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I. INTRODUCTION

INTELLIGENT transportation systems (ITS) are expected to
improve the quality, safety, and sustainability of mobility,

by integrating information and communication technologies
with transport engineering. ITS rely on a capillary network
of devices, either road-embedded or mobile probes, that are
distributed over the roads providing local measurements of
traffic variables such as speed, flow, and density. Measurements
collected by the sensors, which are often heterogeneous, are
fused and elaborated to draw information on the global traffic
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Fig. 1. Example of decomposition of a large-scale traffic estimation problem
into smaller but interdependent problems (map courtesy of Google Maps).

state and take corresponding actions for mobility optimization
[1], [2].

A traffic network can be described as a set of interconnected
road links, as illustrated in Fig. 1 for the metropolitan area of
Milan, Italy, with roads represented as thick lines and intersec-
tions as dots. Typically, on some links, the traffic variable is
directly observed by one or more sensing devices (i.e., loops or
cameras), while other links could be completely unmonitored.
Focusing on a large-scale network, the objective of this paper is
the estimation of the overall traffic field starting from the set of
sparse, irregularly deployed, and noisy measurements provided
by the available sensors. Notice that a priori information on
the traffic dynamics is crucial for a reliable reconstruction, in
order to compensate for incomplete and noisy observations. The
use of an ensemble of a priori information, ranging from traffic
modeling (e.g., fluid dynamic) to historical data, motivates the
employment of Bayesian methods.

The Bayesian approach proposed in this paper jointly ex-
ploits real-time sensor data and analytical traffic modeling, to
enable the recovery of the traffic field over the whole network
as for a virtual sensor deployment covering all links. The
inference problem is very challenging due to the nonlinear
nature of the traffic process and the high complexity required
by the large-scale estimation that involves a huge number of
variables [3], [4]. It is even more challenging if we consider that
measurements are often heterogeneous for nature and accuracy,
and they are typically acquired by different operators that are



not prone to share traffic data for obvious economic reasons,
which justifies the decomposition of the estimation into a set of
small-scale interdependent problems, as illustrated in Fig. 1. The
network is divided into subnetworks, here referred to as blocks,
whose dimensions vary depending on the specific application
(e.g., from urban crosses to huge portions of cities/highways).
Cooperative processing is carried out by sharing information on
the reliability of the local traffic estimates among neighboring
subnetworks (as shown by the arrows in Fig. 1).

Cooperative Bayesian estimation finds a variety of applica-
tions in ITS. It is suited for networks with heterogeneous data
sources (loops, probe vehicles, cameras, and wireless sensor
networks) or with subnetworks monitored by different road op-
erators. Fusion of data from hybrid sources/operators is known
to increase the coverage and accuracy of traffic monitoring [5].
Furthermore, the cooperative Bayesian approach avoids the ex-
change of raw data between subnetworks, passing nonsensitive
beliefs that embed the traffic information. Possible applications
range from data reconstruction in the case of missing or failured
sensors, to accurate monitoring for local control operation (e.g.,
for traffic light management with few reliable sensors), traffic
forecast for dynamic route guidance (where observation is
incomplete also over time), and distributed traffic monitoring
from geolocalized interconnected vehicles (e.g., in vehicular
ad-hoc networks) [1], [6].

As an example of application, in this paper we consider
a simulated single-lane road scenario, with fragmented traffic
monitoring by loops, characterized by several sensor failures.
This paper shows how the proposed approach can overcome
the problem related to the sensor malfunctions exploiting infor-
mation shared with neighboring subnetworks, as for a virtual
global (or centralized) processing. The proposed method relies
on the cell transmission model (CTM) [7] for traffic description,
a discrete version of the fluid-dynamic Lighthill–Whitham–
Richards (LWR) theory, here extended as proposed by the
authors in [8] with a stochastic component that accounts for the
randomness of traffic. For estimation of the traffic variables,
Bayesian filtering is employed in each subnetwork, which is
integrated with belief propagation (BP) [9] for information
sharing between subnetworks. Performances are evaluated sim-
ulating different traffic scenarios.

This paper is organized as follows. A brief overview of
the literature on traffic estimation and the relation to prior
work is in Section II. The original contribution is outlined
in Section III, explaining the key idea behind the proposed
approach. Section IV contains a description of the traffic model
used for the development of the estimation method, with the
adaptation of CTM to the multiblock structure needed for
cooperative processing. Section V details the proposed estima-
tion technique. Sections VI and VII present the performance
assessment in terms of computational complexity and estimate
accuracy. Finally, Section VIII presents the conclusion and
future developments.

II. RELATED WORKS

Statistical inference methods proposed in the literature
mainly deal with centralized approaches for traffic recon-

struction. Conventional methods exploit analytical models or
historical data set [10]–[14]. Motivated by the stochastic nature
of traffic, the scientific community has recently started to
investigate nonlinear Bayesian models [15]–[17], particle filter
(PF) [17], [18], Bayesian networks (BNs) [19]–[22], mixtures
of Gaussian processes [23], Gaussian process regression [24],
and graph theory [25]. Recently, some works have investigated
PF with centralized [18] or parallel computation [26], using a
second-order nonlinear model, i.e., the compositional stochastic
model.

The focus of this paper is to move from a centralized traffic
estimation approach to a new cooperative approach. With this
perspective, graph theory is a promising tool for describing
the statistical relations existing among traffic observations at
different, and typically nonuniformly distributed, locations or
time instants. Unlike other contexts such as image processing,
wireless sensor networks, wireless positioning, and decision
making, in which Markov random fields (MRFs) and BNs [27]–
[30] are now mature tools, the approach is relatively new in
traffic estimation. Traffic can be view as an MRF defined over
an undirected graph, whose nodes are associated with the traffic
variable observed at different locations/instants, while edges
define the relations existing among the variables according to
the fluid–dynamic theory [31].

To cope with nonlinearity, a centralized estimation solution
based on the fluid–dynamic model CTM and PF has been
proposed in [8]; the method, however, becomes too complex
(due to the increasing number of particles) in the case of large
road dimensions. A different approach, relying on a linearized
CTM, has been developed in [15]–[17], in which a jump
Markov linear system (JMLS, e.g., [32]) has been introduced to
model traffic using mixture Kalman filtering for traffic density
estimation [15]. Kalman filtering is very convenient because
it provides a practical and easily implementable closed-form
solution for traffic estimation. Its employment, however, is
suited only for small-scale networks, due to the fact that it
requires linearization by JMLS and the number of variables to
be jointly handled in the linearized system increases with the
road size, becoming unfeasible from a computational viewpoint
in large-scale networks.

In this paper, we propose to extend the JMLS approach to a
cooperative framework, which is based on the division of the
estimation problem into subnetworks and on the cooperation
between the estimation processes in different subnetworks, in
such a way to enable the application to large-scale networks
with feasible complexity. Cooperative processing, which has
been widely investigated in recent years for statistical inference
in sensor networks [33], [34], has a great deal of potential
for monitoring of large-scale traffic networks. In this context,
designing the cooperative algorithm is a challenging task due to
the nonlinearity of traffic and the complicated spatial–temporal
network structure.

III. COOPERATIVE APPROACH

Here, we outline the cooperative paradigm for traffic estima-
tion highlighting the main contribution of this paper. Without
loss of generality, traffic density is assumed as the variable to be



Fig. 2. Road traffic modeling by Bayesian network.

estimated (velocity or flow could be considered as well, either
as separated or jointly handled variables). In order to sketch
the estimation problem, we consider the single-road scenario
in Fig. 2, which is general enough to allow the extension
to more complex networks with straightforward adaptations
(as done hereinafter in the numerical performance analysis).
The road is divided into a set B of NB = |B| subnetworks
or blocks. Each block is composed of NC cells. At time
t, the traffic densities observed in the NC cells of block b
are denoted by the state vector xt,b = [xt,b,1 · · ·xt,b,NC

]T and
the corresponding noisy measurements provided by sensors as
yt,b = [yt,b,1 · · · yt,b,NC

]T .
Conventional approaches for traffic estimation perform a

separate analysis in each road block, taking into account only
the flows on boundary sections. However, density variables
observed over closely located blocks are likely to be statistically
related due to the diffusion process [31]. We propose to account
for this interdependence by modeling the density over the net-
work as an MRF. Its estimation is decomposed into a set of local
estimations, each performed over a subnetwork in cooperation
with neighboring subnetworks by an iterated exchange of
traffic beliefs. Compared to the global centralized estimation,
the message-passing procedure enables a full exploitation of
all measurements in the network and, thus, the attainment of
nearly optimal performances1 with lower complexity.

We introduce a graph model in which nodes are associated
with blocks b ∈ B, while edges (b, �) ∈ E represent the condi-
tional dependencies between densities in neighboring blocks b
and �, with E being the set that collects all the neighbor pairs.
For the estimation of the traffic densities xt,b, we propose to
exploit the ensemble of all the measurements collected up to
time t by all sensors: Y1:t = [y1:t,1 · · ·y1:t,NB

] with y1:t,b =
[y1,b · · ·yt,b]. Assuming a cycle-free graph, the information
about the global state Xt = [xt,1 · · ·xt,NB

] can be represented
by the joint distribution [29]

p(Xt|Y1:t) ∝
∏
b∈B

p(xt,b|Y1:t−1)p(yt,b|xt,b)︸ ︷︷ ︸
ϕ(xt,b,yt,b)

×
∏

(b,�)∈E

p(xt,b,xt,�|Y1:t−1)

p(xt,b|Y1:t−1)p(xt,�|Y1:t−1)︸ ︷︷ ︸
ψ(xt,b,xt,�)

(1)

1Convergence rate depends on the network connectivity [35].

where the function ϕ(xt,b,yt,b) embodies the information on
the traffic state xt,b in block b drawn from local sensor mea-
surements, while ψ(xt,b,xt,�) denotes the a priori information
that comes from neighboring blocks.

The proposed method draws the global information p(Xt|
Y1:t) by means of a distributed BP procedure [9] that runs on
the graph in Fig. 2. At each time instant t, the estimate of the
traffic density xt,b in each block b is carried out by the com-
putation of the local belief ϕ(xt,b,yt,b). A phase-conditioned
linear model is employed for the description of the traffic
evolution: traffic is seen locally as a JMLS switching over
a set of linear propagation modes associated to the possible
configurations of traffic phases (free flow or congestion); a PF
is used for the estimation of phases and a set of Kalman filters
(KF) for densities. The estimate is then refined based on the
information ψ(xt,b,xt,�) provided by neighboring blocks via
the BP procedure. The local traffic phase is selected as the
key information to be shared for cooperation because it rules
the backward/forward propagation linking the measurements of
different subnetworks. This parameterization has the advantage
of avoiding an intensive exchange of data between subnetworks.

The original contribution can be summarized as follows:

1) The introduction of the cooperative paradigm in traffic
estimation (as outlined earlier), based on cooperation
between estimation processes in different subnetworks
and sharing of statistical information, in such a way to
enable the application of Bayesian traffic estimation to
large-scale road networks with feasible complexity;

2) The definition of a new traffic model (see Section IV)
relying on a stochastic version of the CTM and a multi-
block extension of the JMLS framework [16], [17], with
Markovian modeling of the phase evolution over closely
located blocks and inclusion of new phase configurations
in each block for Bayesian description of traffic behavior
in large-scale networks;

3) The development of a BP-PF procedure (see Section V)
for the implementation of the cooperative approach. The
performances of the method are compared to those of
conventional Bayesian estimation in terms of accuracy
(see Section VI) and computational complexity (see
Section VII).

IV. TRAFFIC MODEL

Here, a detailed description of how traffic is modeled on a
local and global basis is presented. A brief recall of the CTM is
given in the following, which is followed by the definition of the
traffic model in the single road block (see Section IV-A) and the
extension to multiple blocks for large-scale environments (see
Section IV-B).

Traffic is modeled according to the CTM, with road space
divided into cells and time sampled with interval Δt. As illus-
trated in Fig. 3, at time step t, the traffic state in cell n of length
ln is described by the density ρn(t), i.e., number of vehicles per
space unit, which evolves following the conservation law:

ρn(t) = ρn(t− 1) +
Δt

ln
(fn(t− 1)− fn+1(t− 1)) (2)



Fig. 3. CTM modeling: (top) section of road divided into cells; (bottom) linear
models for forward/backward-propagating waves across two cells.

where fn(t) and fn+1(t) denote the flow entering and exiting
the cell n at time step t, respectively. The flow entering cell
n depends on the traffic demand generated by cell n− 1, the
supply of space provided by cell n, and the road capacity fmax

(i.e., the maximum number of vehicles that can move from one
cell to the next), according to the relation

fn(t)=min(vfρn−1(t), ω(ρmax,n−ρn(t)),fmax)+wn(t). (3)

Here, vf denotes the free-flow velocity, ω denotes the jam
upstream velocity, and ρmax,n denotes the maximum density
in cell n. The zero-mean random variable wn(t) has been
introduced, with respect to the deterministic model [7], to
account for the randomness of traffic related to the granular
characteristic of flows and the unpredictable driver behaviors.

It can be seen from (3) that the relation existing in stationary
conditions between the mean density and flow variables, which
is defined by the function min(·), is nonlinear. This relation
is illustrated in the fundamental diagram in Fig. 4, in which
the two linear branches (first two arguments in the min(·)
function) are associated with the two main traffic phases: the
straight line with slope vf represents the free-flow condition
(F), with flow increasing as density increases, and the straight
line with slope ω represents the backward traffic propaga-
tion when congestion (C) occurs. Randomness of traffic can
be appreciated by looking at the dots in Fig. 4 representing
flow–density measurements collected by a traffic sensor. It
can be observed that data samples are randomly distributed
around the fundamental diagram, with a higher spread over the
congestion branch rather than the free-flow branch, due to the
increased interaction observed between vehicles in congested
conditions. The noise term wn(t) in (3) accounts for such a
dispersion, with variance selected to model the different degree
of variability observed in the two phases.

The space–time process ρn(t) in (2) and (3) is complex to
handle because it is nonlinear. Still, as highlighted earlier, it
can be seen as a composition of two main propagation phases: a
forward propagation with velocity vf in the F phase (see the left
scheme in Fig. 3) and a backward propagation with velocity ω
in the C phase (right scheme in Fig. 3). The phase F/C describes
the propagation direction of the traffic wave at the intersection
between two cells. This property can be used to simplify the

Fig. 4. Fundamental diagram.

traffic model and the related estimation over a block of cells, as
described in the following section.

A. Modeling a Block of Cells

To model a road section of NC cells, monitored by a set of
sensors, we define as overall traffic state the vector of densities
xt = [ρ1(t) · · · ρNC

(t)]T that evolve over time according to
(2) and (3) for n = 1, . . . , NC . Without loss of generality, we
assume that densities are measured by NC sensors, i.e., one
sensor for each cell, with accuracy that may vary from cell to
cell.2 The measurement of the density in the nth cell is defined
as ρ̃n(t) = ρn(t) + rn(t), with the random term rn(t) model-
ing the measurement error. Let yt = [ρ̃1(t) · · · ρ̃NC

(t)]T denote
the whole set of measurements, ρmax = [ρmax,1 · · · ρmax,NC

]T

denote the maximum densities at the two end cells, and ut =
[fin(t) fout(t)]

T denote the inflow/outflow conditions, the
Bayesian model describing the entire road section (or block)
is given by

xt =g(xt−1,ut−1,ρmax,wt)
yt =xt + rt (4)

where g(·) is the nonlinear vector function obtained from mod-
els (2) and (3), for n = 1, . . . , NC ; rt = [r1(t) · · · rNC

(t)]T is
the overall measurement noise; and wt = [w0(t) · · ·wNC

(t)]T

is the random process driving the model evolution. The widely
adopted zero-mean uncorrelated Gaussian distribution is as-
sumed for the two mutually independent random vectors rt
and wt, as an approximation of the real probability density
functions (pdfs) [15], [17], with limited values to ensure that the
density remains within the range [0, ρmax] and the flow within
[0, fmax].3 Particular care should be taken to ensure that the
samples of the driving noise fulfill the feasibility constraint of
the CTM: vf ≤ vmax and ω ≤ vmax with vmax = (ln/�t) for

2The model can be extended to cases in which some cells are not monitored
by sensors. Ideal condition for traffic estimation would be to have at least
one sensor per block, but the proposed estimation method also remains valid
in the case of the presence of nonmonitored blocks, as it is able to exploit
measurements coming from neighboring blocks. This aspect will be explained
in detail by simulations in Section VII, where a fragmented monitoring scenario
is considered.

3The noise variances used in the simulations are sufficiently low to consider
the effect of the limitation on the Gaussian pdf as negligible.



Fig. 5. (Left) Phase configurations. (Right) Structure of the matrices Ast and
Cst of the JMLS model.

cell n (i.e., a stream of vehicles cannot pass two cells in one
time-step). See [8] for details.

Since the CTM model (2) conditioned to the (either F or
C) traffic phase is linear in ρn(t), we can see the density
as the output of a switched linear model ruled by the phase
variable, as originally proposed in [16]. In our specific scenario,
the phase for the block of NC cells, i.e., the block phase, is
defined by the set of F/C binary conditions over the NC + 1
interfaces between cells. The block phase at time t is denoted
by the discrete-valued variable st ∈ S that takes values over
a set of |S| = 2NC+1 possible combinations of the NC + 1
phases, ranging from st = {F . . . F} (when the whole block
is in free flow) to st = {C . . . C} (when the block is fully
congested). For a small road section (i.e., for small NC), we
can reduce the cardinality by excluding some unlikely traffic
conditions from the set S. Specifically, we assume a reduced
set S′, where the block phase is all “F”, all “C”, or mixed
with one single breakpoint (or wavefront) “FC” or “CF”, to
account for homogeneous traffic conditions with at most one
phase change. This assumption leads to Nph = 2NC + 2 =
|S′| resulting phase configurations, as illustrated in the left
panel in Fig. 5. As an example, for NC = 2, it is Nph = 6
with S′ = {FFF, FFC, FCC,CCC,CCF,CFF}. Different from
previous works where the front “CF” has not been considered
as unlikely to occur in small road sections [17], here we need to
account also for this case to enable the extension to large-scale

TABLE I
JMLS MATRICES FOR DIFFERENT VALUES OF THE

TRAFFIC PHASE FOR A BLOCK OF NC = 2 CELLS

networks and to properly model the backward propagation of
platoons of vehicles in congestion.

It is worth noticing that the assumption of a single breakpoint
that allows to reduce the number of phases from 2NC+1 to
2NC + 2 is realistic only for small road sections; a similar
condition has been considered in [15] and [17], in which
the road sections have four cells as a maximum. For larger
networks, this assumption does not hold anymore, and the
relation of the number of phases to the number of cells cannot
be considered as linear anymore, causing a fast increment in
the system dimensions and inevitably in the computational
complexity of the traffic model. A way to adapt the model to
large-scale systems is the extension to multiple blocks through
cooperative processing, as proposed in the next section.

As regards the phase evolution in time, we assume that
the block phase st evolves according to the Markov chain in
Fig. 6(a), with transition probabilities p(st+1|st) and starting
state s0 = FFF. Given the block phase st, the densities follow
the linear model

xt =Astxt−1 +Bstut−1 +Cstρmax +wt,st

yt =xt + rt (5)

where system matrices {Ast ,Bst ,Cst} and the covariance
matrix of the driving process wt,st = [wst,1(t) · · ·wst,NC

(t)]T

depend on the specific value of st. The generating noise for the
density model is wst,n(t) = (Δt/ln)(wn(t− 1)− wn+1(t−
1)). The traffic process is thus modeled as a JMLS [32] that
switches among Nph linear systems according to the evolution
of the traffic phase st.

The structure of the matrices {Ast ,Bst ,Cst} is obtained
from (2) and (3) based on the traffic phase value st. Matrix Bst

is used to impose the input/output flows ut on the road section
boundaries, while Ast and Cst describe the traffic propagation
over the road, as illustrated in the right plane in Fig. 5. For
NC = 2, they model a forward traffic propagation for st = FFF
and a backward propagation for st = CCC, while they have a
mixed structure depending on the breakpoint position in all the
other cases. Matrix elements are written in Table I, for the case
NC=2, as a function of the following parameters: aFn,m=vfn/

vmax
m , aCn,m=ωn/v

max
m , and bn=1/vmax

n (velocities can change
from cell to cell and are thus indicated by the subscript n).



Fig. 6. Space–time Markovian model for the evolution of the traffic phase within a block and over multiple blocks. (a) Markov chain for the temporal evolution
within the block. (b) Markov chain for the spatial evolution over the blocks. (c) Space–time Markov chain obtained as composition of the two chains: the arrows
within the block represent the evolution of the phase in time and the arrows between the blocks represent the evolution in space. Probabilities associated to the
arrows denote the transition probabilities of the Markov chain.

As concerns the noise terms, we assume that the variance
of the traffic generating process wn(t) is larger in conges-
tion (σ2

wC
) than in free flow (σ2

wF
), i.e., σ2

wC
> σ2

wF
. We

thus set wt,st ∼ N (0,Qst), where Qst is a NC ×NC matrix
whose elements are linear combinations of the two variances
(σ2

wF
, σ2

wC
), with weights of the combination depending on the

phase st. Matrix elements can be easily found for all cases in
Table I, by considering the definition of wst,n(t) as a function
of wn(t) and taking into account that wn(t) is uncorrelated. The
distribution of the measurement error is rt ∼ N (0, σ2

rINC
).

B. Modeling Multiple Blocks

For modeling large-scale systems, here we propose the ex-
tension of the previous model to a road of NB blocks (with
NC cells each), using xt,b and st,b to denote the densities
and the phases in the bth block, for b = 1, . . . , NB . We assume
that the traffic densities xt,b in each block b, when conditioned
to the local traffic phase st,b and for given boundary conditions,
evolve independently from the other blocks according to the
linear model (5). The traffic phase, on the other hand, is statis-
tically related to the traffic phases in the two adjacent blocks
due to the colocation and the backward/forward propagation
mechanism. We propose to model the phase evolution over the
blocks according to a first-order Markov model with transition
probabilities p(st,b|st,b±1), as depicted in Fig. 6(b).

To illustrate the concept, we consider a road composed
of blocks having NC = 2 cells, NC + 1 = 3 interfaces, and
Nph = 6 block-phase values, as in the previous example. Since
phases defined on consecutive blocks partially overlap, as
shown in Fig. 7, only a subset of phase configurations are
admissible over the blocks. Fig. 7 depicts three examples of
feasible configurations [st,b−1, st,b, st,b+1], for block b− 1, b,

Fig. 7. Spatial evolution of traffic phases over a road section composed of
three blocks of NC = 2 cells. Example of configurations of block phases for
adjacent blocks.

and b+ 1 at time t: in the first example, the propagation of two
wavefronts is represented, and the second and third examples
show congestion at the beginning and end of the section, respec-
tively. The feasible phase configurations among two adjacent
blocks, i.e., [st,b−1, st,b], can be drawn from the Markov chain
in Fig. 6(b) that shows all the admissible phase transitions from
b− 1 to b by arrows. The chain ruling the phase evolution
from b+ 1 to b can be drawn symmetrically for the pair of
phases [st,b, st,b+1]. Transition probabilities can be estimated
from data by computing the frequencies of state transitions. In
the simulated scenarios considered in this paper, the analysis of
the transition frequencies showed that all transitions departing
from the same starting phase st,b−1 have approximately the
same probability p(st,b|st,b−1).



The overall space–time Markovian chain for the phase evo-
lution is represented in Fig. 6, as the composition of the
two separate evolutions: over time within a single block [see
Fig. 6(a)], over space spanning different blocks [see Fig. 6(b)],
and over space and time [Fig. 6(c)].

V. ESTIMATION OF TRAFFIC DENSITIES

This section details the proposed procedure for cooperative
traffic estimation. The objective is the estimation of the traffic
densities xt,b over each block b, exploiting all the measure-
ments Y1:t collected in the NB blocks (up to time t) and relying
on the Bayesian model defined in Section IV-A and B. The
optimal estimate is based on the a posteriori pdf

p(xt,b|Y1:t) =
∑
s1:t,b

p(xt,b|s1:t,b,Y1:t)p(s1:t,b|Y1:t) (6)

that accounts for all possible phase evolutions s1:t,b =
[s1,b · · · st,b]T over space and time. For the previous com-
putation, we propose a recursive procedure that, at each
step t, updates the pdf starting from the previous one, i.e.,
p(xt−1,b|Y1:t−1), based on the new measurements made avail-
able at time t by the local sensors and also by the sensors in
neighboring blocks � ∈ Ωb. The symbol Ωb denotes the set of
neighboring blocks for block b, here limited to the two adjacent
blocks: Ωb = {b− 1, b+ 1}. The recursive procedure is based
on a local filtering of the traffic densities in the block b for the
computation of p(xt,b|s1:t,b,Y1:t) and a cooperative filtering of
the traffic phases based on information sharing between blocks
for the computation of p(s1:t,b|Y1:t).

We first observe that, according to the JMLS in Section IV-A,
the a posteriori pdf of the density conditioned to the phase se-
quence, i.e., p(xt,b|s1:t,b,Y1:t) = p(xt,b|s1:t,b,y1:t,b), can be
derived from the local sensor measurements y1:t,b. Being the
model of the traffic density linear Gaussian, the pdf and the
related density estimate can be updated at each time t, using
a local KF conditioned to the phase sequence s1:t,b. On the
other hand, taking into account the space–time Markovian chain
ruling the phase evolution, the pdf p(s1:t,b|Y1:t) requires for the
update a combination of the local observations in block b, with
information provided by the other blocks. This is performed
by an interblock BP procedure that allows block b to receive
phase beliefs from neighboring blocks � ∈ Ωb and optimally
fuse these beliefs with the local information. Since the phase
sequence distribution is non-Gaussian, PF is used for belief
representation.

Once p(s1:t,b|Y1:t) has been evaluated, to reduce the com-
plexity of the computation of the traffic density pdf in (6), we
select the maximum a posteriori (MAP) estimate of the phase
sequence as

ŝ1:t,b = argmaxs1:t,b p(s1:t,b|Y1:t) (7)

and we approximate the pdf (6) as p(xt,b|Y1:t) ≈ p(xt,b|ŝ1:t,b,
y1:t,b)p(ŝ1:t,b|Y1:t), with the distribution associated to the
most probable phase sequence.4 One step ahead of a set of

4The scaling term p(ŝ1:t,b|Y1:t) is irrelevant for density estimation and it
is not considered in the KF computations.

parallel KFs is performed for evaluating the pdf’s p(xt,b|s1:t,b,
y1:t,b) for a number of candidate phase trajectories s1:t,b (the
particles, as detailed later) and the corresponding a posteriori
probabilities p(s1:t,b|Y1:t); the KF associated to the phase
sequence ŝ1:t,b with maximum probability is then selected,
providing p(xt,b|ŝ1:t,b,y1:t,b) (see [32] for details).

The BP procedure follows the guidelines in Section III,
with the only difference that the estimation refers to the phase
sequence s1:t,b instead of the density, as the density estimate is
performed separately by the KF. The BP algorithm is illustrated
in Fig. 8 and detailed in the subsequent section.

A. BP for Cooperative Estimation

The BP procedure requires the definition of node potential
ϕ(s1:t,b,yt,b) for each block b and the pairwise potentials
ψ(s1:t,b, s1:t,�) for any pair of adjacent blocks b and � ∈ Ωb,
as introduced in Section III. The node potential is obtained as

ϕ(s1:t,b,yt,b) = p(s1:t,b|Y1:t−1)p(yt,b|s1:t,b) (8)

where p(yt,b|s1:t,b) is the current measurement likelihood, and
p(s1:t,b|Y1:t−1) is the a priori pdf. The latter is calculated from
the a posteriori pdf of the previous step, using the transition
probabilities p(st,b|st−1,b) of the Markovian chain describing
the temporal evolution within the block, i.e.,

p(s1:t,b|Y1:t−1)=
∑

s1:t−1,b

p(s1:t,b|s1:t−1,b)p(s1:t−1,b|Y1:t−1).

(9)
The procedure used for the implementation of the previous
equations is in Appendix A.

On the other hand, for the pairwise potential between the
adjacent blocks b and � ∈ Ωb, we exploit the Markovian
chain describing the spatial evolution over the blocks [see
Fig. 6(b)], as

ψ(s1:t,b, s1:t,�) =
p(s1:t,b, s1:t,�|Y1:t−1)

p(s1:t,b|Y1:t−1)p(s1:t,�|Y1:t−1)
(10)

≈ p(st,b, st,�|Y1:t−1)

p(st,b|Y1:t−1)p(st,�|Y1:t−1)
=ψ(st,b, st,�) (11)

where the a priori probabilities are obtained from (9). We
approximated the computation from (10) and (11) by consid-
ering only the current value of the phase on blocks b and �
according to the Markovian chain model in Section IV-B, where
the interdependence between the phases in adjacent blocks is
assumed to be limited to the simultaneous phase configuration.
Notice that considering the pairwise potential as dependent on
the whole sequences (s1:t,b, s1:t,�) would require handling a
number of states increasing exponentially with time, leading to
intolerably high computational complexity.

Node and pairwise potentials are used by the BP procedure
to evaluate the a posteriori pdf p(s1:t,b|Y1:t) through repeated
approximations. The pdf at iteration k, i.e., p(k)(s1:t,b|Y1:t), is
obtained by the following two steps.

1) Message fusion for computation of the block belief.
Block b receives a message m

(k)
�→b(st,b) from each neigh-

bor � ∈ Ωb representing the belief about the block-b phase



Fig. 8. Illustration of the BP algorithm for the estimation of the traffic state in block b. The estimate is obtained by merging belief information (or messages)
provided by neighboring road blocks (b− 1 and b+ 1) with the information coming from local observations (block b). Beliefs are probability distributions
(here represented as bar diagrams) evaluated over all possible traffic phase values, ranging from “CCC” to “FCC”. In this example, information from sensors
in neighboring blocks allows the system to modify the initial assessment of traffic condition “CCF” into the correct one “CFF”, shifting upstream the “CF”
breakpoint, due to information propagation over the road blocks.

based on the block-� observations. Block b approximates
its own a posteriori pdf, fusing the messages from all
neighbors, i.e.,

p(k)(s1:t,b|Y1:t) ∝ ϕ(s1:t,b,yt,b)
∏
�∈Ωb

m
(k)
�→b(st,b) (12)

as shown in Fig. 8.
2) Update of messages to be sent to neighbors. Given all

messages received from neighbors, block b computes the
message to send to each neighbor � ∈ Ωb as

m
(k+1)
b→� (st,�) ∝

∑
s1:t,b

ϕ(s1:t,b,yt,b)ψ(st,b, st,�)

×
∏

h∈Ωb\�
m

(k)
h→b(st,b). (13)

The approximated pdf at each block b is used to update
the MAP estimate of the phase sequence as

ŝ
(k)
1:t,b = argmaxs1:t,b p

(k)(s1:t,b|Y1:t). (14)

The BP procedure ends when |ŝ(k+1)
1:t,b − ŝ

(k)
1:t,b| < ε, where

ε is a judiciously chosen convergence parameter.
For the implementation of the BP procedure, we represent

the beliefs as weighted sets of random particles according to
the importance sampling principle

p(k)(s1:t,b|Y1:t) =

Np∑
i=1

q̄
(i)
t,bδ(s1:t,b − s

(i)
1:t,b|Y1:t) (15)

where {s(i)1:t,b}i=1,...,Np
are the particles and {q̄(i)1:t,b}i=1,...,Np

are the corresponding weights. A finite memory Test is used

for the phase sequence tracking, as detailed in Section VII,
keeping track of st−Test:t,b instead of s1:t,b. The BP algorithm
for the computation of particles and weights is presented in
Appendix B.

Remark: For the estimation of the densities xt,b in the KF,
given the phase sequence estimate ŝ1:t,b, we need to know
also the boundary conditions ut,b = [fb,in(t) fb,out(t)]

T for the
block b. To draw such information, the data provided to block
b by the neighboring blocks � ∈ Ωb must include, in addition to
the previously defined messages, the traffic densities estimated
in the two adjacent blocks. Each neighboring block thereby
sends the belief about the block-b phases s1:t,b and the estimate
of its own traffic densities xt,� on the boundary cells. When
more complex networks with intersections are considered, the
estimated densities need to be exchanged among all the neigh-
bors in the graph. In this case, the computation of boundary
conditions has to take into account the splitting matrix defining
how flows split at each intersection.

VI. COMPUTATIONAL COMPLEXITY

The computational complexity is a key factor of our approach
to large-scale traffic estimation. Here, we consider the com-
plexity of traffic estimation in a large-scale road with NBNC

cells. We compare the cooperative approach, which relies on
the division of the road into NB blocks of NC cells each,
with an equivalent centralized approach that applies the PF
procedure (without BP) on the whole road as a single block of
NBNC cells.

Considering the BP procedure (8)–(15), we can divide the
estimation process in two steps: the computation of the local



TABLE II
JMLS MATRICES FOR DIFFERENT VALUES OF THE

TRAFFIC PHASE FOR A BLOCK OF NC = 2 CELLS

belief or node potential in (8) and (9) and the update of the
belief using the information propagated by neighbors through
the BP procedure (12)–(14). In the first step, the node potential
represented by Np particles is evaluated following the PF pro-
cedure in Appendix A, with computational complexity O(Np)
(see also [32]). In the BP procedure, messages represented by
Np particles are exchanged and multiplied in each block with
the node potential. The complexity of this operation is again
linear in the number of particles Np. It follows that the overall
complexity per block of both the cooperative approach and
the centralized estimation approach is O(Np). The amount of
information exchange can be evaluated, observing that each
message is composed by Np particles and that the convergence
is reached usually after 2 to 3 iterations. The load of information
exchange is then mainly related to the number of particles as the
system reaches convergence in few steps. This is another reason
to maintain small the dimension of blocks.

However, the critical point is that the number Np needed to
represent each phase belief is strictly related to the dimension
of the phase space, which in turn is linked to the road block size
(here expressed in number of cells). For cooperative estimation,
we showed in Section IV-A that, in case of small block size,
the number of phases that can be defined in a single block
grows linearly with the number of cells in the block, i.e., Nph =
2(NC + 1). For the centralized approach, on the other hand, the
number of cells is NBNC ; since this corresponds to a large
block size, the single breakpoint assumption is not realistic
anymore and the number of phases grows exponentially as
Nph = 2NBNC+1. Moreover, the algorithm attempts to estimate
the sequence of phases s1:t,b, and it is well known in the
literature that the number of possible trajectories grows with
time as N t

ph [32], [36] (notice that a finite memory t can be
typically assumed for practical tracking). Since the number of
particles required for belief representation is, to the first-order
approximation, linear in the support of the phase-sequence
variable [37], it follows that, in the worst case (i.e., assuming
the whole set of sequences as support of the distribution), the
number of particles Np used to track the trajectories grows
exponentially as O(N t

ph). In practical situations, the support is
smaller and the complexity is reduced. The aforementioned is
therefore an overestimation of the computational cost, as the
particles sample only the most likely trajectories in the space,
not all of them. In any case, the relevant point is the relative
gain between the computational complexity of the centralized
and cooperative approaches that can be inferred from the results
summarized in Table II.

We can conclude that, in the worst case, the complexity is
O(N t

C) per block for the distributed approach and O(2NBNCt)
for the centralized approach. The latter is clearly unfeasible,

Fig. 9. Simulation settings for NB = 20 with NC = 2 cells/each. Central
blocks (red) may have larger measurement errors.

Fig. 10. Real phase sequence and densities for a scenario with generation and
dissolution of traffic congestion.

and this is the reason that motivated the adoption of the JMLS-
PF procedure only for small blocks in previous works [15],
[17]. The cooperative approach enables the application to large-
scale networks, as the overall complexity is only linear in the
dimension of the network in number of blocks, rather than
exponential.

Furthermore, we observe that the size of the road block is
typically a tradeoff between the desired estimation accuracy and
the computational complexity: the larger is the block, the higher
is the accuracy (as the estimate exploits measurements provided
by a larger set of sensors) and the higher is the computational
cost (as the number of variables that need to be jointly han-
dled increases). The cooperative approach allows extending the
range of observation to multiple blocks, still maintaining the
complexity to the level of a single-block processing and linear
in the number of blocks (see Table II).

VII. PERFORMANCE ASSESSMENT

Here, we present numerical results on traffic density estima-
tion. Since joint estimation of traffic densities over NB blocks
would be unfeasible by conventional Bayesian estimation, as
explained in the previous section, here we compare the pro-
posed cooperative method with the estimation obtained by NB

separate tracking filters, i.e., one for each block, each based on
the Bayesian model in Section IV-A. To gain an insight into the
estimation procedure, we consider a simple synthetic scenario
that will be incrementally expanded, adding more elements and
traffic situations. The scenario is shown in Fig. 9: it is a single-
lane road divided into NB = 20 blocks, with NC = 2 cells each
of length l = 750 m. The parameters used for the traffic simu-
lation are as follows: free-flow speed vf = 25 m/s = 90 km/h,
backward propagation speed ω = 4 m/s = 14.4 km/h, sampling
interval Δt = 20 s (equal to the measurement interval), and
maximum density ρmax = 80 veh/cell = 106.67 veh/km. The
traffic densities and the related measurements are simulated
according to the model (4). We assume that the boundary
conditions fIN(t) and fOUT(t) are known and error-free. Per-
formance is evaluated in terms of the root-mean-square error
(RMSE) of the density estimate.

We consider a first simulation in which the measurement
error rb,t ∼ N (0, σ2

r,bINC
) in block b is stationary over the

blocks with σ2
r,b = σ2

r . We simulate a scenario with genera-
tion, backpropagation, and dissolution of a congestion. The



Fig. 11. Traffic density estimation and phase sequences for σr = 20 veh/km.
Top: true traffic phase and measured densities. Center: cooperative estimation.
Bottom: noncooperative estimation.

simulated traffic densities and the corresponding phase se-
quences are shown in Fig. 10. The number of particles is
optimized studying the RMSE. Numerical results show that
an increasing number of particles allows for a more accurate
approximation of the traffic pdf and consequently for a lower
estimation error, up to the limit Np = 100, where a floor is
observed on the RMSE versus Np performance. No significant
improvements are observed above this value.

In Fig. 11, a comparison of the density estimate accuracy
for the two considered approaches is shown for the case σr =
20 veh/km, with Np = 100. The figure shows the true phase
sequences (top left figure), the density data (top right figure),
and the related estimates obtained by the cooperative (central
figures) and noncooperative approaches (bottom figures). In
both the estimation approaches, blocks exchange estimates of
the boundary flows to let neighbors compute inflows and out-
flows. The cooperative approach is shown to provide accurate
tracking results on both the phase sequence s1:t and the den-
sities X1:t. Higher accuracy is observed during the congestion
dissolution: blocks use the message-passing procedure to share
information about the backward/forward propagation of traffic
waves through the subnetworks; therefore, if a block is estimat-
ing traffic congestion, it can inform neighboring blocks about
the possible propagation or dissolution of the jam wave through
the boundaries (i.e., about the predicted traffic evolution over
nearby blocks). In particular, the RMSE for blocks b = 14
and b = 16 is shown in Fig. 12. Black squares mark areas
where the cooperative estimate provides a significant gain over
the noncooperative approach; they mostly correspond to the
congestion dissolution process.

The second simulation describes a realistic situation, in
which a subset of sensors experiences lower accuracy due to
failure or to the use of heterogeneous sensing systems with
different reliability. The cooperative method reveals here its
major advantages because it allows the noisy blocks to exploit

Fig. 12. RMSE on blocks b = {14, 16}, for the scenario in Fig. 11. Squares
mark sections where the cooperative method provides major gain.

measurements collected by other (possibly more reliable) sen-
sors. In our simulation scenario, the measurements collected
on blocks b ∈ B0 = {5, 9, 13, 16, 19} are affected by a higher
error, with σr,b = 20 veh/km, while the other blocks b /∈ B0

have uncertainty σr,b = 2.67 veh/km. To appreciate the advan-
tages of the cooperative method, we analyze in detail one of
these noisy blocks, with index b = 16, for Np = 100. The two
methods are compared in Fig. 13. The figure shows the MAP
estimate of the phase sequence ŝMAP

1:t,16 (left panels) and the
density estimate obtained by a KF conditioned on ŝMAP

1:t,16 (right
panels) for the cooperative method (bottom) and the noncooper-
ative method (top). When the cooperative approach is used, the
error is lower because the 16th block can exploit more reliable
information coming from other blocks in the network. The co-
operative method provides a higher accuracy of density estima-
tion compared to the noncooperative approach with comparable
computational complexity. This is very useful for real-time
traffic estimation in road networks in which some critical areas
are covered by less reliable sensors. The proposed method
allows to overcome problems related to wrong values of the
traffic variables sensed on those areas. In practice, we do not
exclude the noisy sensors; we rather attempt to integrate all the
data, taking into account the different reliability degrees and
relying more on measurements provided by less noisy nearby
sensors.

The estimation results for all the blocks are shown in Fig. 14,
in which the two approaches are compared with the true data.
The interesting point is that, in the cooperative approach, not
only the noisy blocks b ∈ B take advantages of the cooperation
but also the neighboring blocks. This behavior can be explained
by considering that, in both the approaches, blocks exchange
estimates of the boundary flows to let neighbors compute in-
flows and outflows. In the cooperative algorithm, block b = 16
sends to its neighbors reliable estimates, while in the noncoop-
erative approach, the block estimate is affected by a large error
that propagates to the neighbors through the boundary flows.



Fig. 13. Estimation on the block b = 16 equipped with corrupted sensors with σr,b = 20 veh/km. Results from noncooperative estimation (top) and cooperative
estimation (bottom) methods.

These results underline the advantage of cooperative process-
ing in the case of a lack or malfunction of some sensors, as
the method allows to obtain good estimation results over the
whole road also in areas not covered by good sensors. This is
important in both urban and freeway environments, in which
the problem of density and flow estimation in presence of bad
data is of high relevance.

As final example, we consider a more complex scenario,
with a longer road section of NB = 45 blocks and a couple of
congestions backpropagating along the road. We use the same
traffic parameters as in the previous cases. We assume first
that all sensors have the same accuracy σr = 13.33 veh/km. In
Fig. 15, we compare the density estimates for the cooperative
and noncooperative estimation. The cooperative estimation is
able to reconstruct the traffic field, while the noncooperative
approach is subject to systematic errors in the phase estimate
(highlighted by circles).

The cooperative estimate is general enough to be applied to a
large variety of traffic networks, by simply adapting the model
presented in Section IV-A to the specific case. As an example,
we analyze here the scenario on the top of Fig. 16 obtained from
the previous scenario, by adding an onramp and an offramp
modeled as described in [38]. The figure shows the true density
(top subfigure), the measured density (central subfigure), and
the estimation results (bottom subfigure). All the blocks are
affected by the same accuracy σr = 6.67 veh/km. From numeri-
cal results, we can conclude that the proposed method can reach
a high accuracy of estimation even in complex networks similar
to the one presented. Moreover, the computational cost in each
subnetwork grows only linearly with the number of neighboring
blocks (in this case, 2).

We finally consider the case of the presence of malfunc-
tions in some sensors modeled with a higher measurement

error, i.e., σr = 13.33 veh/km, as shown in Fig. 17. In this
case, we compare the estimate obtained by the cooperative
and noncooperative approaches. As in previous examples,
when subnetworks cooperate, problems related to malfunctions
are overcome using information from more reliable sensors.
This prevents the arising of situations (highlighted with white
circles in the figure) in which the reconstruction becomes
unreliable.

VIII. CONCLUSION

In this paper, we have presented a cooperative method for
large-scale traffic estimation based on the splitting of the
road network into small subnetworks. As a first step, each
subnetwork performs its own traffic estimation, and then it
updates the estimate by exploiting traffic information coming
from neighboring subnetworks. This procedure allows mutual
sharing of traffic data as for a global estimation, but with a
much lower computational cost, which is proportional to the
dimension of the subnetwork and to the number of neighboring
subnetworks.

We used a macroscopic approach to traffic modeling, which
is based on the CTM extended with a stochastic component
to account for the randomness of traffic. For the estimation,
we used in each subnetwork a JMLS based on a linearized
version of the CTM and a PF approach to track the traffic
phase sequence. For making the subnetworks share information
on their estimates, we proposed an iteratively message-passing
procedure based on BP.

We evaluated the performance simulating different traffic
scenarios, ranging from simple cases to more complex situa-
tions with onramp/offramp and sensor failures. Our approach
was shown to provide a significant gain, in terms of accuracy,



Fig. 14. Traffic density estimation and phases sequence in case of σr,b =
20 veh/km, with b ∈ B0 = {5, 9, 13, 16, 19}. Top: true traffic phase and mea-
sured densities. Center: cooperative estimate. Bottom: noncooperative estimate.
The simulation scenario is the same as in Fig. 11 but with varying measurement
accuracy over the blocks. Red boxes indicate sensors with larger error.

when compared to noncooperative methods without informa-
tion sharing among subnetworks (i.e., where only flows on
boundaries are communicated). The method was shown to be
particularly useful in the case of fragmented or low-density
observation of the traffic field due to sensor failures (e.g.,
loops). Furthermore, in large-scale networks, the cooperative
method has the potential to exploit measurements collected
in different blocks of the road network, as for an equivalent
centralized estimation that jointly handles all the data, but with
much lower complexity. As a future development, the model
will be calibrated and validated on real data and large-scale
scenarios to show the benefits provided by the distribution of
processing over the subnetworks.

APPENDIX A

We follow the PF approach in [32] for the computation of
the node potential for node b, i.e., ϕ(s1:t,b,yt,b). The method
consists of three steps.

1) Update. The node potential is represented as

ϕ(s1:t,b,yt,b) =

Np∑
i=1

q
(i)
t,bδ s1:t,b − s

(i)
1:t,b (16)

with particles {s(i)1:t,b}
Np

i=1 and weights {q(i)t,b}
Np

i=1, for Np

particles. The evaluation of the weights requires a number
of one-step-ahead KFs on the state variable xt; see [32]
for details.

2) Resampling. Particles are resampled according to the
weights {q(i)t,b}

Np

i=1 obtaining the new set of particles
{s̃(i)1:t,b}

Np

i=1 with weights q̃(i)t,b = (1/Np).

Fig. 15. Traffic density estimation on a longer road in case of σr =
13.33 veh/km. Top: true densities. Center: cooperative estimate. Bottom: non-
cooperative estimate. Circles reveal areas with systematic error in the phase
estimation. Densities are expressed in vehicles per kilometer.

3) Propagation. Particles are propagated from t to t+ 1,
using the transition probabilities of the Markov chain
p(st+1,b|st,b) [see Fig. 6(a)] and computing the next

phase s(i)t+1,b for each particle s(i)t,b. We thus obtain the new
sequences of phases {s(i)1:t+1,b} = {s(i)1:t,b, s

(i)
t+1,b}.



Fig. 16. Traffic density estimation on a road with ramps in case of σr =
6.67 veh/km. Top: true densities. Center: measured densities. Bottom: coop-
erative estimate. Densities are expressed in vehicles per kilometer.

APPENDIX B

We present here the BP algorithm used to implement the two
steps presented in Section V-A. We focus our attention on the
BP on block b at time t.

Fig. 17. Traffic density estimation on a longer road in case of sensor malfunc-
tions, with σr = 13.33 veh/km. Top: measured densities. Center: cooperative
estimate. Bottom: noncooperative estimate. Circles reveal areas with systematic
error in the phase estimation. Densities are expressed in vehicles per kilometer.

1) At iteration k, the node b receives messages from nodes
� ∈ Ωb as

m
(k)
�→b(st,b) =

Np∑
i=1

γ
(i,k)
�→b δ st,b − s

(i,k)
t,�→b (17)



where {s(i,k)t,�→b}
Np

i=1 are the particles, which are defined
in the set S′, and {γ(i,k)

�→b }
Np

i=1 are the related weights.
Using these messages and its own node potential, node b
computes its belief as in (12). Note that the node potential
is written as in (16) with particles s

(i)
1:t,b taking value in

the Cartesian product S′t, while messages (17) coming
from the neighbors � ∈ Ωb have weights γ

(i,k)
�→b associ-

ated only to the time-t phase s
(i,k)
t,�→b ∈ S′, not the entire

sequence of t phases. The application of (12) requires
the two distributions to be defined over the same set of
samples. To solve this problem, we consider two points.
The first point is that each message m

(k)
�→b(st,b) is equiv-

alent to a discrete distribution defined on S′ and can be
written as

m
(k)
�→b(st,b) =

Nph∑
s=1

η
(s,k)
�→b δ(st,b − s) (18)

where η
(s,k)
�→b =

∑
{i:s(i,k)

t,�→b
=s} γ

(i,k)
�→b . As second point, we

consider the weight q(i)t,b in (16) as associated to the last

phase of the sequence s
(i)
1:t,b that we call s(i)t,b. Applying

these approximations to (12), we can associate to each
particle s

(i)
1:t,b the weight

q̄
(i,k)
t,b ∝ q

(i)
t,b

∏
�∈Ωb

η
s
(i)

t,b
,k

�→b (19)

that needs to be normalized. The belief is thus written
as p(k)(s1:t,b|Y1:t) =

∑Np

i=1 q̄
(i,k)
t,b δ(s1:t,b − s

(i)
1:t,b|Y1:t)

at each block b. The MAP estimate of the phase sequence

at iteration k is ŝk,1:t,b = s
(̄i)
1:t,b, with ī = argmaxi q̄

(i,k)
t,b .

The BP procedure ends when |ŝk+1,1:t,b − ŝk,1:t,b| < ε.
When the convergence is reached, weights are renamed
simply {q̄(i)t,b}

Np

i=1.
2) The message that node b sends to its neighbor � at

iteration k + 1 is computed following the approach in
[27]. Particles are propagated from node b to node �
using the distribution ψ(st,b, st,�) to obtain the new set

{s(i,k+1)
t,b→� }Np

i=1 and compute their weights as

γ
(j,k+1)
b→� =

∑Np

i=1 ψ s
(i)
t,b, s

(j,k+1)
t,b→� q̄

(i)
t,b

∏
h∈Ωb\� η

s
(i)

t,b
,k

h→b∑Np

u=1 ψ s
(u)
t,b , s

(j,k+1)
t,b→�

.

The new message can be written as

m
(k+1)
b→� (st,�) =

Np∑
i=1

γ
(i,k+1)
b→� δ st,� − s

(i,k+1)
t,b→� . (20)

As the last step, the message is resampled in order to
obtain Np new samples with weights equal to 1/Np.
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