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Abstract 

In this work we show the effect of graphene loading on the restoration of the mechanical 

properties and thermal and electrical conductivity of a self-healing natural rubber 

nanocomposite. The graphene loading led to a minimal enhancement of mechanical properties 

and yielded a modest increase in thermal and electrical conduction. The polymer 

nanocomposites were macroscopically damaged (cut) and thermally healed for 7 hours in a 

healing cell. Different healing trends as function of the graphene content were found for each 

of the functionalities: (i) thermal conductivity was fully restored independently of the 

graphene filler loading; (ii) electrical conductivity was restored to a high degree only above 

the percolation threshold; and (iii) tensile strength restoration increased more or less linearly 

with graphene content but was never complete. A molecular dynamics analysis by dielectric 

spectroscopy of the pristine and healed samples highlighted the role of graphene-polymer 

interactions at the healed interphase on the overall restoration of the different functionalities. 

Based on these results it is suggested that the dependence of the various healing efficiencies 

with graphene content is due to a combination of the graphene induced lower crosslinking 

density, as well as the presence of strong polymer-filler interactions at the healed interphase. 

 

Keywords: Nanocomposites; Rubber; Self-healing; Mechanical properties; Electrical 

properties 

 

1. Introduction 

 Graphene has attracted significant attention in the field of polymer nanocomposites for its 

possibility to develop multifunctional polymers with electrical, thermal, barrier and increased 
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mechanical properties.[1,2] The properties of graphene nanocomposites based on rubber 

matrices has been addressed in a number of earlier publications. In particular, graphene filled 

natural rubber (NR) composites have caught major attention in the last decade due to their 

significant technological potential.[3-9] Yet, even improved materials are still prone to 

damage. A particularly attractive route to make such composites more durable is the use of 

self-healing concepts, i.e. materials capable of repairing damage rather than preventing 

it.[10,11] Several concepts have already been reported following this route. Xiao et al[12] 

reported epoxy-based shape memory composites with graphene contents of 0.0025 to 0.0125 

vol% capable of undergoing thermally induced healing. In a different approach, Wang et 

al[13] described an elastic nanocomposite material with self-healing ability by combining the 

unique features of hydrogen-bonded polymers and graphene oxide (GO) as a macro-

crosslinker. By adding as little as <2 wt% of GO to the supramolecular polymer, they 

obtained an elastic material with similar mechanical properties to that of conventional rubbers 

while possessing very fast healing properties at room temperature. Huang et al[14] also 

reported excellent healing efficiencies in thermoplastic polyurethane/graphene composites 

using three different external stimuli (e.g. IR light, electricity and electromagnetic wave). 

While Liu et al[15] described the self-healing capability of graphene nanocomposite 

hydrogels fabricated by using graphene peroxide as poly-functional initiating and crosslinking 

centers. Nevertheless, to the best knowledge of the authors no studies have previously been 

reported on graphene loaded self-healing NR nanocomposites. 

 In two of our previous works we reported on the development of a self-healing NR 

vulcanized using conventional sulfur curing systems.[16,17] In the present work we introduce 

a multifunctional self-healing NR/graphene nanocomposite and study the effect of graphene 

loading on the restoration of mechanical, thermal and electrical properties. Several studies 

have recently been reported focusing on the restoration of only one functional property in 

filled self-healing matrices,[18,19] but this paper could be a first in reporting both mechanical 

and healing efficiencies of two functional properties. The role of the nanocomposites 

molecular dynamics (and the way it is affected by the presence of graphene) in the restoration 

of all functionalities (mechanical and conductive) is also underlined. 

 

2. Experimental 

2.1. Materials and compounding 

 Natural rubber (NR) consisting of cis-1,4-polyisoprene chains was kindly supplied by 

Malaysian Rubber under the trade name SMRCV50 [Mooney viscosity, ML(1+4)100 
o
C=50]. 
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The ingredients employed as vulcanizing additives in the preparation of NR compounds were 

all commercial grades and used as received. Graphene (avanGRAPHENE-2) supplied by 

Avanzare was used as nanofiller in different amounts (0, 0.25, 0.50, 1.0 and 2.0 phr). Rubber 

compounds were prepared according to the recipe shown in Table 1 expressed in parts per 

hundred parts of rubber (phr) in weight. The selected compound recipe gives an optimal 

balance between healing and mechanical properties, as recently reported.[17] 

 

Table 1. NR compound recipe. 

Ingredient Composition (phr) 

NR 100 

Zinc oxide (ZnO) 5 

Stearic acid (SA) 1 

N-cyclohexylbenzothiazole-2-sulphenamide (CBS) 0.26 

Sulfur (S) 1.3 

Graphene 0-2 

 

 Mixing was performed in an open two-roll mill (Comerio Ercole MGN-300S) at room 

temperature. The rotors operated at a speed ratio of 1:1.2. First, mastication of the rubber took 

place. The vulcanizing additives except sulfur were then added to the rubber prior to the 

incorporation of the filler and, finally, sulfur was added. Rubber compounds were vulcanized 

in an electrically heated hydraulic press (Gumix) at 150 C and 200 MPa according to the 

optimum cure time (t90) derived from the curing curves obtained from the rubber process 

analyzer (Alpha Technologies RPA2000) at T=150 
o
C, frequency 0.833 Hz and 2.79% strain. 

Specimens were mechanically cut out from the vulcanized rubber sheets. The average mass of 

network chains between crosslinks (crosslinking density, ) was determined on the basis of 

solvent-swelling measurements in toluene by application of the Flory–Rehner[20] equation 

and assuming the formation of tetra-functional crosslinks during the vulcanization reaction. 

 

2.2. Materials characterization 

 Nanocomposites morphology was investigated using a scanning electron microscope 

(SEM) Jeol JSM-7500F. The samples were freeze fractured below their glass transition 
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temperature (Tg ~ -60 
o
C) by cooling in liquid nitrogen. SEM images were obtained at 5 kV. 

PerkinElmer Fourier transform infrared (FT-IR) spectrometer was used in the wavenumber 

range of 1200-3200 cm
-1

. All the spectra were baseline corrected and normalized using 

PerkinElmer Spectrum software. 

 Rectangular samples (70x10x2) mm were used for uniaxial tensile testing. Tests were done 

on a universal mechanical testing machine (Instron 3365) equipped with a 1 kN load cell. 

Samples were stretched until failure at a constant cross-head speed of 1 mm/s at room 

temperature. Ultimate stress, ultimate strain and instantaneous modulus were determined in 

order to mechanically characterize the NR composites and to evaluate their healing efficiency. 

Data reported represent the average value from at least three samples. 

 Broadband dielectric spectroscopy (BDS) measurements were performed on an ALPHA 

high resolution dielectric analyzer (Novocontrol Technologies GmbH). All samples (pristine 

and healed) were mounted in the dielectric cell between two parallel gold-plated electrodes. 

The complex permittivity 𝜀∗(𝜔) = 𝜀′(𝜔) − 𝑖𝜀′′(𝜔) of each circular sample (20 mm 

diameter) was measured by performing consecutive isothermal frequency sweeps over a 

frequency window of 10
-1

< f(Hz) <10
7
 (where f is the frequency of the applied electric field) 

in the temperature range from -100 to 100 ºC in steps of 5 ºC. The AC conductivity was 

measured in the same conditions as 𝜀∗(𝜔)and the results were given directly by the dielectric 

analyzer. In a conducting composite, the conductivity is composed of two terms: 

 

  𝜎(𝑓) = 𝜎𝑑𝑐 + 𝐴𝑓𝑥        (1) 

 

where 𝜎𝑑𝑐 is the direct current conductivity, A is a constant and x is an exponent which 

describes the frequency (f) dependence of 𝜎(𝑓). The term 𝜎𝑑𝑐 appears as a plateau at low 

frequencies in the experiments and its value is obtained at 10
-1

 Hz. 

 1 mm thick circular samples (20 mm diameter) were used for measuring thermal 

conductivity. Samples were placed in contact with a single sided smooth aluminium foil 

before doing the tests. Measurements were done at room temperature using a modified 

transient source technique on a TCi C-Therm apparatus. Distilled water was used as the 

contact agent. 

 

2.3. Healing procedure 

Mechanical healing. Macroscopic damage was introduced to vulcanized rectangular samples 

by manually making a straight cut along the width using a fresh scalpel blade. The rectangular 
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damaged samples were carefully positioned inside a home-built healing cell between two 

glass plates such that the cut surfaces were in seemingly optimal initial contact (see [17] for 

further experimental details). The cut samples were subsequently healed under a controlled 

temperature (T=70 
o
C) for 7 h while a constant pressure (P=1 bar) was applied to the 

confining plates. The application of pressure on the glass plates and the resulting lateral 

expansion of sample assures the presence of a controlled light contact pressure across the cut 

interface during healing. The healed samples were tested according to the tensile protocol 

described above. 

Electrical and thermal conductivity restoration. Damage was introduced by making several 

cuts in various directions in the center of a 20 mm diameter circular vulcanized sample. The 

damaged sample was then placed in the healing cell at 70 
o
C for 7 h for healing to take place. 

The electrical conductivity of the thermally healed system was measured again following the 

same conditions as for the pristine samples. To monitor the recovery of the thermal 

conductivity, damaged samples were prepared by doing superficial cuts using a razor blade in 

the whole surface area of the sample and bringing the rough surface in contact with the 

smooth aluminum foil. The damaged sample was then placed in the healing cell at 70 
o
C for 7 

h leading to a so-called healed sample. The thermal conductivity of the healed samples was 

measured accordingly. 

 The healing efficiency for each selected property was calculated as the ratio between the 

values under healed and pristine conditions according to: 

 

  𝜂p [%] =
pℎ𝑒𝑎𝑙𝑒𝑑

p𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒
𝑥100       (2) 

 

where p is the property of interest (mechanical strength, electrical conductivity and thermal 

conductivity). 

 

3. Results and discussion 

3.1. Chemical and mechanical characterization of NR/graphene nanocomposites 

 Table 2 shows the crosslinking density derived from swelling tests for the different 

composites. Crosslinking density increases with graphene contents until 0.5 phr. After this 

point an apparent reduction in the crosslinking density was detected with the graphene content 

increase. This result is somewhat unexpected since graphene layers with their high specific 

area have been reported to induce stronger interfacial interactions with the NR matrix and act 
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as additional sources of entanglements or physical crosslinking points in composites.[6] 

Nevertheless, at higher graphene content the rubber-filler interactions seem to be lower as 

expressed by the ratio Qf/Qg compiled in Table 2, where Qf and Qg denote the swelling ratio 

of the filled and the unfilled rubber, respectively. Such a ratio reflects the restriction to 

swelling of the rubber matrix in the neighborhood of filler particles, since diffusion of solvent 

is impaired. The higher the Qf/Qg values, the lower will be the extent of interaction between 

the filler and the matrix.[21] Moreover, the filler might affect the efficiency of the curing 

agents disturbing the crosslinked network. Wu et al[8] reported that when graphene loading is 

lower than 0.3 phr, the curing agents (S + CBS) diffuse freely and the vulcanization reaction 

proceeds smoothly. But with higher graphene content the curing agents can be isolated by the 

graphene nanosheets and need to go through tortuous paths to form polysulfide species and 

crosslinking points. Curing agents, especially the CBS molecules with severe steric hindrance 

are more difficult to diffuse in the immobilized rubber chains between graphene layers.[8,22] 

 

Table 2. Swelling ratio and crosslinking density of pristine NR/graphene nanocomposites. 

Compound 
Crosslinking density 

(mol/g) 

Swelling ratio 

Qf/Qg 

NR 3.46±0.08 --- 

NR/0.25 3.64±0.05 1.66±0.01 

NR/0.5 4.65±0.04 1.57±0.02 

NR/1.0 2.43±0.01 1.97±0.01 

NR/2.0 3.05±0.06 2.34±0.03 

 

 FT-IR measurements corroborate such trend (see Figure 1). Observing the characteristic 

peak at 1596 cm
-1

 ascribed to C=C stretching of cis-1,4-polyisoprene units, one can notice 

that the lower intensity and lower peak area correspond to 0.5 phr of graphene. This could 

indicate that at such loading, the extent of chemical interactions are prominent due to the 

existence of strong - interactions between the  electrons of graphene and C=C bonds of 

isoprene units.[5] The intensity of the peak at 1596 cm
-1

 also reduces when healing takes 

place, regardless of the amount of graphene. This result is consistent with the observations 

from dielectric spectroscopy that will be discussed later on. 
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Figure 1. FT-IR spectra of NR/graphene nanocomposites: a)whole wavenumber range; b) at 

selected normalized region. Solid lines and dashed lines correspond to pristine and healed 

samples, respectively. 

 

 Table 3 summarizes mechanical properties data. The moderate reinforcement effect 

observed with graphene addition is in good agreement with the crosslinking density values 

shown above. Such low reinforcement may be due to problems with interfacial adhesion and 

spatial distribution of the filler, which typically govern the ultimate performance of polymer 

nanocomposites.[23] Moreover, the graphene layers have also been reported to disturb the 

“naturally occurring network” of NR producing dead ends and leading to lower mechanical 

properties at higher filler loadings.[24] 

 

Table 3. Tensile properties of pristine and healed NR/graphene nanocomposites. 

Compound 
Instantaneous  

modulus (MPa) 

Ultimate  

stress (MPa) 

Ultimate  

strain (-) 

 pristine healed pristine healed pristine healed 

NR 0.25±0.03 0.16±0.02 0.48±0.02 0.21±0.04 4.23±0.17 0.86±0.10 

NR/0.25 0.25±0.01 0.18±0.01 0.45±0.02 0.27±0.01 4.62±0.25 3.70±0.12 

NR/0.5 0.27±0.02 0.20±0.02 0.56±0.04 0.30±0.02 5.69±0.43 2.38±0.37 

NR/1.0 0.24±0.01 0.30±0.04 0.27±0.01 0.17±0.01 3.99±0.12 1.29±0.50 

NR/2.0 0.22±0.01 0.17±0.01 0.35±0.01 0.24±0.03 4.59±0.08 3.14±0.30 
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 A morphology study of the nanocomposites was performed to establish a clearer structure-

property relationship. SEM images of the prepared nanocomposites are displayed in Figure 2. 

It is evident that graphene, seen as non-flat individual nanosheets, is uniformly distributed 

throughout the NR matrix at any concentration (see circled areas). However, at higher loading 

numerous graphene sheets are more clearly observed to pull out of the matrix giving an 

insight into the weak interfacial polymer-particle strength (see Figure 2d and e), thus affecting 

the mechanical performance of these nanocomposites. 

 

 

 

Figure 2. SEM images of pristine NR/graphene nanocomposites with different graphene 

loading: a) 0.25 phr; b) 0.5 phr; c) 1.0 phr; d) 2.0 phr; e) 2.0 phr at higher magnification. 

 

3.2. Electrical and thermal conductivity of the NR/graphene nanocomposites 

 Figure 3a) illustrates the variation of electrical conductivity () in the frequency domain 

with increasing nanofiller content at T=70 
o
C. At any given frequency, a modest conductivity 

increase with graphene loading can be seen. Although not shown here, at room temperature 

such an increase could not be detected due to limitations in the minimum frequency value set 

by the equipment. However, an increase in electrical conductivity with temperature is to be 

expected.[25] Numerous studies show that the percolation threshold and conductivity of 

nanocomposites depend strongly on the polymer matrix type, aspect ratio of filler, and 

uniform spatial distribution of individual filler, among others.[1,26,27] The good distribution 
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of graphene layers inside the NR matrix, as seen in Figure 2, and the possible interconnection 

between them can then explain the observed increase in conductivity. At the percolation 

threshold located between 0.25-0.50 phr graphene, the filler particles begin to contact each 

other, a conducting path is formed throughout the composite and a sudden increase in 

conductivity occurs (2 orders of magnitude), as seen in Figure 3b). The electrical properties of 

the nanocomposites, however, seem to be dominated by the non-conductive NR matrix, being 

the final conductivity values low, typically of semi-conducting materials. Other authors have 

reported similarly modest conductivity increments in rubber nanocomposites.[3,4,25]  

 

Figure 3. a) Electrical conductivity of pristine NR/graphene nanocomposites as function of 

frequency with graphene content as a parameter; b) Electrical conductivity of NR/graphene 

nanocomposites pristine and healed (at 70 
o
C), at a frequency of f=10

-1
 Hz. 

 

 Many of the considerations discussed for mechanical reinforcement and electrical 

conductivity can also be applied for the thermal conductivity ().[1] Figure 4 shows the 

relative thermal conductivity with respect to the unfilled rubber as function of the graphene 

loading. A low increase (~ 5%) in thermal conductivity with graphene loading is observed.  

The volume dependence is rather weak.  The thermal conductivity after damage and healing 

will be discussed in section 3.4. 
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Figure 4. Relative thermal conductivity of pristine, damaged and healed NR/graphene 

nanocomposites as function of graphene content measured at room temperature. 

 

3.3. Molecular dynamics of NR/graphene nanocomposites 

 Broadband dielectric spectroscopy (BDS) was used to investigate the effect of graphene 

content on the rubber molecular dynamics. Two relaxations were found on the dielectric 

spectra of the nanocomposites, as marked in Figure 5. From low to high temperatures, the 

segmental relaxation corresponding to the glass transition temperature (Tg) appears first at 

around -40 
o
C, and then at higher temperatures a second relaxation is detected only in the 

healed nanocomposites. 

 

Figure 5. Representative 3-D plot of NR/0.5 graphene nanocomposites: a) pristine; b) healed 

at 70 
o
C. Marked zones correspond to the segmental (low temperature) and interfacial (high 

temperature) relaxation regions. 
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 Starting with the segmental relaxation, all the pristine nanocomposites exhibit similar 

profiles, indicating that graphene content has little effect on the segmental dynamics (see 

Figure 6). Similar results were also reported by Tang et al in NR composites with graphene 

and graphene oxide (GO) contents up to 7 phr.[28] 

 

Figure 6. Normalized dielectric loss versus frequency of pristine NR/graphene 

nanocomposites as function of graphene content at T=-40 
o
C. 

 

 However, when damaged nanocomposites are thermally treated (T=70 
o
C), a slight shift of 

the segmental relaxation process towards lower frequencies is revealed (see Figure 7) 

indicating that the relaxation times of the nanocomposites increase with healing. It seems that 

the thermal treatment (healing) leads to enhanced physicochemical interactions between the 

polymer matrix and the filler thereof slowing down the dynamics of the rubber segments. In 

fact, such an effect is not seen in the healed unfilled rubber (Figure 7a) where the only visible 

change with healing is on the network structure (appearance of a shoulder on the low 

frequency side), as previously reported.[16] 
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Figure 7. Normalized dielectric loss of NR/graphene nanocomposites as function of graphene 

content at T=-40 
o
C: a) 0 phr; b) 0.25 phr; c) 0.50 phr; d) 1.0 phr; e) 2.0 phr. Solid and empty 

symbols represent pristine and healed (at 70 
o
C) samples, respectively. 

 

 The second relaxation to be discussed only appears in the healed nanocomposites (Figure 

5b) and is suggested to be related to the restricted mobility of the polymer chains at the 

rubber-filler interface.[29,30] Figure 8a-c shows the dielectric loss vs frequency spectra of the 

healed NR/graphene nanocomposites with different graphene content at a representative 

temperature (T=45 
o
C) in the region of the interfacial relaxation. All spectra have been 

deconvoluted using the Havriliak-Negami (HN) function.[30] The healed NR/0.25 graphene 

nanocomposite is omitted since the signal of the interfacial relaxation is too weak to be 

detected. Two trends can be extracted from these spectra: (i) an increase in the intensity of the 

interfacial relaxation and a shift of the maxima (fmax) to lower frequencies as graphene loading 

increases, and (ii) the absence of such relaxation in a pristine (non-damaged) sample 

subjected to the same healing thermal treatment and used as control sample (see Figure 8d). 

All facts suggest that higher mobility restrictions due to the presence of graphene come into 

play as a result of the thermal healing treatment. This new relaxation is attributed to the 

formation of a new interface, but more specifically to the enhanced rubber-filler interactions 

at the newly created interface that increase with graphene loading. As will be presented in the 

next section, this aspect will play a major role in the healing process. 
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Figure 8. Interfacial relaxation at a selected temperature (T=45 
o
C): a-c) healed NR/graphene 

nanocomposites with different graphene content. Solid lines represent the total fit, dashed 

lines the individual process and dotted lines the conductivity contribution; d) comparison 

between pristine, control and healed NR/2.0 phr graphene nanocomposites. 

 

3.4. Restoration of mechanical, electrical and thermal properties as function of graphene 

content 

 Figure 9 presents the calculated healing efficiency values for the different functionalities as 

a function of the graphene loading. The underlying self-healing mechanism for pure 

vulcanized natural rubber is reported elsewhere.[16,17] Concerning the thermal conductivity, 

it decreases upon damage for all material grades (see Figure 4) as the rough surface of the 

damaged sample promotes air gaps between the sample and the aluminum foil. After healing, 

thermal conductivity can be completely restored indicating a good wetting of the materials on 

the aluminum foil (disappearance of air gaps) due to the enhanced flow capability of the 
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electrical conduction, when micro- or macro- cracks are formed in the rubber nanocomposite 
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electrical conductivity restored (see Figure 3b). A significant upturn in electrical healing 

efficiency seems to be located above the electrical percolation threshold (see electrical). 

 

Figure 9. Overall healing of multi-functionalities of NR/graphene nanocomposites healed at 

T=70 
o
C, as function of graphene content. 

 

 On the other hand, mechanical healing efficiency (mechanical) based on the recovery of 

tensile strength, tends to increase only gradually with graphene content reaching a maximum 

of ~70% with 2.0 phr graphene. As stated above, high graphene loadings result in a less 

crosslinked rubber network. This result is in agreement with our previous studies with self-

healing rubbers and hard dual networks where faster healing kinetics were obtained for lower 

crosslinking densities.[17,31] From the results herein shown, it is therefore expected that 

higher graphene loading results in higher healing efficiency. A further explanation to these 

results can be the improvement of the interfacial adhesion with the thermal healing 

treatment.[12] When temperature is applied rubber chains can be physically adsorbed on 

adjacent graphene layers promoting the interaction between the diffused rubber chains and the 

graphene sheets at the interface.[15,32] Evidences of such enhanced interactions are the 

restricted segmental relaxation and the appearance of the interfacial relaxation at high 

temperatures, as previously discussed by FT-IR and BDS. Hence, these rubber-filler 

interactions plus the lower crosslinking density seem to be crucial parameters contributing to 

the higher healing efficiency at higher graphene loading. 

 We now like to discuss and compare the healing efficiencies for the three properties for the 
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good contact between the two broken parts (interface formation). Electrical healing, on the 

other hand, requires similar surface contact as for thermal healing plus intimate particle-to-

particle contact assuring the creation of an electrical conducting path, with the graphene 

percolation threshold set as the lower limit for healing to occur. However, mechanical 

recovery needs to fulfill different settings based on the formation of a new interphase: i) good 

contact between damaged surfaces, ii) good particle-to-particle contact and good rubber-filler 

interactions at the interface, and iii) effective load transfer at the interface in order to achieve 

the full restoration of the original polymeric network at the macroscale damaged 

interface.[16,33] It is therefore expected that the recovery of the mechanical properties 

appears as more demanding than the restoration of electrical and thermal conducting 

properties. Figure 10 summarizes these trends schematically showing the minimal 

requirements to be met and how to link them to the healing of different functionalities. 

 

 

Figure 10. Schematic representation showing the minimal requirements to be met for 

restoring thermal, electrical and mechanical functionalities. 

 

4. Conclusions 

 Self-healing graphene/natural rubber nanocomposites were compounded and their 

mechanical, electrical and thermal properties evaluated before and after healing. The 

nanoscale morphology of the composites revealed good dispersion but low rubber-filler 

adhesion, reflecting modest mechanical enhancement and moderate electrical and thermal 

conduction. After damage and thermal treatment (healing) full or partial recovery of the 

functionalities was observed. Graphene content was found to have a different effect for each 

property: i) thermal conductivity healing was complete even at the lowest graphene content; 

ii) electrical conductivity healing was low at low contents but became high at the electrical 
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percolation limit; and iii) mechanical healing gradually increased with graphene content to a 

maximal level of 70%. The molecular dynamics analysis revealed the key role of rubber-

graphene interactions at the healed interphase on the overall restoration of the different 

functionalities. The (indirect) dependence of healing efficiency of the three functionalities on 

graphene content is probably due to a combination of the lower crosslinking density due to 

the graphene presence, as well as the formation of strong rubber-graphene interactions at the 

healed interphase. 
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