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1 Introduction

The characterization of the pore-scale structure of natural and reconstructed porous media 
is the subject of intense research in several fields, including groundwater hydrology, oil and 
gas applications, geophysics, material science, and physics. Amongst different techniques 
which are employed to represent pore spaces, multiple-point statistics starting from two-
dimensional thin sections have been employed to provide reconstructions of the three-
dimensional pore space of millimeter scale rock samples which honor given statistics, 
typically in terms of variogram functions, within a prescribed observation window (e.g., 
Okabe and Blunt 2004, 2005, 2007, and references therein). Fractal models (see, e.g., Feder 
1988 for early applica-tions of fractal concepts to porous media) of pore-space geometry 
have also been employed to discuss the fractal dimension of porosity of rock cores (e.g., 
amongst others Feder 1988; Sahimi and Yortsos 1991; Adler 1992; Pape et al. 1999). An 
overview of geometrical and stochastic characterization models for reconstruction of 
porous media is presented by Hil-fer (2002), to which the interested reader is referred. The 
author points out the relevance of considering multiple geometric observables to properly 
describe the system. Amongst these observables, the Minkowski functionals which are 
typically known as porosity (φ) and specific surface area (SSA) play a key role in classic 
continuum scale applications of flow and transport in porous media. These functionals 
were, for instance, employed by Latief et al. (2010) to provide quantitative comparisons 
between the results of a set of geometrical reconstruction techniques and 
microstructructural attributes of a centimeter scale block of Fontainbleau sandstone. Only 
limited insights are provided in the literature about the way statistics of these quantities are 
transferred across separation distances (lags) within a defined observation window and for 
the resolution typically achieved for images of rock samples.

The use of X-ray imaging has transformed our ability to quantify the pore structure of rock 
at the micron to millimeter scales (Wildenschild and Sheppard 2013; Blunt et al. 2013). In 
this paper, we use micron-resolution X-ray images to analyze two different rock samples. In 
this context, we focus on (a) documenting the possibility that porous media attributes such as 
φ and SSA directly measured at the pore scale display scaling of key statistics in a way which 
is consistent with the behavior displayed by many earth, environmental, biological, financial, 
and astrophysical quantities and described, e.g., in Neuman et al. (2013, and references 
therein); and (b) exploring the nature (e.g., fractal or multifractal) of such scaling. Our work 
thus complements classical results of analyses of these quantities at the millimeter observation 
scale and provides further elements for the characterization of the system evolution across 
different separation scales.

Neuman and Di Federico (2003) illustrate and document different types of scale depen-
dencies of hydrogeological soil and rock properties. Scaling of statistics of sedimentary 
and fractured rock parameters have been reported, amongst others, by Molz and Boman 
(1995), Molz et al. (1997), Deshpande et al. (1997), Tennekoon et al. (2003), Castle et al.
(2004), Guadagnini et al. (2012), Siena et al. (2012), and Riva et al. (2013a,b). All these 
studies are focused on the analysis of field (decameter) or laboratory (decimeter/meter) 
scale hydraulic conductivity/permeability data, the latter being associated with millimeter 
to meter scale measurement volumes. A number of studies are concerned with the analysis 
of the (fractal) scaling behavior of porous media attributes such as bulk density or particle 
and pore size distributions and geometry (see, e.g., Perfect and Kay 1995 for a review).



Paz Ferreiro et al. (2009) present a multifractal analysis of nitrogen adsorption isotherms
obtained on centimeter scale samples of two agricultural soils. These authors observe that
the multifractal parameters obtained vary markedly between soil types and highlight the
potential usefulness of the observed scaling behavior to identify variations of specific sur-
face area due to different soil management practices. Paz Ferreiro et al. (2010) describe
scaling properties of mercury injection curves and nitrogen adsorption isotherms which are
respectively employed to infer soil particle size distributions and SSA of millimeter scale
agricultural soil aggregates. In these studies porosity and SSA are not measured directly from
the knowledge of the micro-scale structure of the porous medium but are inferred from target
state variables such as, for example, volume of absorbate or capillary pressure curves. As
such, they are not geometrical observables in the sense of Hilfer (2002). Multifractal spec-
tra of two-dimensional binary microtomographic images of millimeter scale soil aggregates
were assessed by Kravchenko et al. (2009) to characterize the spatial distribution of pores.
These authors noted that fractal scaling was potentially possible across a relatively narrow
range of length scales and was limited by the presence of boundary conditions, an effect that
is similar to the consequences of the cutoff scales introduced by Di Federico and Neuman
(1997).

Here, we present a detailed analysis of the characterization of the scale statistics of porosity
and specific surface area of millimeter scale samples of natural porous media. We consider
two pore-scale rock samples, an Estaillades limestone and a Bentheimer sandstone. Both
materials are standard quarry stones which have been employed as reproducible benchmarks
for the study of flow and transport at the pore scale (Blunt et al. 2013; Bijeljic et al. 2013a,b).
The micro-scale structure of each sample is reconstructed via X-ray micro-tomography with
micrometer resolution. Scale dependence of statistics of incremental values of porosity and
SSA are analyzed through the method of moments and extended self-similarity, following
the works of Guadagnini et al. (2012), Siena et al. (2012), Neuman et al. (2013), and Riva et
al. (2013a,b).

2 Experimental Data-Sets and Theoretical Basis

We study samples of two different (natural) rocks. Bentheimer sandstone is a quartz-rich
quarry sandstone with a well-connected pore space. It is mainly used in buildings, including
the pedestal of the Statue of Liberty in New York. Estaillades carbonate is composed of small
calcite grains and is characterized by a highly irregular pore space with micro-porosity that
cannot be resolved with micro-CT scanning (Bijeljic et al. 2013b). The three-dimensional
structure of each sample has been reconstructed via X-ray micro-tomography using a bench-
top scanner (Xradia Versa 500) with spatial resolution of d = 3.0 and 3.3µm, respectively,
for the sandstone and limestone blocks. From the core of each rock samples we extract an
array of 3003 or 6503 voxels, resulting in an overall characteristic length of the analyzed
blocks of l = 0.9 and 2.14 mm, respectively, for the sandstone and limestone samples.
The raw scans were filtered using a non-local means edge preserving filter to reduce noise
(Buades et al. 2005, 2008). The images were then segmented into pore and grain regions
using a seeded watershed algorithm based on the three-dimensional gradient magnitude and
grey-scale value of each voxel. This eliminates much of the voxel misidentification which
can occur in simple grey-scale segmentation, as well as the arbitrary nature of the thresholds
taken. It also eliminates partial volume artefacts. All image processing was conducted within
the Avizo Fire 7.0 program (VSG; www.vsg3d.com). Porosity is the fraction of the voxels
that are void. SSA is the area of the interface between pore and grain voxels, per unit volume.

www.vsg3d.com
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Fig. 1 Images of pore space structure, directional distribution of porosity, and SSA for a–c Bentheimer
sandstone, and d–f Estaillades limestone

Figure 1 depicts images of the samples together with extracted directional distributions of
porosity, φ, and specific surface area, SSA. The distributions of porosity, φ, and SSA along
the three mutually orthogonal directions xi (i = 1, 2, 3) represented in Fig. 1 and associated
with rock volumes of size d × l2 are calculated by applying the methodology of Coker and
Torquato (1995) to the digitized binary images.

We investigate power-law scaling of order q sample structure functions of absolute incre-
ments, defined as

Sq
N (si) = 1

N (si)

N (s)∑

n=1

|�yn (si)|q (1)

y(x) being a sample of a random field Y (x) defined on a continuum of points x in a one-
dimensional setting and representing either φ or SSA. Here, �yn(si) = y(xi,n + si)− y(xi,n)

is an increment of y(xi) calculated over a lag (separation distance) si between two points
along direction xi and N (si) is the number of such increments. Power-law scaling which has
been observed for a variety of physical, geophysical, ecological, environmental, biological,
and financial variables is defined as

Sq
N (si) ∝ sξi(q)

i (2)

where the power or scaling exponent, ξi(q), can vary with direction xi and is independent of
si.

We identify and analyze the occurrence of directional power-law scaling for incremental
values of φ or SSA calculated along the three directions xi (i = 1, 2, 3) of Fig. 1 through the 
method of moments (M) and extended self-similarity (ESS).



Within the context of the method of moments, sample structure functions (1) are inferred
for a set of separation lags and a series, q1, q2, . . . , qn , of q values. The structure function
S

q j
N is plotted against si on a log–log scale and the power ξi(q j )( j = 1, 2, ..., n) is calculated

as the slope of the resulting linear regression line. A linear or near-linear dependence of log
S

q j
N on log si is usually obtained within intermediate ranges of lags, sI < si < sI I , sI and

sI I being defined theoretically or, in most cases, empirically (Stumpf and Porter 2012; Siena
et al. 2012 and references therein).

ESS is an empirical procedure introduced by Benzi et al. (1993a,b). It enables one to
extend power-law scaling at all separation scales and is based on the observation that

Sn
N (si) ∝ Sm

N (si)
βi(n,m) (3)

Here, βi(n, m) = ξi(n)/ξi(m) is the ratio between the scaling exponents of Sn
N and Sm

N .
Application of ESS to enlarge scaling ranges and obtain a corresponding improvement in
the accuracy of ξi(q) estimates has been illustrated empirically for various data, including
turbulent velocities, geographical, hydraulic, atmospheric, astrophysical, biological, financial
time series, and ecological variables (Nikora and Goring 2001; Guadagnini and Neuman
2011; Leonardis et al. 2012, and references therein).

When the scaling exponent is linearly proportional to q, ξ(q) = Hq, Y (x) is typically
interpreted as a self-affine random field (or process) with Hurst exponent H . When ξ(q)

displays nonlinear dependence on q, Y (x) has typically been interpreted as a multifractal
process (e.g., Sahimi and Yortsos 1991; see also a recent literature review by Neuman et al.
2013) or, more recently, as fractional Laplace motion (Meerschaert et al. 2004). Nonlinear
behavior of ξ(q) has been shown theoretically and numerically by Neuman (2010a,b, 2011),
Siena et al. (2012), Neuman et al. (2013), and Riva et al. (2013a) to be associated with
square or absolute increments of samples collected from (a) truncated fractional Brown-
ian motion (tfBm) and (b) sub-Gaussian processes subordinated to tfBm with heavy tailed
subordinators such as log-normal or Lévy at intermediate ranges of lags and may be the
mark of apparent multifractality. These authors further suggest that the behavior displayed
by many environmental and geophysical variables, including manifestations of: (a) nonlinear
power-law scaling of sample structure functions in a midrange of lags, with breakdown in
such scaling at small and large lags; (b) extended power-law scaling at all lags; (c) nonlinear
scaling of power-law exponent with order of sample structure function; and (d) pronounced
statistical anisotropy is consistent with a novel interpretation that views such variables as
samples from stationary, anisotropic sub-Gaussian random fields or processes subordinated
to tfBm or truncated fractional Gaussian noise (tfGn). These quantities are thus modeled as
mixtures of Gaussian components having random variances (see, e.g., Samorodnitsky and
Taqqu 1994; Neuman et al. 2013). As proposed by Di Federico and Neuman (1997) and Di
Federico et al. (1999) and illustrated by Neuman and Di Federico (2003) and Neuman et
al. (2013), tfBm and tfGn, respectively, arise from truncation of (monofractal) fBm and fGn
which is performed by filtering out components below the measurement/resolution scale and
above the scale of data sampling domain. Guadagnini et al. (2012), Guadagnini et al. (2014),
Siena et al. (2012), and Riva et al. (2013a,b) demonstrate the consistency of such novel
approach of geostatistical inference with a variety of laboratory and field scale hydraulic and
soil texture data from sedimentary and fractured rocks.

A theoretical basis for ESS has been proposed by Chakraborty et al. (2010) with reference
to the one-dimensional Burger’s equation. Siena et al. (2012) show that ESS is consistent
with (Gaussian) tfBm. Neuman et al. (2013) provide a theoretical basis to the behavior
encapsulated in ESS-based empirical evidences by proving that ESS is consistent, at all
separation scales, with the type of random processes described above.



3 Directional Scaling of Porosity and Specific Surface Increments

Increments of φ and SSA are calculated for lags si ≤ 150 or 325 voxels (yielding a number
of directional increment samples varying from 299 to 150 or 649 to 325), respectively, for
the sandstone and limestone media, to assure that a sufficient number of samples can be
employed for the estimation of q order structure functions. The number of samples is not
sufficient to obtain meaningful structure function estimates for q > 4.

Figure 2 illustrates the type of dependence observed for increments of φ parallel to x1 for
the two rock samples investigated. Figure 3 presents the corresponding depiction associated
with SSA. The range s1,I < s1 < s1,I I within which power-law scaling can be recognized
is delineated by dashed vertical lines. These ranges are generally narrower for the sandstone
than for the limestone, respectively extending over one and two decades. They are seen to be
typically larger for SSA than for φ and are not affected by direction (not shown).

The method of moments (M) relies on plotting logS
q j
N for j = 1, 2, ..., n versus log si

and linearly relating the former to the latter within the range si,I < si < si,I I . Directional
scaling exponents ξi(q) are then estimated from the slope of the corresponding regression
line. We estimated ξi(q) by varying the lower and upper lag values, si,I and si,I I , delimiting
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the power law scaling range and selecting that pair of lags which yields the largest R2. Our
results imply that, in a midrange of lags, each structure function scales as a power of lag.
Application of M to increments in the xi (i = 1, 2, 3) directions on each rock sample for 0.1
≤ q ≤ 4.0 yields regression lines with coefficients of determination, R2, which are always
larger than 0.97.

Figure 4 depicts examples of the dependence of logSq+1
N on logSq

N based on the application
of ESS to the incremental data of SSA computed along direction x1 over the two rock samples.
Similar behavior is observed for all cases analyzed, revealing that Sq

N exhibits extended power-
law scaling at all lags. Coefficients of determination (R2) associated with regression lines
fitted to the curves in Fig. 4 are seen to be always 0.99–1.00.

The method of moments and ESS are then employed to compute directional values of
ξi(q). Application of ESS relies on (a) computing βi (q + �q, q) = ξi (q + �q) /ξi (q)

for given �q; (b) computing a reference value, ξi,re f , of ξi(q) for a selected q = qref by M;
and (c) starting from ξi,ref to evaluate ξi (q + �q) and ξi (q − �q) according to step (a). As
did Guadagnini et al. (2012), we use ξi,ref = ξi(1) for all variables and directions, to account
for possible deterioration of accuracy in estimating structure functions with increasing q.

Figure 5 plots variations of ξi (q) with q for φ computed through ESS upon setting �q =
0.1 for 0.1 ≤ q ≤ 1.0 and �q = 0.5 for 1.0 < q ≤ 4.0 along the three directions

1.0E-09 1.0E-07 1.0E-05 1.0E-03 1.0E-01
1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00

( )1.382 10.51N NS S=

( )1.843 20.70N NS S=

(a) (b)

1
q N

S
+

q
NS

2 0.99R =

2 0.99R =

( )1.234 30.43N NS S=
2 0.99R =

( )1.742 10.41N NS S=
2 0.99R =

( )1.203 20.09N NS S=
2 0.99R =
( )1.044 30.03N NS S=

2 0.99R =

1
q N

S
+

q
NS

SSA
Bentheimer
sandstone

SSA
Estaillades
limestone

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

Fig. 4 Dependence of Sq+1
N on Sq

N for integer q= 1–3 and increments of SSA parallel to x1 axis on a
Bentheimer sandstone, and b Estaillades limestone. Linear regression equations and associated coefficients
of determination (R2) are included

0

1

2

3

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4

ξ i(
q)

(a)

q

ξ i(
q)

(b)

q

ξ1(q)

ξ2(q)

ξ3(q)

ξ1(q)

ξ2(q)

ξ3(q)

Porosity (φ)
Bentheimer
sandstone

Porosity (φ)
Estaillades
limestone

Fig. 5 Directional dependence of ξi(q) (i = 1, 2, 3) on q obtained through ESS for increments of porosity
along x1 (red diamonds), x2 (black squares), and x3 (blue triangles) axis on a Bentheimer sandstone, and b
Estaillades limestone. Straight lines have slopes equal to those of ξi(q = 1)



0 1 2 3 40 1 2 3 4

(a)

q

(b)

q

ξ1(q)

ξ2(q)

ξ3(q)

ξ1(q)

ξ2(q)

ξ3(q)

SSA
Bentheimer
sandstone

SSA
Estaillades
limestone

0

1

2

3
ξ i(

q)

0

1

2

3

ξ i
(q

)

Fig. 6 Directional dependence of ξi(q) (i = 1, 2, 3) on q obtained through ESS for increments of SSA along x1
(red diamonds), x2 (black squares), and x3 (blue triangles) axis on a Bentheimer sandstone, and b Estaillades
limestone. Straight lines have slopes equal to those of ξi(q = 1)

Table 1 Estimates Ĥ based on
the method of moments applied
to directional increments of φ and
SSA of Bentheimer sandstone
and Estaillades limestone

Ĥ associated with φ Ĥ associated with SSA

Direction x1 x2 x3 x1 x2 x3

Bentheimer
sandstone

0.83 0.85 0.78 0.57 0.48 0.57

Estaillades
limestone

0.59 0.67 0.69 0.58 0.62 0.48

represented in Fig. 1. The method of moments yields very similar results. Figure 6 reports 
the corresponding depiction for SSA. Each figure includes straight lines associated with a 
slope equal to that of ξi(q = 1). The latter is typically interpreted as an estimate of the Hurst 
exponent associated with the degree of (spatial) persistence of the signal.

Figures 5 and 6 reveal that the power ξi(q) tends to be quasi-linear in q for φ and SSA 
of the sandstone sample. On the other hand, both φ and SSA associated with the limestone 
sample are markedly nonlinear concave in q for all increment orientations in the directions 
analyzed. We note that there is an apparent anisotropic behavior of ξi(q). Such behavior  
appears to be mild for the sandstone sample while it is marked for both porosity and SSA 
of the limestone. Additional investigations on different blocks of the same rock matrices 
(eventually associated with different sizes and different image resolutions) and/or different 
types of media are required to completely characterize this behavior and possibly link it to 
evolutionary/depositional processes affecting the pore-space geometry.

Table 1 collects estimated values Ĥ of H associated with the detected directional power-
law scaling of φ and SSA. Our results show that both variables generally display mild to 
strong persistent behavior, varying in a smooth rather than a rough fashion as was the case 
in Fig. 1. The observed persistent behavior of φ is consistent with estimates of the Hurst 
exponent obtained by Dashtian et al. (2011) who analyzed neutron porosities of well logs 
from three reservoirs with geology ranging from shaly sands to fractured carbonate and 
estimated values of H > 0.8. However, no studies of the kind we present at a similar scale 
are available for a direct comparison.

Whereas the literature attributes nonlinear scaling of ξi(q) with q to multifractal fields or 
to fractional Laplace motion, we find the observed nonlinearity to be consistent with sub-
Gaussian random fields subordinated to tfBm (or tfGn), in agreement with the theoretical, 
numerical and experimental evidences of Neuman (2010a,b, 2011), Neuman et al. (2013),



Siena et al. (2012), Guadagnini and Neuman (2011), Guadagnini et al. (2012, 2014) and Riva
et al. (2013a,b).

4 Conclusions

Our work leads to the following major conclusions:

1. Order q sample structure functions of absolute porosity (φ) and specific surface area
(SSA) increments calculated on digitized images (with micro-meter resolution) of three-
dimensional millimeter scale samples of a sandstone and a limestone rock scale as a power
ξi(q) of directional lag, si, over a range of lags extending at least one decade within the
observation window associated with the size of the porous medium. Extended power-
law scaling, revealed through extended self similarity (ESS), appears to be an intrinsic
property of the quantities analyzed for both media at the investigated scale.

2. Moment and extended self-similarity methods reveal that ξi(q) for both φ and SSA tends
to be quasi-linear or nonlinear in q, respectively, for the sandstone and limestone blocks.
This could be a consequence of the increased complexity of the internal organization of
the void space in the limestone as opposed to the sandstone medium. Although further
studies are required to test our findings on additional samples and to assess the impact
of image resolution, these results are in line with the observation that the limestone is
more heterogeneous in structure, flow and transport. This is shown, e.g., by numerical
simulations performed through these images (Blunt et al. 2013; Bijeljic et al. 2013a,b)
which demonstrate that carbonate (limestone) rocks display a wider range of local flow
velocities at the pore scale giving rise to a qualitatively different nature of transport with
highly anomalous long tailing in comparison to the sandstone.

3. Although the literature commonly attributes the type of nonlinear scaling we document to
multifractals and/or fractional Laplace motions, our results are fully consistent with the
behavior displayed by samples from sub-Gaussian random fields subordinated to truncated
fractional Brownian motion or Gaussian noise which predict theoretically the observed
breakdown in power-lag scaling at short and large lags and ESS behavior. Both porosity
and SSA display mild to strongly persistent behavior, with estimates Ĥ generally depend-
ing on direction. Additional investigations on different media (eventually associated with
different sizes and different image resolutions) are required to completely characterize
this behavior and possibly link it to evolutionary/depositional processes affecting the
pore-space geometry.
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