ω̄d and q̄d are the desired angular velocities and quater-
nions at time t. Only the vector part of the error quaternion q̄e
(i.e. q1e,q2e,q3e) is used in tracking. Note that a gyroscopic
term is often added to the proportional-derivative controller
of (46). However for axisymmetric and slightly asymmetric
spacecraft, and long, slow manoeuvres, this term has negligible
effect and so is omitted here [6], [15].
As the natural motion references are not inherently rest-to-
rest, the manoeuvre is planned such that the references bring
the spacecraft to the target in time (T −τ), where τ is a small
period of time. At time (T−τ) until the end of the manoeuvre
at time T , a stabilising control is applied to bring the spacecraft
to rest at the target. The manoeuvre can be summarised as:

For t = [0,T − τ) ω̄d = ω̄re f
q̄d = q̄re f

For t = [T − τ,T ] ω̄d = 0
q̄d = q̄(T )

(48)

where the subscript ”re f ” refers to the natural motion
reference tracks generated using parametric optimisation, and
τ is the length of time the stabilising control is applied. In the
following simulations, a value of τ = 20 seconds is utilised
as this was found to be the shortest time required to bring
the spacecraft to rest. When quaternion feedback is being
considered, q̄d does not vary and is the final desired attitude
i.e. q̄d = q̄(T )∀t. Equation (46) then describes a conventional
quaternion feedback controller.
We assess the performance of the natural motion tracking in
comparison to the benchmark quaternion feedback controller
in terms of the accumulated torque [14] of the reaction
wheels. That is, the integral of the norm of the control torque
vector, given the symbol IN . The accumulated torque is used
as an indication of the control effort required to carry out the
manoeuvre, with lower control effort especially important for
small spacecraft due to their limited power and actuation.
For the quaternion feedback and natural motion manoeuvres
the gains were adjusted until the final pointing and velocity
constraints were satisfied, to 4 decimal places, with the lowest
accumulated torque. In the case of the natural motions the
gains were tuned using an iterative process. The gains for
quaternion feedback were initially tuned using an iterative
process and then, to ensure the fairest comparison between
the natural motions and quaternion feedback, the quaternion
feedback gains were further tuned by using the genetic
algorithm function in Matlab. A cost function consisting of
the angular velocity and quaternion errors at time T and the
total accumulated torque of the manoeuvre was constructed.
The optimisation process was repeated until the gains which

Figure 3: Angular velocities during quaternion feedback
manoeuvre for axisymmetric spacecraft from q̄(0) =
[1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T .

Figure 4: Quaternions during quaternion feedback for axisym-
metric spacecraft from q̄(0) = [1 0 0 0]T to q̄(T ) =
[0.5 0.5 0.5 0.5]T .

yielded the lowest accumulated torque while matching the
desired boundary conditions were found.
A 600km altitude circular orbit beginning at the vernal
equinox position is utilised in all simulations unless it is
stated otherwise.

A. Axisymmetric Case: Example Manoeuvres

The performance of the axisymmetric natural motions
was assessed via comparison with a quaternion feed-
back benchmark for a spacecraft with principal iner-
tias J1 = 0.0109kgm2,J2 = J3 = 0.05kgm2. A manoeuvre
was carried out from q̄(0) = [1 0 0 0]T to q̄(T ) =
[0.5 0.5 0.5 0.5]T in a time of T = 120seconds. The gains
used in the simulation were kω = 0.2095 and kq = 0.0222
for quaternion feedback, and kω = 1.81 and kq = 0.83 for the
natural motions. The results are shown in Figures 3, 4 and 5
for quaternion feedback and Figures 6, 7 and 8 for the natural
motion tracking.

It is clear that the natural motion tracking approach is
essentially “bang-off-bang” in nature. Initial torques bring the
spacecraft angular velocities to those required to perform a
natural motion. This is then followed by a “coasting phase”
of zero or near zero torque (a small torque is often applied to
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Table III: Comparison between quaternion feedback and natural motions for axisymmetric spacecraft. T=120 seconds.

Initial quaternion Final quaternion IN
Q.F. (Nms) IN

N.M(Axi) (Nms)
q̄(0) = [1 0 0 0]T q̄(T ) = [0.5 0.5 0.5 0.5]T 0.0068 0.0025
q̄(0) = [−0.124 0.705 0.698 0.039]T q̄(T ) = [−0.768 0.557 −0.0815 −0.307]T 0.0103 0.0014
q̄(0) = [−0.563 0.018 0.446 0.695]T q̄(T ) = [−0.596 0.65 0.371 0.29]T 0.0086 0.0013
q̄(0) = [−0.202 −0.811 −0.151 0.528]T q̄(T ) = [−0.059 −0.349 −0.767 −0.535]T 0.0146 0.003
q̄(0) = [0.588 0.749 0.098 −0.289]T q̄(T ) = [0.484 0.522 −0.561 −0.423]T 0.0046 0.0018

Figure 5: Control torques during quaternion feedback
manoeuvre for axisymmetric spacecraft from q̄(0) =
[1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T .

Figure 6: Angular velocities during natural motion manoeuvre
for axisymmetric spacecraft from q̄(0) = [1 0 0 0]T to
q̄(T ) = [0.5 0.5 0.5 0.5]T . Vertical line indicates end
of natural motion tracking and switch to stabilising control.

compensate for disturbances) as the spacecraft moves toward
the target attitude. When the target attitude is achieved at time
(T − τ), the angular velocity references are then switched
to stabilise the spacecraft at the target. This results in a
final torquing phase to bring the spacecraft to rest at the
target, the start of which is indicated by a dotted vertical
line in the figures. In contrast we note that the quaternion
feedback controller, which tracks a constant rather than time
varying reference, results in the quaternions following broadly
sigmoidal paths during the manoeuvre.
Table III summarises the results of this and several other
manoeuvres. The superscripts ”Q.F.” and ”N.M(Axi)” refer
to quaternion feedback and the axisymmetric natural motion

Figure 7: Quaternions during natural motion manoeuvre for
axisymmetric spacecraft from q̄(0) = [1 0 0 0]T to
q̄(T ) = [0.5 0.5 0.5 0.5]T . Vertical line indicates end
of natural motion tracking and switch to stabilising control.

Figure 8: Control torques during natural motion manoeuvre
for axisymmetric spacecraft from q̄(0) = [1 0 0 0]T

to q̄(T ) = [0.5 0.5 0.5 0.5]T .

manoeuvres respectively.
The natural motion tracking offers significant savings in
accumulated torque over the more computationally efficient
quaternion feedback for a range of manoeuvres. However
the peak torques of the natural motion method are generally
slightly higher than those for quaternion feedback.

B. Asymmetric Case: Example Manoeuvres

The motion planner for asymmetric spacecraft was then
tested in simulation for a spacecraft with principal inertias
J1 = 0.0109kgm2,J2 = 0.0504kgm2 and J3 = 0.0506kgm2. A
manoeuvre from q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T in a time of T = 120seconds is il-
lustrated. The gains used were kω = 0.194 and kq = 0.01972
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Table IV: Comparison between quaternion feedback and natural motions for slightly asymmetric spacecraft. T=120 seconds.

Initial quaternion Final quaternion IN
Q.F. (Nms) IN

N.M(Asy) (Nms)
q̄(0) = [0.208 0.622 0.431 0.620]T q̄(T ) = [1 0 0 0]T 0.008 0.0024
q̄(0) = [0.049 −0.77 −0.547 0.32]T q̄(T ) = [0.64 −0.68 −0.34 −0.13]T 0.0083 0.0016
q̄(0) = [−0.12 0.76 −0.63 0.068]T q̄(T ) = [0.44 −0.15 −0.83 0.32]T 0.0076 0.0033
q̄(0) = [−0.32 0.92 −0.18 −0.096]T q̄(T ) = [0.39 0.62 −0.62 0.27]T 0.0115 0.0022
q̄(0) = [0.45 0.26 −0.38 0.76]T q̄(T ) = [−0.65 −0.4 −0.43 −0.49]T 0.0119 0.0043

Figure 9: Angular velocities during quaternion
feedback manoeuvre for asymmetric spacecraft
from q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T .

Figure 10: Quaternions during quaternion feedback
manoeuvre for asymmetric spacecraft from
q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T .

for quaternion feedback, and kω = 1.8 and kq = 0.86 for the
natural motions. The results are shown in Figures 9, 10 and
11 for quaternion feedback and Figures 12, 13 and 14 for the
natural motion tracking.

Table IV summarises the results of this and several other
manoeuvres. The superscript ”N.M(Asy)” refers to the asym-
metric natural motion manoeuvre.
It is clear that the natural motion tracking in the asymmetric
case once again offers significant savings in accumulated
torque over quaternion feedback alone.

Figure 11: Control torques during quaternion
feedback manoeuvre for asymmetric spacecraft
from q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T .

Figure 12: Angular velocities during natural
motion manoeuvre for asymmetric spacecraft
from q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T . Vertical line indicates end of
natural motion tracking and switch to stabilising control.

C. Effect of Inertia

While ideally the asymmetric motion planner would be
used to plan motions for asymmetric spacecraft, the elliptic
functions present in this motion planner result in increased
computation times in comparison with the axisymmetric
motion planner. This will be discussed in detail in Section
VI. However, as most Cubesat spacecraft are only slightly
asymmetric, it may be possible to use the axisymmetric
motion planner in these cases.
In this section we assess whether the axisymmetric motion
planning method can still offer savings in accumulated torque
even as the inertias vary from those of the axisymmetric
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Figure 13: Quaternions during natural motion
manoeuvre for asymmetric spacecraft from
q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T . Vertical line indicates end of
natural motion tracking and switch to stabilising control.

Figure 14: Control torques during natural motion
manoeuvre for asymmetric spacecraft from
q̄(0) = [0.208 0.622 0.431 0.620]T to
q̄(T ) = [1 0 0 0]T .

spacecraft. This also serves as a study of how sensitive the
method is to the inertia fluctuations which could arise during
a mission (e.g. due to the deployment of solar panels or the
jettison of a payload).
The references generated in Section V-A for a
120second manoeuvre from q̄(0) = [1 0 0 0]T to
q̄(T ) = [0.5 0.5 0.5 0.5]T for the axisymmetric spacecraft
were applied to several asymmetric spacecraft with inertias
ranging from ±0−100% difference over the inertias of the
axisymmetric spacecraft. In order to determine the effect of the
inertia error on the axisymmetric natural motions, references
were also generated for each spacecraft configuration using
the asymmetric motion planner, and a quaternion feedback
benchmark again included for comparison. The results are
shown in Table V.

It is obvious that the accumulated torque required to track
the axisymmetric references increases as the inertia uncertainty
increases. However for a slightly asymmetric spacecraft, the
axisymmetric references require only slightly more torque
to track. Therefore in these cases the less computationally
intensive axisymmetric motion planner would be the more
practical choice. It should also be noted that the natural

motion references for the axisymmetric spacecraft outperform
quaternion feedback in terms of accumulated torque, even in
the presence of considerable inertia error.

D. Effect of Manoeuvre Time

In this section we investigate the effect of manoeuvre
time on the natural motion method. For a manoeuvre from
q̄(0) = [1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T , the
time is varied from the shortest time quaternion feedback slew
which could be performed without momentum saturation of
the reaction wheels, 50seconds, up to a manoeuvre time of
420seconds. The results are shown in Table VI.

Table VI: Comparison between quaternion feedback and nat-
ural motions with varying manoeuvre time for axisymmetric
spacecraft manoeuvre from q̄(0) = [1 0 0 0]T to q̄(T ) =
[0.5 0.5 0.5 0.5]T

T (seconds) IN
Q.F. (Nms) IN

N.M(Axi) (Nms) % Saving
50 0.0148 0.0083 44
120 0.0068 0.0022 68
220 0.0061 0.0011 82
420 0.0043 0.00057 87

The % saving is defined as (IN
Q.F.− IN

N.M(Asy))/IN
Q.F.×

100. It can be seen that the natural motion method is still
advantageous throughout, though the savings in accumulated
torque are greater for greater time periods. For shorter time
periods the stabilising control discussed in Section V takes
up a greater proportion of the total manoeuvre time. In
other words, as manoeuvre time decreases the length of time
which the natural motion references are tracked decreases and
the manoeuvres become increasingly similar to conventional
quaternion feedback manoeuvres. This accounts for the de-
crease in % saving for shorter time periods.

E. Effect of Orbital Altitude, Position and Inclination

Next, the effect of the spacecraft’s orbit on the natural
motion method was investigated. Disturbance torques such
as air drag, solar radiation pressure and gravity gradient are
dependent on orbit altitude, while the residual dipole torques
are more significant at the poles due to the increased magnetic
field strength. As the natural motion method is based around
the motion of a rigid body in a disturbance free environment,
the method may not be suitable for manoeuvres in a high
disturbance environment and so it is important to test the
method in these cases.
For an axisymmetric spacecraft on a 300km altitude orbit
beginning at the vernal equinox, a manoeuvre from q̄(0) =
[1 0 0 0]T to q̄(T ) = [0.5 0.5 0.5 0.5]T results in ac-
cumulated torques of IN = 0.0024Nms for the natural motions.
This is slightly higher than the IN = 0.0022Nms obtained for
the manoeuvre at 600km. Therefore in this case the natural
motion method is not significantly influenced by the increased
air drag and gravity gradient disturbance torques. Testing at
a 900km altitude yielded the same results as for a 600km
altitude, suggesting that the decrease in air drag and gravity
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Table V: Effect of varying spacecraft inertia on tracking of axisymmetric references from q̄(0) = [1 0 0 0]T to q̄(T ) =
[0.5 0.5 0.5 0.5]T in 120 seconds

Principal Inertias (kgm2) IN
N.M(Axi) (Nms) IN

N.M(Asy) (Nms) IN
Q.F. (Nms)

J1 = 0.0109kgm2,J2 = 0.0504kgm2,J3 = 0.0506kgm2 0.0023 0.0022 0.0069
J1 = 0.0164kgm2,J2 = 0.075kgm2,J3 = 0.025kgm2 0.0033 0.0018 0.0106
J1 = 0.0218kgm2,J2 = 0.1kgm2,J3 = 0.05kgm2 0.0047 0.003 0.0123

gradient torques and the increase in solar radiation pressure
torques at higher altitudes has little effect on the manoeuvres.
Additionally, beginning the manoeuvre at the poles on a 600km
altitude orbit rather than at the vernal equinox results in
a small increase in the required accumulated torques, with
IN = 0.0023Nm for the natural motions.
These results show that the variation in disturbance torques
caused by varying the orbital parameters has little effect on the
accumulated torque of the natural motion method. Therefore
it may be possible to effectively switch the control off during
the “coasting phase”: that is, the section of the manoeuvre
between the two main torquing phases. For altitudes less
than 600km this proves infeasible as the increased air drag
torque results in a significant drift from the reference tracks
if no control is applied. However for the 600km altitude
manoeuvre beginning at the vernal equinox described above
we find that the control torques during the “coasting phase”
can be switched off once the norm of the error between
the actual and desired values of angular velocities is less
than 1×10−4rad/s, and back on when the error was greater
than this value, with no impact on the accumulated torque
required or the accuracy of the manoeuvre. In contrast for
the manoeuvre near the poles - a slightly higher disturbance
environment - applying the same method of switching the
control off when || ω̄e ||< 1× 10−4rad/s, we find that the
accuracy of the manoeuvre suffers slightly when the control is
switched off during the coasting phase, with a final attitude of
q̄(T )= [0.4999 0.5001 0.5001 0.4998]T achieved. This is
as a result of the increased magnetic dipole torque, which
means that the drift from the reference tracks is too great to
compensate for when the control is switched back on. However
this strategy may still be feasible if a high pointing accuracy
is not required.
Therefore, as expected, the natural motions require slightly
more accumulated torque to track in lower Earth orbits due
to the increased disturbance torques. In contrast in low distur-
bance environments the control can be switched off during the
“coasting phase”, resulting in potential savings in computation
and power. In these cases the 3-axes natural attitude motions
are roughly analogous to the single-axis “bang-off-bang” con-
trols augmented by linear feedback proposed by Sidi [4], in
that the control is only switched on near the boundaries of the
motion to first achieve the desired angular velocities and then
to stabilise the spacecraft at the target attitude.

F. Constrained Repointing

We now illustrate the method of probing the set of natural
motions which satisfy the boundary conditions on the target
attitude to generate a constrained repointing manoeuvre.

Figure 15: Angle between body x-axis and cone centreline
unit vectors for manoeuvre from q̄(0) = [1 0 0 0]T

to q̄(T ) = [−0.449 −0.23 0.566 0.65]T . Constraint is
violated.

We consider a 120second manoeuvre from q̄(0) =
[1 0 0 0]T to q̄(T ) = [−0.449 − 0.23 0.566 0.65]T

for the axisymmetric spacecraft from Section V-A, with a
star tracker mounted in the direction of the body x-axis unit
vector, np = [1 0 0]T . The centre of the forbidden cone is
specified as nc = [−0.495 0.81 0.317]T and the cone half
angle as δc = 58◦. This corresponds to the Moon cone as
defined by Mengali [17]. An initial optimisation to minimise
the cost function (43) yields a solution which violates this
constraint, as shown in Figure 15.

Now, incrementing the angular velocities ω1
∗(0),ω2

∗(0)
and ω3

∗(0) by p1, p2 and p3 respectively and performing a fur-
ther parametric optimisation to minimise the cost function (45)
leads to a manoeuvre which does not violate the constraint, as
shown in Figure 16. It is evident that the constraint δp > δc∀t is
respected and the camera would not pass through the forbidden
zone during the manoeuvre. Therefore the natural motion
method has been used to generate a constrained slew.

VI. COMPUTATIONAL SUITABILITY

In order for a control or guidance method to be suitable
for implementation on-board a nano-spacecraft, the method
must be both low torque and computationally efficient. As the
natural motion planning method has proven to require signif-
icantly less accumulated torque than a quaternion feedback
benchmark for a wide range of manoeuvres, the suitability
of the method for on-board implementation will now be
discussed.
The references were generated in the programme Mathematica,
using a 2GHz, dual-core PC. While this is considerably more
powerful than the 30MHz processor on-board UKube-1, the
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Figure 16: Angle between body x-axis and cone centreline
unit vectors for manoeuvre from q̄(0) = [1 0 0 0]T to
q̄(T ) = [−0.449 −0.23 0.566 0.65]T . δp > δc∀t .

difference is less marked for other 3U Cubesats such as OPS-
SAT which has an 800MHz dual-core processor. Using the
solver “DifferentialEvolution”, which as stated previously uses
a direct search method to find the globally optimal solution,
the axisymmetric references take, on average, 0.17 seconds to
generate. The asymmetric references, however, take between
15 and 20 minutes to generate using the same software. This
is due to the presence of the incomplete Jacobi elliptic integral
of the third kind in the analytic expressions for the quaternions
(33). While mathematically elegant, current computer software
finds this Jacobi elliptic integral computationally heavy. As a
result, the asymmetric references, despite offering significant
fuel savings, are not necessarily any more efficient than using
a pseudospectral optimisation method such as PSOpt 4 or
a multiple shooting method to produce reference motions.
Therefore the asymmetric motion planner is not presently
suitable for on-board implementation.
In contrast the generation of the axisymmetric references
requires significantly less computation and as shown in Sec-
tion V-C these references can be applied to axisymmetric
and near axisymmetric spacecraft. However, the method of
finding the globally optimal angular velocities via a parametric
optimisation means that the axisymmetric natural motions are
less computationally efficient than quaternion feedback, where
only the final quaternion is tracked. As noted previously, the
references are essentially “bang-off-bang” in nature and so
provide significant savings in control effort. Furthermore, in
low disturbance environments the control can be switched
off during the region of low or zero torque named the
“coasting phase”, potentially providing savings in power and
computation. As a consequence, the reduction in control effort
offered by the axisymmetric natural motion method on small
spacecraft has to be weighed against the computation required
to initially generate the references. While quantifying this
tradeoff will be the subject of future research, we proceed
with a discussion of the relative strengths and weaknesses
of another guidance method in artificial potential functions
(APFs).

4http://www.psopt.org/

A. Trade-off Between Computation and Control Effort

While the reliance on quaternion feedback and eigenaxis
controllers for attitude manoeuvres make the generation of
time-dependent references for attitude control relatively rare,
the use of artificial potential functions [16] has been pro-
posed as a non-optimal guidance method. Artificial potential
functions require less computation than the natural motion
method as they do not require parametric optimisation; rather
they make use of Lyapunov functions to assign an attractive
potential to the target orientation, and generate the desired
references using inverse methods [16]. Artificial potential
functions also provide a simple and effective means of obstacle
avoidance. However in contrast to the natural motion method,
the APF method is not inherently low torque and can demand
excessive control effort if care is not taken to constrain slew
rates and maximum applied torques [33], [34]. In addition, as
the manoeuvres are not based around the natural motion of the
free rigid body, the references must be tracked throughout and
so the artificial potential function method cannot be utilised in
a quasi-open loop manner to save on power and computation.
Thus we see that the artificial potential functions, in contrast
to the natural motion method, require less computation at the
expense of a likely increase in control effort. A thorough
comparison with the natural motion planning method will be
the subject of future work in order to assess this trade-off
between computational intensity and control effort.

B. On-board Implementation

The analytical approach presented in this paper offers
the potential to reduce the torque requirement with respect
to using quaternion feedback alone, at the expense of
an increase in computation. However, although the motion
planning problem is reduced to one of parametric optimisation,
further work will be required to assess the most appropriate
parametric optimisation method for on-board implementation.
We proceed with a brief discussion of steps which could be
taken to make the natural motion method easier to implement
on-board a nano-spacecraft.
As described above, the references were generated on
a 2GHz, dual-core computer using a global parametric
optimisation method. However, it may not be feasible to
implement a global parametric optimisation method on-board
a nano-spacecraft with a processor in the 30 − 800MHz
range. In this case, it may be possible to implement a simple
gradient based search method [35] instead. In these methods
the search is proportional to the negative of the gradient of
the cost function, with the aim of finding a local rather than
a global minimum. These methods are computationally more
efficient than the direct search methods, at the expense of
only finding a local minimum.
A comparison of the local gradient based inbuilt
Mathematica method “FindMinimum” with the global
direct search method “DifferentialEvolution” for 50 randomly
generated manoeuvres found that the performance of the
“FindMinimum” method was highly dependent on the
given initial guess. For example when the solver was given
an initial guess of ω̄(0) = [0.1 0.1 0.1]T × 10−3rad/s,
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the gradient based method gave the same results as
the more computationally intensive global method
“DifferentialEvolution” in approximately 60% of cases.
In the remaining 40% of cases, manual tuning of the initial
guess resulted in the solvers achieving the same results.
Therefore while the “FindMinimum” method may require
less computation, it is heavily reliant on heuristics in the
form of a good initial guess in order to function effectively.
The natural motion references only require the optimal initial
angular velocities as inputs. Therefore it may be possible
to store the analytical equations for the natural motions on-
board the spacecraft, but to perform the necessary parametric
optimisation at the ground station. This would eliminate
the need to perform the parametric optimisation on-board
the spacecraft and would only necessitate the uploading of
the optimal initial angular velocity vector. A problem with
this approach is that if manoeuvres could be generated on a
powerful computer at a ground station, more computationally
intensive methods such as PSOpt could be used instead to
generate potentially torque optimal references. However in
these cases it would be necessary to upload the time history
of the entire manoeuvre rather than just a simple vector,
which would require significantly more on-board memory.
It is clear that while planning attitude manoeuvres around
the natural motions of a rigid body is beneficial in terms
of control effort in comparison to a quaternion feedback
benchmark, the reliance on global parametric optimisation
methods at present means that more work is required to assess
the performance of the method when faced with constraints
on processing power, and to determine the most practical
reference generation method for on-board implementation.

VII. CONCLUSIONS

The derived analytical equations of motion for axisymmetric
and asymmetric spacecraft can be utilised to produce natu-
ral attitude motions by parametric optimisation. The natural
motion planning method offers significant savings in accu-
mulated torque over a quaternion feedback benchmark, and
the manoeuvres are essentially “bang-off-bang” in nature. The
method is robust to errors in inertia and to the effects of
disturbances. Indeed, in low disturbance environments the
control can be switched off during a “coasting phase” to save
on computation, giving rise to quasi-open loop 3-axis “bang-
off-bang” manoeuvres. The set of natural motions which match
the final attitude can also be probed to produce constrained
slews.
The generation of references in the asymmetric case does
not offer an advantage over numerical optimisation for on-
board use due to the difficulty in evaluating the Jacobi elliptic
integral, which makes the method computationally heavy. The
axisymmetric references, however, require less computation
to generate and may be applicable to axisymmetric and near
axisymmetric spacecraft such as UKube-1 and OPS-SAT.
However the natural motion method requires a parametric
optimisation to generate the references, and so further work is
required to determine the most suitable method of implement-
ing the method on-board a resource limited nano-spacecraft.

To address these issues, future work will see the method tested
on an attitude control testbed currently under construction at
the University of Strathclyde. The natural motion planning
method will be implemented on a 30 MHz processor, which
will enable the performance of the method in the face of
reduced computation, errors due to inaccurate sensing and
actuator constraints to be assessed. Allied to this will be
finding a means to improve the computational efficiency of the
asymmetric method, as at present the savings in accumulated
torque are greatly outweighed by the time taken to generate
the references due to the presence of an incomplete Jacobi
elliptic integral of the third kind.
Additionally, as the quaternion feedback controller causes
the quaternions to evolve in broadly sigmoidal curves, the
possibility of generating and tracking sigmoidal, rather than
constant, quaternion references between the initial and final
attitudes will be investigated to determine if this results in
a saving in control effort when compared to the natural
motion method. Finally, the natural motion method will be
compared to those obtained via non-linear optimal control,
to assess how close to optimal the natural motions are, and
to other non-optimal guidance methods such as the artificial
potential function method. The aim of this comparison will
be to determine whether the savings in accumulated torque
offered by the natural motion method justify the increased
computation required to generate the references.
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