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1 Introduction

In operator theory and in the theory of linear systems, the study of functions ana-
lytic and contractive in the open unit disk (Schur functions) is called Schur analysis.
It includes, in particular, interpolation problems, operator models, and has been ex-
tended to various settings. See, for instance, [2, 29, 31, 35] for some related books. In
[12, 13] we began a study of Schur analysis in the setting of slice hyperholomorphic
functions. Following [12, 13], let us recall that a generalized Schur function is an
H

N×M -valued function S slice hyperholomorphic in a neighborhood V of the origin
and for which the kernel

KS(p,q) =
∞∑

n=0

pn
(
IN − S(p)S(q)∗

)
qn (1.1)

has a finite number of negative squares in V , or more generally such that the kernel
∞∑

n=0

pn
(
σ2 − S(p)σ1S(q)∗

)
qn (1.2)

has a finite number of negative squares in V , where σ1 ∈ H
M×M and σ2 ∈ H

N×N

are signature matrices (i.e., both self-adjoint and invertible). Since this work is aimed
at different audiences, it is worth mentioning that the classical counterparts of the
kernels (1.2) originate with the theory of characteristic operator functions. In the
indefinite case, such kernels have been studied by Krein and Langer; see, for instance,
[39–42]. When σ1 = σ2 and when the kernel is positive definite, Potapov gave in the
fundamental paper [46] the multiplicative structure of the corresponding functions S.

In [12] we studied the realization of such S in the case of positive definite kernels.
In [13] we studied an interpolation problem, and began the study of the indefinite
metric case, where the underlying spaces are Pontryagin spaces rather than Hilbert
spaces. In this work we prove a Beurling–Lax type theorem in this setting and study
the Krein–Langer factorization for slice hyperholomorphic generalized Schur func-
tions. Slice hyperholomorphic functions turned out to be a natural tool to generalize
Schur analysis to the quaternionic setting. Some references for this theory of func-
tions, with no claim of completeness, are [16, 23, 33], the book [28], and the forth-
coming [34].

The analogue of the resolvent operator in classical analysis is now the S-resolvent
operator, and according to this resolvent, the spectrum has to be replaced by the
S-spectrum. The relation between the S-spectrum and the right spectrum of a right
linear quaternionic operator is important for the present paper. Indeed, in the literature
there are several results on the right spectrum which is widely studied, especially
for its application in mathematical physics; see, e.g., [1]. However, it is well known
that the right spectrum is not associated with a right linear quaternionic operator;
the eigenvectors associated with a given eigenvalue do not even form a linear space.
The S-spectrum arises in a completely different setting; it is associated with a right
linear operator and, quite surprisingly, the point S-spectrum coincides with the right
spectrum. This fact and the fact that any right eigenvector is also an S-eigenvector,
see Proposition 4.7, allow us to use for the S-spectrum various results which hold for
the right spectrum; see Sects. 6 to 9.



The S-resolvent operator allows the definition of the quaternionic analogue of the
operator (I − zA)−1 that appears in the realization function s(z) = D + zC(I −
zA)−1B . It turns out that when A is a quaternionic matrix and p is a quaternion
then (I − pA)−1 has to be replaced by (I − p̄A)(|p|2A2 − 2 Re(p)A + I )−1, which
is equal to p−1S−1

R (p−1,A), where S−1
R (p−1,A) is the right S-resolvent operator

associated with the quaternionic matrix A. Moreover, the S-resolvent operator allows
us to introduce and study the Riesz projectors and the invariant subspaces under a
quaternionic operator.

The S-resolvent operator is also a fundamental tool to define the quaternionic
functional calculus, and we refer the reader to [15, 17, 19, 25] for further discussions.
Schur multipliers in the quaternionic setting have been studied also in [8–10], in a dif-
ferent setting, using the Cauchy–Kovalesvkaya product and series of Fueter polyno-
mials. Since Schur analysis plays an important role in linear systems, we mention that
papers [37, 44, 45] treat various aspects of a theory of linear systems in the quater-
nionic setting. We finally remark that it is possible to define slice hyperholomorphic
functions with values in a Clifford algebra, [24, 26, 27], which admit a functional
calculus for n-tuples of operators; see [18, 20, 22, 28].

The paper consists of eight sections besides the introduction, and its outline is
as follows. Sections 2–4 are related to results on slice hyperholomorphic functions
and the corresponding functional calculus. Sections 5–9 are related to Schur analysis.
More precisely: Sects. 2 and 3 are of a survey nature on slice hyperholomorphic func-
tions and the quaternionic functional calculus, respectively. Section 4 contains new
results on the analogue of the Riesz projector for the quaternionic functional calculus.
Moreover, it contains a discussion on the right spectrum, which has been widely stud-
ied in the literature both in linear algebra [49] and in mathematical physics [1], and
which, as we have already pointed out, coincides with the point S-spectrum. These
results will be used in the second part of the paper. A characterization of the number
of negative squares of a slice hyperholomorphic kernel in terms of its power series
coefficients is given in Sect. 5. In Sect. 6 we present some results on linear operators
in quaternionic Pontryagin spaces. We show in particular that a contraction with no
S-spectrum on the unit sphere has a maximal negative invariant subspace. In Sect. 7
we prove a version of the Beurling–Lax theorem, the so-called structure theorem, in
the present setting. In Sect. 8 we discuss the counterparts of matrix-valued unitary
rational functions. The last section considers a far-reaching result in the quaternionic
framework, namely, the Krein–Langer factorization theorem for generalized Schur
functions, in the finite dimensional case. It is interesting to note that the result is
based on Blaschke products whose zeros and poles have a peculiar behavior when
taking the slice hyperholomorphic reciprocal.

2 Slice Hyperholomorphic Functions

We begin this section by recalling the notation and some basic facts on the theory of
slice hyperholomorphic functions that we will use in the sequel. We refer the reader to
the papers [16, 23, 33] and the book [28] for more details. Let H be the real associative
algebra of quaternions with respect to the basis {1, i, j, k} whose elements satisfy the
relations



i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We will denote a quaternion p as p = x0 + ix1 + jx2 + kx3, x� ∈ R, � = 0,1,2,3,
its conjugate as p̄ = x0 − ix1 − jx2 − kx3, its norm |p|2 = pp. The real part of a
quaternion will be denoted with the symbols Re(p) or x0, while Im(p) denotes the
imaginary part of p. Let S be the 2-sphere of purely imaginary unit quaternions, i.e.,

S = {
p = ix1 + jx2 + kx3

∣∣ x2
1 + x2

2 + x2
3 = 1

}
. (2.1)

With each nonreal quaternion p it is possible to uniquely associate the element Ip ∈ S

defined by

Ip = Im(p)

|Im(p)| .
The complex plane CIp = R + IpR = {x + Iqy|x, y ∈ R} is determined by the imag-
inary unit Ip , and CIp obviously contains p.

Definition 2.1 Given p ∈ H, p = p0 + Ipp1 we denote by [p] the set of all elements
of the form p0 + Jp1 when J varies in S.

Remark 2.2 The set [p] is a 2-sphere which is reduced to the point p when p ∈ R.

We now recall the definition of slice hyperholomorphic functions.

Definition 2.3 (Slice hyperholomorphic functions) Let U ⊆ H be an open set and let
f : U → H be a real differentiable function. Let I ∈ S and let fI be the restriction of
f to the complex plane CI := R + IR passing through 1 and I and denote by x + Iy

an element on CI .

(1) We say that f is a left slice hyperholomorphic function (or hyperholomorphic
for short) if, for every I ∈ S, we have

1

2

(
∂

∂x
+ I

∂

∂y

)
fI (x + Iy) = 0.

(2) We say that f is right slice hyperholomorphic function (or right hyperholomor-
phic for short) if, for every I ∈ S, we have

1

2

(
∂

∂x
fI (x + Iy) + ∂

∂y
fI (x + Iy)I

)
= 0.

(3) In the sequel we will denote by RL(U) (resp., RR(U)) the right (resp., left) H-
vector space of left (resp., right) hyperholomorphic functions on the open set U .
When we do not distinguish between RL(U) and RR(U) we will use the symbol
R(U).

The natural open sets on which slice hyperholomorphic functions are defined are
axially symmetric, i.e., open sets that contain the 2-sphere [p] whenever they contain
p, which are also s-domains, i.e., they are domains which remain connected when
intersected with any complex plane CI .



Given two left slice hyperholomorphic functions f , g, it is possible to intro-
duce a binary operation called the �-product, such that f � g is a slice hyperholo-
morphic function. Let f,g : Ω ⊆ H be slice hyperholomorphic functions such that
their restrictions to the complex plane CI can be written as fI (z) = F(z) + G(z)J ,
gI (z) = H(z)+L(z)J , where J ∈ S, J ⊥ I . The functions F , G, H , L are holomor-
phic functions of the variable z ∈ Ω ∩ CI and they exist by the splitting lemma; see
[28, p. 117]. We can now give the following definition.

Definition 2.4 Let f,g be slice hyperholomorphic functions defined on an axially
symmetric open set Ω ⊆ H. The �-product of f and g is defined as the unique left
slice hyperholomorphic function on Ω whose restriction to the complex plane CI is
given by

(
F(z) + G(z)J

)
�

(
H(z) + L(z)J

)

:= (
F(z)H(z) − G(z)L(z̄)

) + (
G(z)H(z̄) + F(z)L(z)

)
J. (2.2)

When f , g are expressed by power series, i.e., f (p) = ∑∞
n=0 pnan, g(p) =∑∞

n=0 pnbn, then (f � g)(p) = ∑∞
n=0 pncn, where cn = ∑n

r=0 arbn−r is obtained
by convolution on the coefficients. This product extends the product of quaternionic
polynomials with right coefficients, see [43], to series. Analogously, one can intro-
duce a �-product for right slice hyperholomorphic functions. For more details, we
refer the reader to [28]. When considering both products in the same formula, or
when confusion may arise, we will write �l or �r according to whether we are using
the left or the right slice hyperholomorphic product. When there is no subscript, we
will mean that we are considering the left �-product.

Given a slice hyperholomorphic function f , we can define its slice hyperholo-
morphic reciprocal f −�; see [23, 28]. In this paper it will be sufficient to know the
following definition.

Definition 2.5 Given f (p) = ∑∞
n=0 pnan, let us set

f c(p) =
∞∑

n=0

pnān, f s(p) = (
f c � f

)
(p) =

∞∑

n=0

pncn, cn =
n∑

r=0

ar ān−r ,

where the series converge. The left slice hyperholomorphic reciprocal of f is then
defined as

f −� := (
f s

)−1
f c.

3 Formulations of the Quaternionic Functional Calculus

Here we briefly recall the possible formulations of the quaternionic functional calcu-
lus that we will use in the sequel. Let V be a two-sided quaternionic Banach space,
and let B(V ) be the two-sided vector space of all right linear bounded operators on V .



Definition 3.1 (The S-spectrum and the S-resolvent sets of quaternionic operators)
Let T ∈ B(V ). We define the S-spectrum σS(T ) of T as:

σS(T ) = {
s ∈ H : T 2 − 2 Re(s)T + |s|2 I is not invertible

}
.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = H \ σS(T ).

The notion of the S-spectrum of a linear quaternionic operator T is suggested by
the definition of the S-resolvent operator that is the analogue of the Riesz resolvent
operator for the quaternionic functional calculus.

Definition 3.2 (The S-resolvent operator) Let V be a two-sided quaternionic Banach
space, T ∈ B(V ), and s ∈ ρS(T ). We define the left S-resolvent operator as

S−1
L (s, T ) := −(

T 2 − 2 Re(s)T + |s|2 I
)−1

(T − sI ), (3.1)

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI )

(
T 2 − 2 Re(s)T + |s|2 I

)−1
. (3.2)

Theorem 3.3 Let T ∈ B(V ) and let s ∈ ρS(T ). Then, the left S-resolvent operator
satisfies the equation

S−1
L (s, T )s − T S−1

L (s, T ) = I, (3.3)

while the right S-resolvent operator satisfies the equation

sS−1
R (s, T ) − S−1

R (s, T )T = I. (3.4)

Definition 3.4 Let V be a two-sided quaternionic Banach space, T ∈ B(V ) and let
U ⊂ H be an axially symmetric s-domain that contains the S-spectrum σS(T ) and
such that ∂(U ∩ CI ) is union of a finite number of continuously differentiable Jordan
curves for every I ∈ S. We say that U is a T -admissible open set.

We can now introduce the class of functions for which we can define the two
versions of the quaternionic functional calculus.

Definition 3.5 Let V be a two-sided quaternionic Banach space, T ∈ B(V ) and let
W be an open set in H.

(1) A function f ∈ RL(W) is said to be locally left hyperholomorphic on σS(T ) if
there exists a T -admissible domain U ⊂ H such that U ⊂ W on which f is left
hyperholomorphic. We will denote by RL

σS(T ) the set of locally left hyperholo-
morphic functions on σS(T ).

(2) A function f ∈ RR(W) is said to be locally right hyperholomorphic on σS(T )

if there exists a T -admissible domain U ⊂ H such that U ⊂ W on which f

is right hyperholomorphic. We will denote by RR
σS(T ) the set of locally right

hyperholomorphic functions on σS(T ).



Using the left S-resolvent operator S−1
L , we now give a result that motivates the

functional calculus; analogous considerations can be done using S−1
R with obvious

modifications.

Definition 3.6 (The quaternionic functional calculus) Let V be a two-sided quater-
nionic Banach space and T ∈ B(V ). Let U ⊂ H be a T -admissible domain and set
dsI = −dsI . We define

f (T ) = 1

2π

∫

∂(U∩CI )

S−1
L (s, T )dsI f (s), for f ∈ RL

σS(T ), (3.5)

and

f (T ) = 1

2π

∫

∂(U∩CI )

f (s)dsI S
−1
R (s, T ), for f ∈ RR

σS(T ). (3.6)

4 Projectors, Right and S-Spectrum

An important result that we will prove in this section is that the Riesz projector as-
sociated with a given quaternionic operator T commutes with T itself. We begin by
recalling the definition of projectors and some of their basic properties that still hold
in the quaternionic setting.

Definition 4.1 Let V be a quaternionic Banach space. We say that P is a projector if
P 2 = P .

It is easy to show that the following properties hold:

(1) The range of P , denoted by ran(P ) is closed.
(2) v ∈ ran(P ) if and only if Pv = v.
(3) If P is a projector, then I − P is also a projector and ran(I − P) is closed.
(4) v ∈ ran(I − P) if and only if (I − P)v = v, that is, if and only if Pv = 0; as a

consequence, ran(I − P) = ker(P ).
(5) For every v ∈ V we have v = Pv + (I − P)v; Pv ∈ ran(P ), (I − P)v ∈ ker(P ).

So v can be written as v′ = Pv and v′′ = (I − P)v. Since ran(P ) ∩ ker(P ) = {0}
we have the decomposition V = ran(P ) ⊕ ker(P ).

Theorem 4.2 Let T ∈ B(V ) and let σS(T ) = σ1S ∪ σ2S , with dist(σ1S, σ2S) > 0. Let
U1 and U2 be two open sets such that σ1S ⊂ U1 and σ2S ⊂ U2, with U1 ∩ U2 = ∅.
Set

Pj := 1

2π

∫

∂(Uj ∩CI )

S−1
L (s, T )dsI , j = 1,2, (4.1)

Tj := 1

2π

∫

∂(Uj ∩CI )

S−1
L (s, T )dsI s, j = 1,2. (4.2)

Then the following properties hold:



(1) Pj are projectors and T Pj = PjT for j = 1,2.
(2) For λ ∈ ρS(T ) we have

PjS
−1
L (λ,T )λ − TjS

−1
L (λ,T ) = Pj , j = 1,2, (4.3)

λS−1
R (λ,T )Pj − S−1

R (λ,T )Tj = Pj , j = 1,2. (4.4)

Proof The fact that Pj are projectors is proved in [28]. Let us prove that T Pj =
PjT . Observe that the functions f (s) = sm, for m ∈ N0, are both right and left slice
hyperholomorphic. So the operator T can be written as

T = 1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI s = 1

2π

∫

∂(U∩CI )

sdsI S
−1
R (s, T );

analogously, for the projectors Pj we have

Pj = 1

2π

∫

∂(Uj ∩CI )

S−1
L (s, T )dsI = 1

2π

∫

∂(Uj ∩CI )

dsI S
−1
R (s, T ).

From the identity

Tj = 1

2π

∫

∂(Uj ∩CI )

S−1
L (s, T )dsI s = 1

2π

∫

∂(Uj ∩CI )

sdsI S
−1
R (s, T )

we can compute T Pj as:

T Pj = 1

2π

∫

∂(Uj∩CI )

T S−1
L (s, T )dsI

and using the resolvent equation (3.3) it follows that

T Pj = 1

2π

∫

∂(Uj∩CI )

[
S−1

L (s, T )s − I
]
dsI = 1

2π

∫

∂(Uj ∩CI )

S−1
L (s, T )sdsI

= 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T )dsI s = Tj .

Now consider

PjT = 1

2π

∫

∂(Uj∩CI )

dsI S
−1
R (s, T )T

and using the resolvent equation (3.4) we obtain

PjT = 1

2π

∫

∂(Uj ∩CI )

dsI
[
sS−1

R (s, T ) − I
] = 1

2π

∫

∂(Uj ∩CI )

dsI sS
−1
R (s, T ) = Tj

so we have the equality PjT = T Pj . To prove (4.3), for λ ∈ ρS(T ), consider and
compute

PjS
−1
L (λ,T )λ = 1

2π

∫

∂(Uj ∩CI )

dsI S
−1
R (s, T )S−1

L (λ,T )λ.



Using the S-resolvent equation (3.3) it follows that

PjS
−1
L (λ,T )λ = 1

2π

∫

∂(Uj ∩CI )

dsI S
−1
R (s, T )

[
T S−1

L (λ,T ) + I
]

= 1

2π

∫

∂(Uj ∩CI )

dsI
[
S−1

R (s, T )T
]
S−1

L (λ,T ) + Pj .

By the S-resolvent equation (3.4) we get

PjS
−1
L (λ,T )λ = 1

2π

∫

∂(Uj ∩CI )

sdsI S
−1
R (s, T )S−1

L (λ,T ) + Pj

= TjS
−1
L (λ,T ) + Pj

which is (4.3). Relation (4.4) can be proved in an analogous way. �

In analogy with the classical case, we will call the operator Pj a Riesz projector.
Our next result, of independent interest, is the validity of the decomposition of the

S-spectrum which is based on the Riesz projectors. A simple but crucial result will
be the following lemma.

Lemma 4.3 Let T ∈ B(V ) and let λ ∈ ρS(T ). Then the operator (T 2 − 2λ0T +
|λ|2 I)−1 commutes with every operator A that commutes with T .

Proof Since A commutes with T we have that

(
T 2 − 2λ0T + |λ|2 I

)
A = A

(
T 2 − 2λ0T + |λ|2 I

)
.

We get the statement by multiplying the above relation on both sides by (T 2 −2λ0T +
|λ|2 I)−1. �

Note that, unlike what happens in the classical case in which an operator A which
commutes with T also commutes with the resolvent operator, here an operator A

commuting with T just commutes with (T 2 − 2λ0T + |λ|2 I)−1. But this result is
enough to prove the validity of the next theorem.

Theorem 4.4 Let T ∈ B(V ), suppose that P1 is a projector in B(V ) commuting
with T , and let P2 = I − P1. Let Vj = Pj (V ), j = 1,2, and define the operators
Tj = T Pj = PjT . Denote by T̃j the restriction of Tj to Vj , j = 1,2. Then

σS(T ) = σS(T̃1) ∪ σS(T̃2).

Proof First of all, note that T = T1 + T2, T1(V2) = T2(V1) = {0}, and that
Tj (Vj ) ⊆ Vj .

We have to show that ρS(T ) = ρS(T̃1)∩ρS(T̃2). Let us assume that λ ∈ ρS(T ) and
consider the identity



T 2 − 2λ0T + |λ|2 I = (
T 2 − 2λ0T + |λ|2 I

)
(P1 + P2)

= (
T 2

1 − 2λ0T1 + |λ|2P1
) + (

T 2
2 − 2λ0T2 + |λ|2P2

)
. (4.5)

If we set

Qλ(T ) := (
T 2 − 2λ0T + |λ|2 I

)−1

we have

Qλ(T ) = (P1 + P2)Qλ(T )(P1 + P2) = P1Qλ(T )P1 + P2Qλ(T )P2; (4.6)

in fact, by Lemma 4.3 and by the relation P1P2 = P2P1 = 0, we deduce

P1Qλ(T )P2 = P2Qλ(T )P1 = 0.

We now multiply the identity (4.5) by Qλ(T ) on the left, and by (4.6) we obtain

I = (
P1Qλ(T )P1 +P2Qλ(T )P2

)[(
T 2

1 −2λ0T1 +|λ|2P1
)+ (

T 2
2 −2λ0T2 +|λ|2P2

)]
.

Again using Lemma 4.3 and P1P2 = P2P1 = 0 we obtain

I = P1Qλ(T )P1
(
T 2

1 −2λ0T1 +|λ|2P1
)+P2Qλ(T )P2

(
T 2

2 −2λ0T2 +|λ|2P2
)
. (4.7)

Let us set

Qλ,j (T ) := PjQλ(T )Pj , j = 1,2.

We immediately observe that

Qλ,j (T )(Vj ) ⊆ Vj , j = 1,2,

and from (4.7) we deduce

Qλ,j (T )
(
T 2

j − 2λ0Tj + |λ|2Pj

) = Pj , j = 1,2.

As a consequence, Qλ,j (T ) restricted to Vj is the inverse of (T̃ 2
j − 2λ0T̃j + |λ|2Pj )

and so we conclude that λ ∈ ρS(T̃1) ∩ ρS(T̃2).
Conversely, assume that λ ∈ ρS(T̃1) ∩ ρS(T̃2). Let us set

Q̃λ,j (T ) := (
T̃ 2

j − 2λ0T̃j + |λ|2Pj

)−1

and define

Q̃ = P1Q̃λ,1(T )P1 + P2Q̃λ,2(T )P2.

We have

Q̃
(
T 2 − 2λ0T + |λ|2 I

) = [
P1Q̃λ,1(T )P1 + P2Q̃λ,2(T )P2

](
T 2 − 2λ0T + |λ|2 I

)

= P1
(
T̃ 2

1 − 2λ0T̃1 + |λ|2P1
)−1

P1
(
T 2 − 2λ0T + |λ|2 I

)

+ P2
(
T̃ 2

2 − 2λ0T̃2 + |λ|2P2
)−1

P2
(
T 2 − 2λ0T + |λ|2 I

)

= P1 + P2 = I.

Analogously (T 2 − 2λ0T + |λ|2 I)Q̃ = I . So λ ∈ ρS(T ). �



In all our discussions on the functional calculus we have used the notion of S-
spectrum. However, in the literature, other types of spectra are also used: the so-called
left spectrum and the right spectrum. In order to discuss the notion of right spectrum
it is not necessary to assume that V is a two-sided linear space, so we will consider
quaternionic right linear spaces. We recall the following definition.

Definition 4.5 Let T : V → V be a right linear quaternionic operator on a right
quaternionic Banach space V . We denote by σR(T ) the right spectrum of T , that
is, σR(T ) = {s ∈ H : T v = vs for v ∈ V,v �= 0}.

As has been widely discussed in the literature, one can also define the left spec-
trum, i.e., the set of s ∈ H such that T v = sv. However, the notion of left spectrum
is not very useful; see [1]. The S-spectrum and the left spectrum are not, in gen-
eral, related; see [28]. The right spectrum is more useful and more studied. It has a
structure similar to the one of the S-spectrum; indeed, whenever it contains an ele-
ment s, it also contains the whole 2-sphere [s]. However, the operator Is − T , where
(Is)(v) := vs, is not a right linear operator; thus the notion of right spectrum is not
associated with a linear resolvent operator, and this represents a disadvantage since
it prevents defining a functional calculus. The following result, see [21], states that
the right spectrum coincides with the point S-spectrum and thus σR(T ) can now be
related to the linear operator T 2 − 2s0T + |s|2 I .

Theorem 4.6 Let T be a right linear quaternionic operator. Then its point S-
spectrum coincides with the right spectrum.

Theorem 4.6 is crucial since all known results on the right spectrum become valid
also for the point S-spectrum.

Let us now consider the two eigenvalue problems:

T v = vs, v �= 0,

and
(
T 2 − 2s0T + |s|2 I

)
w = 0, w �= 0.

As is well known, the right eigenvectors do not form a right linear subspace of V ,
while the S-eigenvectors do, as one can immediately verify. We have the following
proposition which will be useful in the sequel.

Proposition 4.7 Let v be a right eigenvector associated with s ∈ σR(T ). Then we
have

(
T 2 − 2s0T + |s|2 I

)
v = 0.

Proof Since T v = vs, it follows that T 2v = T (vs) = vs2. Thus we have
(
T 2 − 2 s0T + |s|2 I

)
v = vs2 − 2s0sv + |s|2v = v

(
s2 − 2s0s + |s|2) = 0,

where we have used the identity s2 − 2s0s +|s|2 = 0, which holds for every s ∈ H. �



5 A Result on Negative Squares

In this section we will consider power series of the form K(p,q) = ∑∞
n,m=0 pn ×

an,mqm, where an,m = a∗
n,m ∈ H

N×N . It is immediate that K(p,q) is a function slice
hyperholomorphic in p and right slice hyperholomorphic in q̄; moreover, the assump-
tion on the coefficients an,m implies that K(p,q) is Hermitian.

Proposition 5.1 Let (an,m)n,m∈N0 denote a sequence of N ×N quaternionic matrices
such that an,m = a∗

m,n, and assume that the power series

K(p,q) =
∞∑

n,m=0

pnan,mqm

converges in a neighborhood V of the origin. Then the following are equivalent:

(1) The function K(p,q) has κ negative squares in V .

(2) All the finite matrices Aμ
def.= (an,m)n,m=0,...,μ have at most κ strictly negative

eigenvalues, and exactly κ strictly negative eigenvalues for at least one μ ∈ N0.

Proof Let r > 0 be such that B(0, r) ⊂ V , and let I, J be two units in the unit sphere
of purely imaginary quaternions S (see (2.1) for the latter). Then

an,m = 1

4rn+mπ2

∫∫

[0,2π]2
e−IntK

(
reI t , reJ s

)
eJmsdtds.

This expression does not depend on the specific choice of I and J . Furthermore, we
take I = J and so:

Aμ = 1

4rn+mπ2

∫∫

[0,2π]2

⎛

⎜⎜⎜⎝

IN

e−J t IN

...

e−Jμt IN

⎞

⎟⎟⎟⎠K
(
reJ t , reJ s

)(
IN eJsIN · · · eJμsIN

)
dtds.

Now write
K(p,q) = K+(p, q) − F(p)F (q)∗,

where F is H
N×κ valued. The function F is built from functions of the form p �→

K(p,q) for a finite number of q’s, and so is a continuous function of p, and so is
K+(p, q). See [7, pp. 8–9]. Thus

Aμ = Aμ,+ − Aμ,−

where

Aμ,+ = 1

4rn+mπ2

∫∫

[0,2π]2

⎛

⎜⎜⎜⎝

IN

e−J t IN

...

e−Jμt IN

⎞

⎟⎟⎟⎠K+
(
reJ t , reJ s

)

× (
IN eJsIN · · · eJμsIN

)
dtds



Aμ,− = 1

4rn+mπ2

∫∫

[0,2π]2

⎛

⎜⎜⎜⎝

IN

e−J t IN

...

e−Jμt IN

⎞

⎟⎟⎟⎠F
(
reJ t

)
F

(
reJ s

)∗

× (
IN eJsIN · · · eJμsIN

)
dtds.

These expressions show that Aμ has at most κ strictly negative eigenvalues.
Conversely, assume that all the matrices Aμ have at most κ strictly negative eigen-

values, and define

Kμ(p,q) =
μ∑

n,m=0

pman,mqm.

Then, Kμ has at most κ negative squares, as is seen by writing Aμ as a difference of
two positive matrices, one of rank κ . Since, pointwise,

K(p,q) = lim
μ→∞Kμ(p,q),

the function K(p,q) has at most κ negative squares.
To conclude the proof, it remains to see that the number of negative squares of

K(p,q) and Aμ is the same. Assume that K(p,q) has κ negative squares, but that
the Aμ have at most κ ′ < κ strictly negative eigenvalues. Then, the argument above
shows that K(p,q) would have at most κ ′ negative squares, which contradicts the
hypothesis. The other direction is proved in the same way. �

As consequences we have:

Proposition 5.2 In the notation of the preceding proposition, the number of negative
squares is independent of the neighborhood V .

Proof This is because the coefficients an,m do not depend on the given neighbor-
hood. �

Proposition 5.3 Assume that K(p,q) is H
N×N valued and has κ negative squares in

V and let α(p) be an H
N×N -valued slice hyperholomorphic function and such that

α(0) is invertible. Then the function

B(p,q) = α(p) � K(p,q) �r α(q)∗ (5.1)

has κ negative squares in V .

Proof Write K(p,q) = ∑∞
n,m=0 pnan,mqm and α(p) = α0 + pα1 + · · · . The μ × μ

main block matrix Bμ corresponding to the power series (5.1) is equal to

Bμ = LAμL∗,



where

L =

⎛

⎜⎜⎜⎜⎜⎝

α0 0 0 · · · 0
α1 α0 0 · · · 0
α2 α1 α0 0 · · ·
...

...

αμ αμ−1 · · · α1 α0

⎞

⎟⎟⎟⎟⎟⎠

Since α0 = α(0) is assumed invertible, the signatures of Aμ and Bμ are the same for
every μ ∈ N0. By Proposition 5.1 it follows that the kernels A and B have the same
number of negative squares. �

6 Operators in Quaternionic Pontryagin Spaces

This section contains some definitions and results on right quaternionic Pontryagin
spaces. Some of the statements hold when we replace Pontryagin spaces by Krein
spaces.

The following result, proved in the complex plane in [38, Theorem 2.4, p. 18], is
very useful for studying convergence of sequences in Pontryagin spaces. It implies
in particular that in a reproducing kernel Pontryagin space, convergence is equivalent
to convergence of the self-inner product together with pointwise convergence. The
proof of the quaternionic case appears in [6, Proposition 12.9, p. 471].

Proposition 6.1 Let (P, [·, ·]) denote a quaternionic right Pontryagin space. The
sequence fn of elements in P tends to f ∈ P if and only if the following two condi-
tions hold:

lim
n→∞[fn,fn] = [f,f ],

and

lim
n→∞[fn, g] = [f,g] for g in a dense subspace of P .

We endow H
N with the inner product

[u,v]HN = v∗u.

Furthermore, a Hermitian form will be defined as having the following linearity con-
dition:

[f a,gb] = b[f,g]a. (6.1)

Remark 6.2 When we consider two-sided Pontryagin vector spaces, we require an
additional property on the inner product with respect to the left multiplication, i.e.,

[av, av] = |a|2[v, v].
This property is satisfied, for example, in H

N with the inner product described above.



Theorem 6.3 Let T be a contraction in a two-sided quaternionic Pontryagin space
such that T has no S-spectrum on the unit sphere and it satisfies

[
S−1

L (λ,T )λv,S−1
L (λ,T )λv

] ≤ [
S−1

L (λ,T )v,S−1
L (λ,T )v

]
, for |λ| = 1.

Then T has a maximal negative invariant subspace, and this subspace is unique.

Proof Let |λ| = 1 so that the operator S−1
L (λ,T ) exists. The fact that T is a contrac-

tion implies the inequality
[
T S−1

L (λ,T )v,T S−1
L (λ,T )v

]
<

[
S−1

L (λ,T )v,S−1
L (λ,T )v

]

for v �= 0. Using the S-resolvent equation, one deduces
[
S−1

L (λ,T )λv + Iv,S−1
L (λ,T )λv + Iv

]
<

[
S−1

L (λ,T )v,S−1
L (λ,T )v

]

from which one gets
[
S−1

L (λ,T )λv,S−1
L (λ,T )λv

] + [v, v] + [
S−1

L (λ,T )λv, v
] + [

v,S−1
L (λ,T )λv

]

<
[
S−1

L (λ,T )v,S−1
L (λ,T )v

]
.

So, using the hypothesis, we finally get

[v, v] + [
S−1

L (λ,T )λv, v
] + [

v,S−1
L (λ,T )λv

]
< 0.

In the above inequality we replace S−1
L (λ,T )λ by S−1

L (λ,T )λdλI , where dλI =
−IeIθdθ , and integrate over [0,2π ]. Recalling the definition of Riesz projector

P = − 1

2π

∫

∂(B∩CI )

S−1
L (λ,T )λdλI

we obtain

[v, v] < [Pv,v] + [v,Pv]
and so

[v, v] < 2 Re[Pv,v].
Theorem 4.2 implies that PT = T P , and the rest of the proof follows as in Theo-
rem 11.1, p. 76 in [38]. �

For right quaternionic Pontryagin spaces, we have the following result.

Proposition 6.4 A contraction T in a right quaternionic Pontryagin space P pos-
sessing an eigenvalue λ with |λ| > 1 has a maximal negative invariant subspace.

Proof Let v �= 0 be an eigenvector associated with the right eigenvalue λ. Then we
have

[T v,T v] = [vλ, vλ] < [v, v],



from which we deduce

|λ|2[v, v] < [v, v]
and so [v, v] < 0. Consider the right subspace M generated by v. Then any ele-
ment in M is of the form va, a ∈ H and [va, va] < 0. The subspace M is invariant
under the action of T ; indeed, T (va) = T (v)a = vλa. Thus M is a negative in-
variant subspace of P . Then M is maximal or it is contained in another negative
invariant subspace M1, and iterating this procedure we obtain a chain of inclusions

M ⊂ M1 ⊂ · · · which should end because P− is finite dimensional. �

In view of Definition 6.6 below, it is useful to recall the following result (see [49,
Corollary 6.2, p. 41]).

Proposition 6.5 A Hermitian matrix H with entries in H is diagonalizable, and its
eigenvalues are real. Furthermore, eigenvectors corresponding to different eigenval-
ues are orthogonal in H

N . Let (t, r, s) denote the signature of H . There exists an
invertible matrix U ∈ H

N×N such that

H = U

(
σtr 0
0 0s×s

)
U∗, (6.2)

where σtr = (
It 0
0 −Ir

).

Definition 6.6 Let A be a continuous right linear operator from the quaternionic
Pontryagin space P into itself. We say that A has κ negative squares if for every
choice of N ∈ N and of f1, . . . , fN ∈ P , the Hermitian matrix H ∈ H

N×N with jk

entry equal to

[Afk,fj ]P (6.3)

has at most κ strictly negative eigenvalues, and exactly κ strictly negative eigenvalues
for some choice of N,f1, . . . , fN .

Note that the above definition is coherent with the right linearity condition (6.1).
If we replace the fk by fkhk , where hk ∈ H, the new matrix has jk entry

[Afkhk, fjhj ]P = hj [Afk,fj ]Phk,

and so
([Afkhk, fjhj ]P

)
j,k=1,...,N

= D∗([Afk,fj ]P
)
j,k=1,...,N

D,

with

D = diag(h1, h2, . . . , hN).

In the case of left linear operators, (6.1) is then replaced by

[af, bg] = b[f,g]a,



and the roles of j and k have to be interchanged in (6.3). This problem does not
appear in the commutative case.

We point out the following notation. Let T be a bounded linear operator from
the quaternionic right Pontryagin space (P1, [·, ·]P1) into the quaternionic right
Pontryagin space (P2, [·, ·]P2), and let σ1 and σ2 denote two signature operators
such that (P1, 〈·, ·〉P1) and (P2, 〈·, ·〉P2) are right quaternionic Pontryagin spaces,
where

〈x, y〉Pj
= [x,σjy]Pj

, j = 1,2.

We denote by T [∗] the adjoint of T with respect to the Pontryagin structure and by
T ∗ its adjoint with respect to the Hilbert space structure. Thus,

[T x,y]P2 = 〈T x,σ2y〉P2

= 〈
x,T ∗σ2y

〉
P1

= [
x,σ1T

∗σ2y
]
P1

,

and so, as is well known in the complex case,

T [∗] = σ1T
∗σ2 and T ∗ = σ1T

[∗]σ2.

We will denote ν−(A) = κ . When κ = 0 the operator is called positive.

Theorem 6.7 Let A be a bounded right linear self-adjoint operator from the quater-
nionic Pontryagin space P into itself, which has a finite number of negative squares.
Then, there exists a quaternionic Pontryagin space P1 with indP1 = ν−(A), and a
bounded right linear operator T from P into P1 such that

A = T [∗]T .

Proof The proof follows that of [11, Theorem 3.4, p. 456], slightly adapted to the
present non-commutative setting. Since A is Hermitian, the formula

[Af,Ag]A = [Af,g]P

defines a Hermitian form on the range of A. Since ν−(A) = κ , there exists N ∈ N

and f1, . . . , fN ∈ P such that the Hermitian matrix M with �j entry [Afj ,f�]P has
exactly κ strictly negative eigenvalues. Let v1, . . . , vκ be the corresponding eigenvec-
tors, with strictly negative eigenvalues λ1, . . . , λκ . As recalled in Proposition 6.5, vj

and vk are orthogonal when λj �= λk . We can, and will, assume that vectors corre-
sponding to a given eigenvalue are orthogonal. Then,

v∗
s Mvt = λtδts , t, s = 1, . . . ,N. (6.4)



In view of (6.1), and with

vt =

⎛

⎜⎜⎜⎝

vt1
vt2
...

vtN

⎞

⎟⎟⎟⎠ , t = 1, . . . ,N,

we see that (6.4) can be rewritten as

[Fs,Ft ]A = λtδts , with Fs =
N∑

k=1

Afkvsk, t, s = 1, . . . ,N.

The space M spanned by F1, . . . ,FN is strictly negative, and it has an orthocomple-
ment in (RanA, [·, ·]A), say M [⊥], which is a right quaternionic pre-Hilbert space.
The space RanA endowed with the quadratic form

〈m + h,m + h〉A = −[m,m]A + [h,h]A, m ∈ M , h ∈ M [⊥]

is a pre-Hilbert space, and we denote by P1 its completion. We note that P1 is
defined only up to an isomorphism of Hilbert space. We denote by ι the injection
from RanA into P1 such that

〈f,f 〉A = 〈
ι(f ), ι(f )

〉
P1

.

We consider the decomposition P1 = ι(M)⊕ ι(M)⊥, and endow P1 with the indef-
inite inner product

[
ι(m) + h, ι(m) + h

]
P! = [m,m]A + 〈h,h〉P1 .

See [38, Theorem 2.5, p. 20] for the similar argument in the complex case. Still
following [11], we define

Tf = ι(Af ), f ∈ P.

We now prove that T is a bounded right linear operator from P into ι(RanA) ⊂ P1.
Indeed, let (fn)n∈N denote a sequence of elements in P converging (in the topology
of P) to f ∈ P . Since RanA is dense in P1, using Proposition 6.1 it is therefore
enough to prove that:

lim
n→[Tfn,Tfn]P1 = [Tf,Tf ]P1 ,

and

lim
n→∞[Tfn,T g]P1 = [Tf,T g]P1, ∀g ∈ P.

By the definition of the inner product, the first equality amounts to

lim
n→[Afn,fn]P = [Af,f ]P,



which is true since A is continuous, and similarly for the second claim. Therefore, T

has an adjoint operator, which is also continuous. The equalities (with f,g ∈ P)
[
f,T [∗]T g

]
P = [Tf,T g]P1

= [
Tf, ι(Ag)

]
P1

= [
ι(Af ), ι(Ag)

]
P1

= [Af,Ag]A
= [f,Ag]P

show that T [∗]T = A. �

We note the following. As is well known, the completion of a pre-Hilbert space
is unique up to an isomorphism of Hilbert spaces, and the completion need not be in
general a subspace of the original pre-Hilbert space. Some identification is needed.
In [38] (see [38, 2.4, p. 19] and also in [11]) the operator ι is not used, and the space
P1 is written directly as a direct sum of M and of the completion of the orthogonal
of M . This amounts to identifying the orthogonal of M as being a subspace of its
abstract completion.

7 The Structure Theorem

We first give some background to provide motivation for the results presented in this
section. Denote by R0 the backward-shift operator:

R0f (z) = f (z) − f (0)

z
.

Beurling’s theorem can be seen as the characterization of R0-invariant subspaces
of the Hardy space H2(D), where D is the unit disk in C. These are the spaces
H2(D) � jH2(D), where j is an inner function. Equivalently, these are the repro-

ducing kernel Hilbert spaces with reproducing kernel kj (z,w) = 1−j (z)j (w)
1−zw

with j

inner. When replacing j inner by s analytic and contractive in the open unit disk,
it is more difficult to characterize reproducing kernel Hilbert spaces H (s) with re-
producing kernel ks(z,w). Allowing for s not necessarily scalar valued, de Branges
gave a characterization of H (s) spaces in [30, Theorem 11, p. 171]. This result was
extended in [7, Theorem 3.1.2, p. 85] to the case of Pontryagin spaces. The theorem
below is the analog of de Branges’s result in the slice hyperholomorphic setting, in
which the backward-shift operator R0 is now defined as

R0f (p) = p−1(f (p) − f (0)
) = (

f (p) − f (0)
)
�� p−1.

In order to prove the result, we will need a fact which is a direct consequence of
Lemma 3.6 in [13]: If f , g are two left slice hyperholomorphic functions then

(f �l g)∗ = g∗ �r f ∗.



Theorem 7.1 Let σ ∈ H
N×N be a signature matrix, and let M be a Pontryagin

space of H
N -valued functions slice hyperholomorphic in a spherical neighborhood

V of the origin, and invariant under the operator R0. Assume, moreover, that

[R0f,R0f ]M ≤ [f,f ]M − f (0)∗σf (0). (7.1)

Then there exists a Pontryagin space P such that ind− P = ν−(σ ) and an
L(P,H

N)-valued slice hyperholomorphic function S such that the elements of M
are the restrictions to V of the elements of P(S).

Proof We follow the proof in [7, Theorem 3.1.2, p. 85]. Let P2 = M ⊕ Hσ , and
denote by C the point evaluation at the origin. We divide the proof into a number of
steps.

STEP 1: Let p ∈ V and f ∈ M . Then,

f (p) = C � (I − pR0)
−�f. (7.2)

STEP 2: The reproducing kernel of M is given by

K(p,q) = C � (I − pR0)
−�

(
C � (I − qR0)

−�
)∗

.

STEP 3: Let E denote the operator

E =
(

R0
C

)
: M −→ P2.

There exists a quaternionic Pontryagin space P1 with indP1 = ν−(J ), and a
bounded right linear operator T from M into P1 such that

IM − EE[∗] = T [∗]T . (7.3)

Write (see [7, (1.3.14), p. 26])

(
IM 0
E IP2

)(
IM 0
0 IP2 − EE[∗]

)(
IM E[∗]

0 IP2

)

=
(

IM E[∗]
0 IP2

)(
IM − E[∗]E 0

0 IP2

)(
IM 0
E IP2

)
.

Thus,

ν−
(
IP2 − EE[∗]) + ν−(M ) = ν−

(
IM − E[∗]E

) + ν−(P2), (7.4)

and noting that ν−(P2) = ν−(M ) + ν−(σ ), we have (see also [7, Theorem 1.3.4(1),
p. 25])

ν−
(
IP2 − EE[∗]) + ν−(M ) = ν−

(
IM − E[∗]E

) + ν−(M ) + ν−(σ ).



Equation (7.1) can be rewritten as I − E[∗]E ≥ 0, and in particular ν−(I − E[∗]E) =
0. Thus,

ν−
(
IP2 − EE[∗]) = ν−(σ ).

Applying Theorem 6.7, we obtain the factorization (7.3).
We set

T [∗] =
(

B

D

)
: P1 −→ M ⊕ Hσ ,

and

V =
(

R0 B

C D

)
.

Let

S(p) = D + pC � (IM − pA)−�B.

STEP 4: We have that

σ − S(p)σS(q)∗ = C � (I − pR0)
−� � (I − pq )σM

(
(I − qA)−�

)∗
�r C∗,

where σM is a fundamental symmetry for M .
The computation is as in our previous paper [13]. �

We note that a corollary of (7.4) is:

Theorem 7.2 Let T be a contraction between right quaternionic Pontryagin spaces
of the same index. Then, its adjoint is a contraction.

Proof Indeed, when ν−(M ) = ν−(P2) we have

ν−
(
IP2 − EE[∗]) = ν−

(
IM − E[∗]E

)
. �

8 Blaschke Products

As is well known and easy to check, a rational function r is analytic in the open unit
disk and takes unitary values on the unit circle if and only if it is a finite Blaschke
product. If one allows poles inside the unit disk, then r is a quotient of finite Blaschke
products. This is a very special case of a result of Krein and Langer discussed in
Sect. 9 below. In particular, such a function cannot have a pole (or a zero) on the unit
circle. The case of matrix-valued rational functions which take unitary values (with
respect to a possibly indefinite inner product space) plays an important role in the
theory of linear systems. When the metric is indefinite, poles can occur on the unit
circle. See, for instance, [5, 14, 32, 46].

Slice hyperholomorphic functions have zeros that are either isolated points
or isolated 2-spheres. If a slice hyperholomorphic function f has zeros at Z =
{a1, a2, . . . , [c1], [c2], . . .} then its reciprocal f −� has poles at the set {[a1], [a2], . . . ,



[c1], [c2], . . .}, ai, cj ∈ H. So the sphere associated with a zero of f is a pole of
f −�. In other words, the poles are always 2-spheres, as one may clearly see from the
definition of f −� = (f s)−1f c; see also [47].

We now recall the definitions of Blaschke factors, see [13], and then discuss the
counterpart of rational unitary functions in the present setting. For the Blaschke fac-
tors, it is necessary to give two different definitions, depending on whether the zero
of a Blaschke factor is a point, see Definition 8.1, or a sphere, see Definition 8.3.

Definition 8.1 Let a ∈ H, |a| < 1. The function

Ba(p) = (1 − pā)−� � (a − p)
ā

|a| (8.1)

is called Blaschke factor at a.

Remark 8.2 Let a ∈ H, |a| < 1. Then, see Theorem 5.5 in [13], the Blaschke fac-
tor Ba(q) takes the unit ball B to itself and the boundary of the unit ball to itself.
Moreover, it has a unique zero for p = a.

The Blaschke factor having zeros at a sphere is defined as follows.

Definition 8.3 Let a ∈ H, |a| < 1. The function

B[a](p) = (
1 − 2 Re(a)p + p2|a|2)−1(|a|2 − 2 Re(a)p + p2) (8.2)

is called Blaschke factor at the sphere [a].

Remark 8.4 The definition of B[a](p) does not depend on the choice of the point a

that identifies the 2-sphere. In fact, all the elements in the sphere [a] have the same
real part and module. It is immediate that the Blaschke factor B[a](p) vanishes on the
sphere [a].

The following result has been proven in [13], Theorem 5.16.

Theorem 8.5 A Blaschke product having zeros at the set

Z = {
(a1,μ1), (a2,μ2), . . . ,

([c1], ν1
)
,
([c2], ν2

)
, . . .

}
,

where aj ∈ B, aj have respective multiplicities μj ≥ 1, aj �= 0 for j = 1,2, . . .,
[ai] �= [aj ] if i �= j , ci ∈ B, the spheres [cj ] have respective multiplicities νj ≥ 1,
j = 1,2, . . ., [ci] �= [cj ] if i �= j and

∑

i,j≥1

(
μi

(
1 − |ai |

) + νj

(
1 − |cj |

))
< ∞

is given by

∏

i≥1

(
B[ci ](p)

)νi

�∏

j≥1

(
Ba′

j
(p)

)�μj ,



where a′
1 = a1 and a′

j ∈ [aj ], for j = 2,3, . . ., are suitably chosen elements.

Remark 8.6 It is not difficult to compute the slice hyperholomorphic inverses of
the Blaschke factors using Definition 2.5. The slice hyperholomorphic reciprocal of
Ba(p) and B[a](p) are, respectively,

Ba(p)−� = a

|a| (a − p)−� � (1 − pā),

B[a](p)−� = (|a|2 − 2 Re(a)p + p2)−1(1 − 2 Re(a)p + p2|a|2).
The reciprocal of a Blaschke product is constructed by taking the reciprocal of the
factors, in the reverse order.

Remark 8.7 The zeroes of B[a](p) are poles of B[a](p)−� and vice versa. The
Blaschke factor Ba(p) has a zero at p = a and a pole at the 2-sphere [1/ā], while
Ba(p)−� has a zero at p = 1/ā and a pole at the 2-sphere [a].

Proposition 8.8 Let σ ∈ H
N×N denote a signature matrix (that is, σ = σ ∗ = σ−1)

and let (C,A) ∈ H
N×M × H

M×M be such that ∩∞
n=0 kerCAn = {0}. Let P be an

invertible and Hermitian solution of the Stein equation

P − A∗PA = C∗σC. (8.3)

Then, there exist matrices (B,D) ∈ H
M×N × H

×N×N such that the function

S(p) = D + pC � (IM − pA)−�B (8.4)

satisfies

σ −S(p)σS(q)∗ = C�(IM −pA)−�
(
P −1 −pP −1q

)
�r

(
IM −A∗q

)−�r �r C∗. (8.5)

Before the proof, we mention the following. The vectors f1, f2, . . . in the quater-
nionic Pontryagin space (P , [·, ·]P ) are said to be orthonormal if

[fj , f�]P =
{

0, if j �= �,

±1, if j = �.

The set f1, f2, . . . is called an orthonormal basis if the closed linear span of the fj

is all of P . In the proof we used the fact that in a finite-dimensional quaternionic
Pontryagin space an orthonormal family can be extended to an orthonormal basis.
This is true because any non-degenerate closed space in a quaternionic Pontryagin
space admits an orthogonal complement. See [6, Proposition 10.3, p. 464].

Proof of Proposition 8.8 Following our previous paper [13], the statement is equiva-
lent to finding matrices (B,D) ∈ H

M×N × H
×N×N such that

(
A B

C D

)(
P −1 0

0 σ

)(
A B

C D

)∗
=

(
P −1 0

0 σ

)
, (8.6)



or equivalently,

(
A B

C D

)∗ (
P 0
0 σ

)(
A B

C D

)
=

(
P 0
0 σ

)
. (8.7)

By Proposition 6.5, there exists a matrix V ∈ H
M×M and t1, s1 ∈ N0 such that

P = V σt1s1V
∗.

Equation (8.3) can be then rewritten as

V −1A∗V σt1,s1V
∗AV −∗ + V −1C∗σCV −∗ = σt1,s1,

and expresses that the columns of the H
(M+N)×M matrix

(
V ∗AV −∗
CV −∗

)
=

(
V ∗ 0
0 IN

)(
A

C

)
V −∗

are orthogonal in H
M+N , endowed with the inner product

[u,v] = u∗
1σt1,s1u1 + u∗

2σu2, u =
(

u1
u2

)
, (8.8)

the first t1 columns having self-inner product equal to 1 and the next s1 columns
having self-inner product equal to −1. We can complete these columns to form an
orthonormal basis of H

(M+N)×(M+N) endowed with the inner product (8.8), that is,
we find a matrix X ∈ H

(M+N)×N

((
V ∗AV −∗
CV −∗

)
X

)
∈ H

(M+N)×(M+N)

unitary with respect to (8.8). From

((
V ∗AV −∗
CV −∗

)
X

)∗ (
σt1s1 0

0 σ

)((
V ∗AV −∗
CV −∗

)
X

)
=

(
σt1s1 0

0 σ

)
,

we obtain (8.6) with
(

B

D

)
= X

(
V ∗ 0
0 IN

)
. (8.9)

�

When the signature matrix σ is taken to be equal to IN we can get another more
explicit formula for S.

Proposition 8.9 In the notation and hypotheses of the previous theorem, assume
σ = IN . Then, (IM − A) is invertible and the function

S(p) = IN − (1 − p)C � (IM − pA)−�P −1(IM − A)−∗C∗ (8.10)



satisfies

IN − S(p)S(q)∗ = C � (IM − pA)−�
(
P −1 − pP −1q

)
�r

(
IM − A∗q

)−�r �r C∗.
(8.11)

Note that formula (8.10) is not a realization of the form (8.4). It can be brought to
the form (8.4) by writing

S(p) = S(0) + S(p) − S(0)

= IN − CP −1(IM − A)−∗C∗

+ pC � (IM − pA)−�(IM − A)P −1(IM − A)−∗C∗.

Proof of Proposition 8.9 We write for p,q , where the various expressions make
sense,

S(p)INS(q)∗ − IN = (
IN − (1 − p)C � (IM − pA)−�P −1(IM − A)−∗C∗)

× (
IN − (1 − q)C � (IM − qA)−�P −1(IM − A)−∗C∗)∗ − IN

= C � (IM − pA)−� � � �r

(
IM − A∗q

)−�r �r C∗,

where

� = −(1 − p)P −1 � (IM − A)−∗(IM − A∗q
)−�r

− (IM − pA) � (I − q(IM − A)−1P −1

+ P −1(IM − A)−∗C∗C � (1 − p) �r (1 − q ) �r (IM − A)−1P −1.

Taking into account the Stein equation (8.3) with σ = IM , we have

� = P −1(IM − A)−∗ � �1 �r (IM − A)−1P −1,

where, after some computations,

�1 = {−(1 − p) �
(
IM − qA∗) �r P (IM − A)

− (IM − A)∗P � (IM − pA) �r (1 − q ) + (1 − p) �
(
P − A∗PA

)
�r (1 − q )

}

= (
IM − A∗)P(IM − A). �

We note that a space P(S) can be finite dimensional without S being square. For
instance,

S(p) = 1√
2

(
1 ba(p)

)
.

On the other hand, finite-dimensional P(S) spaces for square S correspond to the
σ -unitary functions studied in linear system theory. The factorization theory of these
functions (that is, the slice hyperholomorphic counterpart of [3–5]), will be consid-
ered in a future publication.



9 Krein–Langer Factorization

In the classical case, functions S for which the kernel (1.1) has a finite number of
negative squares have a special structure: They can be written as the quotient of a
Schur function and of a finite Blaschke product. This is a result of Krein and Langer.
See, for instance, [39]. In this section, we present some related results.

Proposition 9.1 Let S be an H
N×M -valued slice hyperholomorphic function in B

and of the form

S(p) = B(p)−� � S0(p), p ∈ B, (9.1)

where B is an H
N×N -valued Blaschke product and S0 is an H

N×M -valued Schur
multiplier. Then, S is a generalized Schur function.

Proof We follow the argument in [3, §6.2]. We have for n ∈ N0 and p,q ∈ B

pn
(
IN − S(p)S(q)∗

)
qn = pnB(p)−� �

(
B(p)B(q)∗

− S0(p)S0(q)∗
)
�r

(
B(q)∗

)−�r qn

= pnB(p)−� �
(
B(p)B(q)∗ − IN

+ IN − S0(p)S0(q)∗
)
�r

(
B(q)∗

)−�r qn.

Thus

KS(p,q) = B(p)−� �
(
KS0(p, q) − KB(p,q)

)(
B(q)∗

)−�r , (9.2)

where KS0 and KB are defined as in (1.1). Using Proposition 5.3 with κ = 0, we see
that formula (9.2) expresses the kernel KS as a difference of two positive definite ker-
nels, one being finite dimensional. It follows that KS has a finite number of negative
squares in B. �

Theorem 9.2 Let S be an H
N×M -valued slice hyperholomorphic function in B, and

such that the associated space P (S) is finite dimensional. Then, S admits a represen-
tation of the form (9.1).

Proof Since the coefficients spaces are quaternionic Hilbert spaces, R0 is a contrac-
tion in P (S). We proceed along the lines of [7, §4.2 p. 141] and divide the proof into
a number of steps.

STEP 1: The operator R0 has no eigenvalues of modulus 1.
Indeed, let f ∈ P (S) and λ ∈ H be such that R0f = f λ. Assume |λ| = 1. From

[R0f,R0f ]P (S) ≤ [f,f ]P (S) − f (0)∗f (0), f ∈ P (S) (9.3)

we get

[f λ,f λ] ≤ [f,f ] − f (0)∗f (0)



and so f (0) = 0. Reiterating (9.3) with R0f instead of f we get (R0f )(0) = 0, and
in a similar way, (Rn

0f )(0) = 0 for n = 2,3, . . . . But the (Rn
0f )(0) are the coefficients

of the power series of f , and so f = 0.

STEP 2: Let κ be the number of negative squares of KS . Then, R0 has a κ-
dimensional negative invariant subspace.

We write in matrix form A = R0 and C the point evaluation at the origin, and
denote by H the matrix corresponding to the inner product in P (S). Thus

A∗HA ≤ H.

Without loss of generality we assume that A is in Jordan form (see [48, 49]), and
we denote by L+ (resp., L−) the linear span of the generalized eigenvectors corre-
sponding to eigenvalues in B (resp., outside the closure of B). Since there are no
eigenvalues on ∂B, H

N (where N = dim P (S)) is spanned by L+ and L−. As in [36,
Theorem 4.6.1, p. 57], one shows that

dim L+ ≤ i+(H) and dim L− ≤ i−(H),

where i+(H) is the number of positive eigenvalues of H (and similarly for i−(H)),
and by dimension argument equality holds there. Thus L− is a κ-dimensional invari-
ant subspace of A.

Let G denote the solution of the matrix equation

G − A∗GA = C∗C.

STEP 3: Let M be the space corresponding to L− in P (S), endowed with the metric
defined by G. Then M is contractively included in P (S).

Let M denote the Gram matrix of M in the P (S) inner product. We show that
M ≥ P . Indeed, in view of (9.3), the matrix M satisfies

A∗MA ≤ M − C∗C.

In view of (8.3), the matrix M − P satisfies A∗(M − P)A ≤ M − P , or equivalently
(since A is invertible)

M − P ≤ A−∗(M − P)A−1

and so, for every n ∈ N,

M − P ≤ (
A−∗)n

(M − P)A−n. (9.4)

Since the S-spectrum of A is outside the closed unit ball, we have by the S-spectral
radius theorem (see [15, Theorem 3.10, p. 616], [28, Theorem 4.12.6, p. 155]

lim
n→∞

∥∥A−n
∥∥1/n = 0,



and so limn→∞ ‖(A−∗)n(P − M)A−n‖ = 0. Thus entrywise

lim
n→∞

(
A−∗)n

(P − M)A−n = 0

and it follows from (9.4) that M − P ≤ 0.
By Proposition 8.8,

M = P (B).

when M is endowed with the P metric. Furthermore,

STEP 4: The kernel KS(p,q) − KB(p,q) is positive.
Let kM(p, q) denote the reproducing kernel of M when endowed with the P (S)

metric. Then

kM(p, q) − KB(p,q) ≥ 0

and

KS(p,q) − kM(p, q) ≥ 0.

On the other hand,

KS(p,q) − KB(p,q) = KS(p,q) − kM(p, q) + kM(p, q) − KB(p,q)

and so is positive definite.
To conclude, we apply Proposition 5.1 to

KS(p,q) − KB(p,q) = B(p) �
(
IN − S0(p)S0(q)∗

)
�r B(q)∗,

where S(p) = B(p)−� � S0(p), to check that S0 is a Schur function. �
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