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Abstract Consider a mobile robot exploring an ini-

tially unknown school building and assume that it has

already discovered some corridors, classrooms, offices,

and bathrooms. What can the robot infer about the

presence and the locations of other classrooms and of-

fices and, more generally, about the structure of the

rest of the building? This paper presents a system that

makes a step towards providing an answer to the above

question. The proposed system is based on a gener-

ative model that is able to represent the topological

structures and the semantic labeling schemas of build-

ings and to generate plausible hypotheses for unvisited

portions of these environments. We represent the build-

ings as undirected graphs, whose nodes are rooms and

edges are physical connections between them. Given an

initial knowledge base of graphs, our approach, relying
on constructive machine learning techniques, segments

each graph for finding significant subgraphs and clus-

ters them according to their similarity, which is mea-

sured using graph kernels. A graph representing a new

building or an unvisited part of a building is eventu-

ally generated by sampling subgraphs from clusters and

connecting them.

Keywords Semantic mapping · Constructive machine

learning · Graph kernels

1 INTRODUCTION

The use of semantic knowledge has been shown to im-

prove the performance of autonomous robots executing
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tasks such as exploration and search (Quattrini Li et al,

2016; Stachniss et al, 2006). The semantic knowledge

regarding indoor environments takes usually the form

of a semantic map that associates semantic labels to

spatial portions of environments (Hemachandra et al,

2014; Mozos et al, 2005; Pronobis et al, 2010). For ex-

ample, some areas can be labeled as ‘rooms’, while other

areas could be labeled as ‘corridors’, according to the

so-called place classification (Pronobis et al, 2010).

Most of the methods for place classification follow

an approach that starts from the data perceived by

the sensors mounted on-board mobile robots (e.g., laser

range scanners and cameras), extracts some features

from these data, and classifies the area from which the

data have been acquired using (supervised) machine

learning techniques. This approach has been demon-

strated to be very effective in labeling parts of environ-

ments already visited by the robots, but usually does

not address the problem on inferring new knowledge

on the labels and, more generally, on the structure of

unvisited parts of environments (apart from some re-

markable examples, as that by Pronobis and Jensfelt

(2012)).

Availability of semantic knowledge about unvisited

portions of environments can be useful for online plan-

ning tasks, like exploration and search. Aydemir et al

(2013) show how search methods could be improved us-

ing a probabilistic model of the search environment able

to perform place classification and make local predic-

tions on the neighbouring unexplored spaces. Oßwald

et al (2016) show how knowing a rough topo-metric

graph of the environment improves the exploration per-

formance in an otherwise unknown environment. In (Quat-

trini Li et al, 2016) a correct prediction of the labeling of

the unexplored parts of an environment is shown to im-

prove the exploration performance of a team of robots.
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Finally, Perea Strom et al (2015) show that a predic-

tion of the structure of the environment based on pre-

viously acquired maps can be used for better exploring

challenging and repetitive environments by facilitating

loop closures.

While the above studies show that an (approximate)

semantic knowledge on the unexplored space is useful

for many online planning applications, methods for ob-

taining such knowledge are still largely missing. The ap-

proach proposed by Pronobis and Jensfelt (2012) and

by Aydemir et al (2013) consists in performing local

predictions, i.e., probabilistic predictions of the labels

of the unvisited rooms directly connected to the places

already visited (and already semantically labeled) by a

robot. The approach of Perea Strom et al (2015), in-

stead, predicts the structure of unknown parts of large

environments by matching the explored part with previ-

ously acquired maps of similar environments. Although

the predictions of this last method are based on knowl-

edge of the global map, they do not refer to semantic

labels, but to the topo-metric structure of the environ-

ment, expressed as a Voronoi graph.

In this paper, we propose a framework for obtaining

semantic knowledge on the global structure of a pre-

viously unknown (or partially visited) indoor environ-

ment (building). We propose to use a generative method

that, following the general pattern of Constructive Ma-

chine Learning (CML) (Costa, 2017) is able, starting

from a representative set of buildings, to model their

topological structures and labeling schemas and to gen-

erate hypotheses for the structure and the labels of

rooms for unknown (or partially observed) buildings.

In CML, the ultimate goal of learning is not to find

good models of the data, but instead to find particu-

lar instances of the domain which are likely to exhibit

some desired properties of the training data, while selec-

tively sampling from an infinite or exponentially large

domain. Although our approach may not find an ex-

act prediction of the structure of an unknown environ-

ment, it is nevertheless able to generate possibilities

that capture some of its fundamental structural prop-

erties (that can be useful to perform several tasks, as

discussed above).

Our generative model is based on a graph represen-

tation of indoor environments. More precisely, a (floor

of a) building is represented as an undirected graph,

whose nodes represent labeled rooms and edges rep-

resent direct physical connections between two rooms.

Labels of rooms can be, for instance, ‘office’, ‘kitchen’,

or ‘corridor’. Two examples of such a graph can be seen

in Fig. 1, where different colors indicate different labels.

Given an initial set of buildings, our approach seg-

ments the graphs representing these buildings for find-

(a)

(b)

Fig. 1 Graphs representing the topological structures of a
school (a) and an office (b) buildings superimposed to their
floorplans. Different colors indicate different types of rooms.

ing significant subgraphs, which are then clustered ac-

cording to their similarity. Similarity between graphs is

calculated using graph kernels.

In this paper, we use two graph kernels, namely

the Weisfeiler-Lehman Subtree Kernel (KWL) (Sher-

vashidze et al, 2011) and the Graph Hopper Kernel

(KGH) (Feragen et al, 2013). A general introduction

to kernels for structured data is given in the Appendix,

where both KWL and KGH are described.

Finally, a new graph representing a predicted build-

ing (or a predicted part of a building) is generated by

sampling subgraphs from clusters and connecting them.

The generated graph has similar topological structure

and semantic labeling schema as the graphs represent-
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ing the initial buildings and in this sense we say that

it represents a plausible hypothesis for (a part of) an

unknown building.

Our approach distinctively focuses on building types,

namely on specific classes of buildings that share the

same functions and, consequently, the same structures,

like school or office buildings (Luperto and Amigoni,

2014; Luperto et al, 2013). Moreover, our approach,

similarly to that by Aydemir et al (2012), can be thought

as a move from the mainstream room-level perspective,

modeling the semantic relations between perceived fea-

tures and rooms, to a building-level perspective, mod-

eling the connections between rooms and the structure

of buildings. Our approach does not directly rely on

sensor data acquired by robots, but on a knowledge

base of graph-based topological structures and labeling

schemas of buildings that can be obtained from previous

semantic mapping efforts or, as in our case, from other

sources (like collections of blueprints). It thus relies on a

priori knowledge rather than on incrementally-acquired

sensor-based knowledge.

This paper contributes a significant extension of our

previously published system (Luperto et al, 2015). In

particular, although the overall architecture of the sys-

tem is similar, the implementation of the steps is com-

pletely different. Specifically, here we employ a novel

Monte Carlo Markov Chain sampling mechanism and,

more importantly, we base our learning method on a

substantial use of graph kernels. Graph kernels allow

us to define a concept of similarity between two graphs

that is invariant with respect to the graph layout and

to the node ordering, thus performing more consistently

both in graph clustering and graph sampling. This con-

stitutes an improvement of the approach of (Luperto

et al, 2015), where graph similarity is computed using

the median graph, which depends on the node ordering.

The structure of the paper is the following. In Sec-

tion 2 we overview related work in the field of (in-

door) semantic mapping. In Section 3 we introduce the

main assumptions and the goal of our approach. Sec-

tion 4 describes how our model of buildings is extracted

from data. Section 5 presents our sampling mechanism,

which employs the model to generate new data. Experi-

mental results are reported in Section 6. Section 7 shows

a possible use of our approach. Section 8 concludes the

paper.

2 RELATED WORK

As discussed before, the mainstream approach to se-

mantic mapping involves the use of (supervised) learn-

ing methods to classify data coming from sensors mounted

on robots, like laser range scanners and cameras. The

classifiers are trained on data acquired by robot sensors

in previous runs and already labelled. This section sur-

veys a significant (although not exhaustive) sample of

such semantic mapping systems presented in the liter-

ature. We discuss also the most interesting extensions

toward the prediction of the semantic knowledge about

unvisited parts of environments.

Pronobis et al (2010) present a system which ex-

ploits multiple sensors (laser range scanners and cam-

eras) in order to associate semantic labels to areas of

the environment. Different features (such as SIFT or

CRFH for camera images) are extracted from sensory

input taken in an environment. Three labels describing

the perceived environment are then obtained indepen-

dently classifying the different features describing the

input data. A final label is eventually obtained by com-

bining the three labels with a multi-modal approach.

In (Zender et al, 2008), a general framework which

describes the characteristics of a semantic mapping robot

is presented. The main contribution of the paper is a

multi-layered spatial representation of the environment,

in which different input data and classifiers can be easily

integrated. A similar system, which builds a hierarchi-

cal semantic map from laser range scanner and camera

data, is presented by Galindo et al (2005).

The system in (Mozos et al, 2005) classifies single

laser range scans as belonging to rooms, corridors, hall-

ways, or doorways using AdaBoost. A similar approach,

which uses also features extracted from cameras, is re-

ported by Mozos et al (2007).

Sjoo (2012) proposes a system for the automatic

segmentation of two-dimensional indoor metric maps

into semantic units, evaluating spatial functions based

on features, such as connectivity (number of paths be-

tween rooms which cross a certain area) and functional

properties (e.g., the room is a work place). These spa-

tial functions are represented as energy functions, which

are evaluated over the points of the metric map. A se-

mantic label is then assigned to each point according

to the energy functions. A refinement step adjusts the

semantic labels by evaluating their spatial patterns.

A feature common to all the above studies is that

the semantic maps can be used to increase the aware-

ness of the robot only with respect to the portions of

the environment already known (visited). This is due to

the fact that those methods assign labels on the basis

of sensor readings acquired in the visited environment.

No knowledge can be obtained about the unknown (un-

visited) parts of the environment.

In the last years, some proposals that deal with this

limitation have been made.

For example, the system presented by Pronobis and

Jensfelt (2012) is a probabilistic semantic mapping frame-
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work that applies semantic labels according to six kinds

of environmental features (objects, doorways, room shapes,

room size, appearance, and associated spaces). The se-

mantic map is represented as a probabilistic chain graph

model, a generalization of Bayesian networks and Markov

random fields. The structure is adapted at run-time ac-

cording to the perceived data. The use of a chain graph

allows to consider the uncertainties of the sensory mod-

els and to estimate the unknown spatial environment.

More specifically, the chain graph can predict the ex-

istence of a feature of a certain category (like a room

and its label) in the unexplored space and can extend

the semantic map accordingly.

Another approach, proposed by Hemachandra et al

(2014), integrates metric, topological, and semantic rep-

resentations with information derived from natural lan-

guage descriptors obtained from human users. This is

done using a factor graph formulation of the seman-

tic properties and inferring these properties by com-

bining natural language descriptions and image- and

laser-based scene classifications. The result is a method

that, for instance, from the sentence “the exit is next

to the cafeteria down the hall” can infer the existence

and location of an exit and a cafeteria.

In (Aydemir et al, 2012), a rather different approach

is introduced, focused entirely on predicting the struc-

ture of an environment. The authors consider a knowl-

edge base of 38, 000 rooms (representing the MIT and

KTH university campuses). Each floor of the buildings

is represented as a graph, where nodes are rooms la-

beled according to their functions (classrooms, dorm-

rooms, offices, . . . ). The most frequent patterns of rooms

are then extracted using gSpan, a well-known algorithm

for finding the most frequent subgraphs in a set of

graphs. Using this information and given a partial map

of the known portion of an area, the method predicts

both the topology and the labels of unvisited rooms by

identifying the most common subgraphs that partially

overlap the partial map.

While Aydemir et al (2012) make predictions that

consist in identifying the subgraphs (portions of envi-

ronment) in the knowledge base that match the part

of the environment already visited, our approach gen-

erates hypotheses about the whole structure of a build-

ing, which are not necessarily limited to parts present

in the initial knowledge base. We will discuss in more

detail this point in Section 7.

In this paper, we describe a framework to learn the

underlying model that characterizes a set of graphs rep-

resenting floorplans of buildings. The resulting genera-

tive model is used to sample new graph instances. A

similar task, also following the Constructive Machine

Learning paradigm, is addressed in a recent paper by

Costa (2017). The author develops a graph grammar

to learn a distribution for Monte Carlo Markov chain

sampling in a data-driven fashion. Probability estima-

tors are implemented using one-class Support Vector

Machines that classify graphs based on graph kernels.

Differently from our approach, Costa (2017) uses graph

grammars to propose the edit operations which result in

the sampling of new graphs, while our method exploits

task-dependent knowledge on the role and the label of

each node in the graph for guiding the sampling.

3 OUR APPROACH

Our input representation of a floor of a building is an

undirected planar graph G = (N,E), where each node

n ∈ N is a room and each edge e = (n, n′) ∈ E

represents a physical connection between two rooms

n,n′ ∈ N (e.g., a doorway). A semantic label taken

from a finite set of labels L is assigned to each node.

Such graph G is called a semantic map. (See Table 1

for a summary of the notation used in this paper.)

As introduced and motivated in (Luperto and Amigoni,

2014; Luperto et al, 2013, 2015), we exploit the con-

cept of building type, developing specific models for each

building type. Classes of buildings that have the same

function, and thus similar structures, are called build-

ing types (e.g., schools, offices, ...). Reasoning on build-

ings of the same type allows us to identify their com-

mon characteristics, that can be modeled effectively.

We use data sets of semantic maps that we created by

hand from labelled floorplans of real buildings (see (Lu-

perto et al, 2013, 2015)) and consider the building types

School and office.

Specifically, we start from a graph database G, which

is either GS or GO, which are composed of floorplans of

50 real schools and of 40 real office buildings, amounting

to about 1800 and 1600 rooms, respectively.

The problem that we address in this paper is: given

G representing floorplans of a given building type and

a partial semantic map (graph) Ḡ describing the vis-

ited part of an environment (possibly empty), build a

predicted semantic map Ĝ (or, more generally, a set of

predicted semantic maps) that is maximally similar to

graphs of G and contains Ḡ as a subgraph.

Our method builds a model of environments in G
according to two main steps: segmentation, where each

graph G ∈ G is segmented in a set of smaller subgraphs,

and clustering, where similar subgraphs belonging to

different graphs are grouped together according to a

similarity measure (see Section 4). Once a model of

graphs in G is available, a sampling process generates

Ĝ (see Section 5).
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symbols meaning
G = (N,E) graph representing a semantic map with rooms n ∈ N and doorways e = (n, n′) ∈ E
G (GS , GO) set of semantic maps G (representing schools and offices, respectively)
G set of all the possible graphs
Ḡ partially known semantic map

Ĝ predicted semantic map

Ĝ (Ĝθ) set of predicted graphs Ĝ (according to a parameterization θ)
L (LR/C , Lschool, Loffice) set of semantic labels (room/corridor and labels for schools and offices, respectively)
S = {. . . , si, . . .} set of subgraphs of a semantic map G
si = (Ni, Ei) subgraph of a semantic map G with rooms Ni and doorways Ei
S set of all subgraphs obtained from all the graphs in G
c ∈ E cut edges for G
C set of cut edges for all G ∈ G
H = (S,U) functional graph with functional areas S and their connections U
H set of functional graphs

Ĥ = (Ŝ, Û) predicted functional graph
C = {. . . , Cj , . . .} set of clusters obtained from S
M = (G,H, C) model of buildings in G
V Gc = {. . . , vGj , . . .} ordered set of numbers vGj of subgraphs of G belonging to clusters Cj
V̂c = {. . . , v̂j , . . .} ordered set of numbers v̂j of subgraphs of Ĝ belonging to clusters Cj
Sû set of all the pairs of nodes n of ŝi and n′ of ŝj , where û = (ŝi, ŝj)
Q set of 1-neighborhood subgraphs of all c ∈ C
s̄1, s̄2, . . . known subgraphs of Ḡ
C̄1, C̄2, . . . clusters of s̄1, s̄2, . . .

Table 1 Meaning of the symbols denoting the main entities that are used in this paper.

classroom support teachers' 
room laboratory

small admin. 
room

medium 
admin. room

big admin. 
room gym kitchen

closet conference 
room

medium 
service room

big service 
room library

bathroom washroom cafeteria 
canteen

corridor lobby hall

entrance elevator stairs
CORRIDORS

ROOMS

(a) school.

conference 
room

executive 
office

conference 
hall

cubicule openspace

office shared office

small admin. 
room

medium 
admin. room

big admin. 
room

convenience 
store

medium 
service room

big service 
room

collective 
service room

reception kitchen

closet

bathroom washroom cafeteria

corridor lobby hall

entrance elevator stairs

CONNECTION

ENTRANCE 

ROOMS

FUNCTIONAL

SERVICE

CORRIDORS

(b) office.

Fig. 2 Labeling schemas for school (a) and office (b)
building types. Colors and shapes associated to labels are
used in the semantic maps shown through the paper.

3.1 Labeling Schema

In this paper, we use a hierarchical semantic labeling

schema to have two different points of view, at two dif-

ferent levels of abstraction, on the semantics of the en-

vironment. At the top level, the labeling schema called

LR/C contains only two general categories:

– room: a space in which an activity is performed;

– corridor: a space used to connect other spaces

together.

The categorization between rooms and corridors is

particularly important in our context since graphs are

highly disassortative when considering the LR/C schema

(i.e., rooms are mostly connected to corridors). This

results in corridor nodes having significantly larger

degrees than room nodes and suggests the use of cor-

ridors as the key nodes of our reasoning mechanism.

For clarity, in the following figures, a square is used

for corridors, while a circle is used for rooms, as in

Fig. 1.

This general labeling schema is shared by all build-

ing types and constitutes the basis for specific building

type labeling schemas Ltype. For the school building

type, we consider that a node room is further spe-

cialized by labels such as classroom, laboratory,

teachers’ room, or by labels as administrative of-

fices, canteens, bathrooms, . . . . For the office

building type, we consider that a node room is fur-

ther specialized by labels such as office, conference
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room, or reception. The complete set of labels rela-

tive to the School building type (Lschool) and to the

Office building type (Loffice) have been extracted from

architectural sources (Neufert and Neufert, 2012; The

Whole Building Design Guide, 2015) and are reported

in Fig. 2.

4 MODEL BUILDING

4.1 Segmentation

Each graph G = (N,E) ∈ G is segmented in smaller,

non-overlapping subgraphs S = {s1, s2, . . . }, such that,

for each pair si, sj ∈ S (with si = (Ni, Ei) and sj =

(Nj , Ej)), it holdsNi∩Nj = ∅ and such that
⋃
si∈S Ni =

N . Segmentation is performed by removing some edges,

or cuts, c ∈ E from G and aims at identifying the

functional areas. Functional areas are groups of neigh-

bouring rooms with a similar function within the build-

ings (i.e., a subgraph), which are connected to (nearby)

corridors (e.g., a cluster of offices, an administrative

section, a group of service rooms such as bathroom,

kitchen, and vending machines).

An example of functional areas can be seen in Fig. 3.

Fig. 3a displays a research office building (which is the

same of Fig. 1b). We can notice that rooms with a sim-

ilar function are usually close to each other and con-

nected to the same corridor (in green). It is thus pos-

sible to separate the floor plan into functional areas,

shown with different colors in Fig. 3b.

In our example, we highlight in red the parts where

offices are located, in blue the parts with research labs,

and in orange the parts where support rooms, such as

stairs, vending machines, elevators, or bathrooms, are

located. This representation can be summarized in the

graph structure of Fig. 3c. Differently from Fig. 1b, in

Fig. 3c each node of the functional graph represents a

functional area (namely a set of connected rooms that

share the same function).

The identification of functional areas introduces a

new abstract perspective that better represents the struc-

ture of the buildings. For instance, the functional graph

of Fig. 3c shows that research labs (blue node) are con-

nected to offices (red nodes) only through service rooms

(orange nodes), regardless of the specific rooms that are

connected. In our approach, we work with a two-layered

representation composed of semantic maps (like that of

Fig. 1b) and functional graphs (like that of Fig. 3c).

The segmentation step is thus particularly impor-

tant in our framework since it should divide each floor

of a building according to the structure of the graph

and the function of the rooms.

Two different unsupervised methods are used for

segmentation. The first method is the Normalized Cut

spectral method of Shi and Malik (2000), or ncut, as

we used in (Luperto et al, 2015). ncut is a general and

context-independent segmentation method that parti-

tions a graph into components of roughly the same size.

Specifically, ncut recursively partitions a graph G into

two components sa = (Na, Ea) and sb = (Nb, Eb) based

on the magnitude of the eigenvalues of the Fiedler vec-

tor obtained after an ad hoc eigen-decomposition of the

graph adjacency matrix. Each part is then recursively

segmented until a threshold on the normalized-cut mea-

sure for each partition is reached. The normalized-cut

measure is computed as:

normalized-cut(sa, sb) =
Cut(sa, sb)

Assoc(sa, G)
+

Cut(sa, sb)

Assoc(sb, G)
,

where w(u, v) is the weight of the edge between the

nodes u and v (in our setting, we use unweighted edges

and so w(u, v) = 1 if u and v are connected by an edge

and w(u, v) = 0 if u and v are not connected by any

edge). Cut(sa, sb) is defined as:

Cut(sa, sb) =
∑

u∈Na,v∈Nb

w(u, v)

and Assoc(sa, G) as:

Assoc(sa, G) =
∑

u∈Na,t∈N
w(u, t).

Similarly for Assoc(sb, G).

The second method (that we refer to as corr) de-

pends on our particular domain and is based on the

distinction between rooms and corridors of LR/C . It

follows the intuition that corridors can be considered

as the hubs of the graphs. Under these premises, corr

assigns each room node to the nearest corridor node

(if there is a tie, the corridor with the highest degree

is selected). Each edge between two corridor nodes

or between two room nodes associated with two differ-

ent corridors is considered as a cut c and removed

by the segmentation process. This second segmentation

method, unlike ncut, does not guarantee to produce a

balanced segmentation of the graph; however, in our

problem domain, both segmentation methods perform

similarly in terms of number and size of subgraphs ob-

tained after the segmentation, as shown in the example

of Fig. 4.

The results of the segmentation process performed

over a graph (semantic map) G can be represented as a

graph H = (S,U), where every node in S is a subgraph

s ∈ S and an edge u ∈ U exists between two nodes
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(a) Original floor plan. (b) Functional areas. (c) Functional graph.

Fig. 3 Functional analysis of a research office building floor plan. In Fig. 3a the corridors are highlighted in green. In Fig. 3b
the floor plan is segmented in 9 functional parts, one for each corridor. Similar rooms are grouped together with the corridors
to which they are connected to. Each part is a functional area and is colored according to is function: red means office, blue
means research labs, orange means service rooms such as stairs, elevators, bathrooms, storage rooms, and meeting rooms. From
such a segmentation, an abstract graph representation in the form of a functional graph is derived in Fig. 3c.

(a) Initial graph G. (b) Subgraphs obtained with
ncut.

(c) Subgraphs obtained with
corr.

Fig. 4 An example of applications of different segmentation methods to a graph G.

si, sj ∈ S (where si = (Ni, Ei) and sj = (Nj , Ej)) if

there is a cut c = (ni, nj) ∈ E between two nodes ni ∈
Ni and nj ∈ Nj . We refer to the graph H as functional

graph. A pair composed of a G ∈ G and of the associated

H ∈ H, where H is the set of all functional graphs,

constitutes a representation of the same building at two

different levels of abstraction.

4.2 Clustering

After all graphs G ∈ G have been segmented, the clus-

tering step is responsible for grouping together all the

subgraphs that have a similar structure, and thus to

identify the same functional areas over several build-

ings. All the subgraphs S` obtained from all the graphs

G` in G are now considered altogether: S = S1 ∪ S2 ∪
· · · ∪ S|G|. For each pair of subgraphs si, sj an affinity

value φ(si, sj) is computed. Affinity φ(si, sj) measures

the similarity between subgraphs and is computed using

one of the graph kernels K (KWL or KGH) described in

the Appendix, exploiting the fact that each subgraph

si = (Ni, Ei) is actually a graph in which each node

n ∈ Ni is described by its label in Lschool or in Loffice

(and its correspondent label in LR/C):

φ(si, sj) = K(si, sj),

so φ depends on both the topological structure of si
and sj and on the labels of their nodes.

In order to cluster together similar subgraphs, we

use the affinity propagation clustering algorithm (Frey

and Dueck, 2007). Affinity propagation is a message

passing clustering algorithm which selects a subset of

the data as models for their relevance. Each data ele-

ment exchanges two kinds of messages with other data

elements indicating how much it is suited to became a

model for the other elements and how much each ele-

ment is considered suited to be a model by the other

nearby elements. These messages are exchanged recur-

sively until stable clusters are formed or a maximum

number of iterations is reached. Affinity propagation
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does not require the number of clusters as a parameter.

Affinity propagation uses a damping factor α between

0 and 1 for smoothing the message update, in order

to prevent oscillations and increase convergence rate to

stable clusters. The use of affinity propagation cluster-

ing is a difference from our previous work (Luperto et al,

2015) where clustering is performed using Normalized

Cut ncut (Shi and Malik, 2000), which sometimes re-

sults in a high number of small clusters and/or in a

big cluster containing almost all of the data and which

is experimentally outperformed by affinity propagation

(data are not reported here).

The clustering step outputs a set of clusters C =

{C1, C2, . . .} and a function ψ : S → C that maps

each subgraph to its cluster. Given a subgraph s, we

call C = ψ(s) the cluster to which s belongs. A clus-

ter C is expected to represent a functional area and

the subgraphs in the cluster are parts of (possibly dif-

ferent) buildings that share the similar structure and

labels. The clustering results are influenced by the way

in which the segmentation is performed, by the cluster

algorithm, and by the graph kernel used.

The semantic maps, the functional graphs, and the

clusters constitute the model M = {G,H, C} for a spe-

cific building type constructed starting from G.

4.3 Segmentation and Cluster Evaluation

Our segmentation and clustering steps are implemented

in matlab R2015b. We present here a quantitative

evaluation of the models built by our approach. Results

are relative to GS (schools), results for GO are qualita-

tively similar and are omitted for brevity. Within our

context, we consider as desirable the presence of the

following features: a high intra-cluster similarity, a low

inter-cluster similarity, a limited number of clusters, a

number of clusters that is stable with respect to the

increase of the number of graphs in the dataset G, and

a similar size for each cluster (i.e., the absence of many

small clusters with less than 5 subgraphs).

We empirically find that a damping factor of α = 0.8

for affinity propagation produces clusters with all the

desired properties for our data sets. Remember that

affinity φ is calculated according to KWL or KGH. Clus-

ters obtained using KGH present better features than

those obtained withKWL, but at the expense of a longer

computing time. KGH features, computed on shortest

paths, capture the structure of the graphs of our do-

main better than the high-dimensional sparse features

computed on subtrees by KWL. Using KWL, we obtain

a higher number of clusters (27 and 12 for KWL and

KGH, respectively, using 50 graphs in GS that are seg-

mented by corr into 287 subgraphs) with highly differ-

ent numbers of subgraphs per cluster. On a i7QuadCore

Intel 820M 16GB computer, the segmentation and clus-

tering steps take less than one minute using KGH and

KWL on all the 50 graphs of GS . Note that clustering

is performed only once and then clusters are stored in

the modelM for being sampled later. From now on, we

consider only KGH, which performs better than KWL.

Both segmentation methods ncut and corr perform

correctly for the task, producing a partition of each

graph G ∈ G in components of approximatively the

same size, by removing a limited number of edges. How-

ever, different segmentation methods result in slightly

different clusters. ncut segments 50 graphs into 207

subgraphs, which are then clustered into 17 clusters.

corr results in a higher number of subgraphs (287) but

in a lower number of clusters (12).

Further results are shown in Fig. 5. Fig. 5a and

Fig. 5c show intra-cluster similarity and inter-cluster

similarity for clusters obtained after segmentation per-

formed with ncut and corr, respectively. Figures show

heat maps. A heat map is a |C| × |C| matrix where cell

(i, j) is light (dark) if subgraphs in Ci are similar to (dif-

ferent from) subgraphs in Cj . Similarities between sub-

graphs are computed using graph kernels. High intra-

cluster similarity results into light diagonal in the map,

where low inter-cluster similarity results in dark cells

outside the diagonal. Fig. 5b and Fig. 5d show the num-

ber of subgraphs in each cluster for ncut and corr,

respectively. Each column indicates a separate cluster

and its height represents the corresponding number of

subgraphs.

Although corr produces a smaller number of clus-

ters than ncut, their performance reported in Fig. 5

is similar both in terms of the intra-cluster and inter-

cluster similarities (heat maps) and in terms of the

number of subgraphs in each cluster (bar charts). This

is why the two segmentation methods are re-evaluated

in Section 6, according to their impact on sampling.

Note, however, that differently from corr, ncut guar-

antees by design that all subgraphs have a similar size,

i.e., that there are no subgraphs containing only one or

two nodes or, on the other side, subgraphs containing

most part of the graph. Actually, using corr, we ob-

tain such undesirable graph partitioning only in very

few cases (see also the example of Fig. 4).

5 Sampling from the model

The modelM = {G,H, C} obtained in the previous sec-

tion can be used for generating new graph samples rep-

resenting buildings or their parts. Formally, we assume

that all graphs G in our dataset G follow the same (un-

known) graph probability distribution P that is shared



Predicting the Global Structure of Indoor Environments 9

1

0

1
2

3
4

5
6

7
8

9
10

11
12

13
15

16
17

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17C

(a) Heat map using ncut.

0

10

20

30

40

50

60

(b) Number of subgraphs in
clusters using ncut.

11

0
1 2 3 4 5 6 7 8 9 10 11 12

1
2

3
4

5
6

7
8

9
10

11
12

C

(c) Heat map using corr.

0

10

20

30

40

50

(d) Number of subgraphs in
clusters using corr.

Fig. 5 Results of the clustering process for two different seg-
mentation algorithms. The color of a cell (i, j) in the heat
map represents if subgraphs in the cluster Ci are, on average,
similar to (light color) or different from (dark color) the sub-
graphs in Cj (cluster numbers are reported on the axes). Bar
charts have a column for every cluster in C. Heights of the
columns correspond to the number of subgraphs belonging to
the clusters. The results are obtained on GS .

by all the buildings of the same type. This is reason-

able since G refers to buildings of a single building type

(GS or GO in our experiments). Sampling a new graph

from an unknown graph distribution P is a Construc-

tive Learning Problem (CLP) (Costa and De Grave,

2010), which can be seen as the task of sampling a

graph from an empirical conditional probability distri-

bution using an adaptive data-driven procedure. The

model M is thus used to obtain an empirical proba-

bility distribution (which approximates P ) for the set

of graphs G using a hierarchical sampling process. The

empirical distribution is modeled by a Markov Chain

(MC) and the sampling process exploits a Monte Carlo

Markov Chain (MCMC) (Koller and Friedman, 2009).

In order to sample a new graph Ĝ, the sampling process

starts from generating its abstract structure, namely its

functional graph Ĥ, adding incrementally more details,

following, in the reverse order, the segmentation and

clustering processes of Section 4. Sampling is composed

of a sequence of four steps δ, each one modeling an em-

pirical probability distribution Pδ by using a MCMC

method.

In this section, first, a more formal definition of

the sampling problem is given. Then, we introduce the

MCMC method that approximates the empirical prob-

ability distributions Pδ for the sampling steps. Finally,

we describe each sampling step.

5.1 Generating Graphs from Empirical Distributions

Given a general domain of graphs G, in this section we

define the task of sampling a set of graphs Ĝ ⊆ G us-

ing an adaptive data-driven procedure. Let P be the

(usually unknown) probability distribution associated

to G. Let Pθ be an approximation of P parametrized

by θ. Following an approach similar to that by Costa

(2017), define L as a non-negative convex function that,

given two probability distributions over G, returns zero

if the two distributions are identical and positive values

if the two distributions are different (the larger the val-

ues the more different the distributions). We can define

an instance of the function L as:

L(P, Pθ) = DKL(P‖Pθ) +DKL(Pθ‖P ),

where DKL is the Kullback-Leibler divergence:

DKL(P‖Pθ) =
∑
G∈G

P (G) log
P (G)

Pθ
.

(Similarly for DKL(Pθ‖P ).)
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The sampling problem, following the Constructive

Machine Learning paradigm, is to find a parametriza-

tion θ∗ that results from the following optimization:

θ∗ = arg min
θ

L(P, Pθ). (1)

Since P and Pθ are both unknown and G has a

possibly infinite cardinality, we consider a finite set of

examples G ⊆ G, that are drawn according a proba-

bility distribution PG ∼ P . Let Ĝθ be a sample set of

graphs randomly generated according to Pθ and let fG
(respectively, fĜθ ) be the probability distribution esti-

mator for the samples in G (respectively, Ĝθ); we can

assume:

fG ∼ PG ∼ P
fĜθ ∼ Pθ.

Thus, we can approximate (1) with:

θ∗ = arg min
θ

L(fG , fĜθ ), (2)

and (2) returns the solution of our constructive learning

problem.

The parametrization θ∗ can be used to model Pθ∗ ,

in order to sample from it a new set of graphs Ĝ. Since

Pθ∗ is unknown, in the following section we describe

our proposed procedure to obtain fθ∗ starting from an

initial set of data and we show how it can be used for

sampling new data.

5.2 Monte Carlo Markov Chains

In our particular context, the set of graphs G ⊆ G
represent floors of buildings. In order to drawn sam-

ples from a distribution that approximates P we use

a Metropolis Hastings algorithm, a particular type of

MCMC method (Koller and Friedman, 2009). This sec-

tion provides a general description of the method, which

is applied, with different parameters, in the four steps of

our sampling method. The detailed implementation of

the method for each step is described in the following.

Generally speaking, the Metropolis Hastings algo-

rithm is defined by a transition model T (g → g′) that

specifies, for each pair of states (graphs, in our case) g,

g′ ∈ G the probability of going from g to g′ according

to a stationary distribution Π (note that, when graphs

in G are intended as states for MCMC we use the low-

ercase symbol g):

Π(G = g′) =
∑
g∈G

Π(G = g)T (g → g′).

The transition model T is defined in terms of transi-

tion kernel T , that generates, using some edit function,

successors of a state g and then selects randomly the

next candidate g′ from these successors. We can either

accept the proposal (and move to g′) or reject it (and

stay at g), using a transition probability A(g → g′).

Namely:

T (g → g′) = T (g → g′)A(g → g′) g 6= g′

T (g → g) = T (g → g′)+
∑
g 6=g′

T (g → g′)(1−A(g → g′)).

The acceptance probability A(g → g′) reduces to:

A(g → g′) = min
(
1,
Π(g′)T (g′ → g)

Π(g)T (g → g′)

)
.

Since our proposal distributions are (in first approxima-

tion) symmetric, we have that T (g → g′) = T (g′ → g).

Finally, we approximate Π(g) with a data-driven

adaptive Boltzmann-like function b:

Π(g) ∼ b(g) = e−αΓ (g,G), (3)

where G is our set of samples, Γ is a cost function that

penalizes graphs g that are different from those in G,

and α is a user-defined parameter (which is set to 1 if

not indicated differently). For each step of the sampling

process described in the following, a definition of T and

of Γ will be provided.

The number of iterations of each MCMC is selected

in order to have reasonable chances that the mixing

time is reached (i.e., that the transition model reaches

a stationary distribution). We use an heuristic based on

the observation that different sets of samples collected

at different times should, if the mixing time has been

reached, show similar variance in each of the chains.

More formally, we run K separate chains for τ+M steps

starting from different starting points. After discarding

the first τ samples from each chain, the convergence is

checked (see (Koller and Friedman, 2009, p. 522-523)

for details). If the mixing time has been reached, then

τ is chosen as the minimum number of iterations, oth-

erwise τ is increased by a fixed amount and the test is

repeated.

5.3 Hierarchical Sampling

The hierarchical sampling process that creates a new

graph Ĝ from a graph model M = (G,H, C) is divided

in four steps:

1. cluster configuration sampling,

2. functional graph sampling,

3. subgraphs sampling,

4. node connections sampling.
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A running example of these four steps is shown in Fig. 6

and used as a reference in the following.

Hierarchical sampling allows us to change the struc-

ture of a graph in a fast way during functional graph

sampling (e.g., by adding or removing a subgraph or by

connecting two subgraphs), in order to obtain rather

different graphs in a small number of iterations. Di-

rectly sampling node labels and node connections at

the level of semantic maps requires a larger number of

iterations, since graph kernels compute similarities be-

tween graphs by considering the entire graph structure,

and not only the single labels. Hence, adding, removing,

or changing the labels of the single nodes in a semantic

map result in similar graphs (according to graph ker-

nels), thus requiring several iterations for covering the

solution space. Moreover, note that worst-case compu-

tational complexity of graph kernels is strongly related

to the number of nodes and edges of the graph popu-

lation (see Appendix), and functional graphs have far

less nodes than the graphs representing semantic maps

(see also Table 4 and the relative discussion reported

below).

5.3.1 Cluster configuration sampling

The first step is the cluster configuration sampling that

returns the composition V̂c of the sampled graph Ĝ

in terms of how many subgraphs for each cluster are

present in Ĝ.

The cluster configuration of each original graph G ∈
G is a vector:

V Gc = {vG1 , vG2 , . . . , vG|C|}, v
G
i ∈ N,

where vGi represents the number of subgraphs of G (in

which G has been segmented) belonging to the cluster

Ci ∈ C.
Using the Metropolis Hastings algorithm, we start

from a random initialization of V̂c = {v̂1, v̂2, . . . , v̂|C|}
and employ a transition kernel T1 where, at each step,

one component of the vector V̂c is selected at random

and increased or decreased by one unit. Values of each

v̂i are bounded in the interval [0,max
G∈G

vi
G].

The cost function Γ1 is defined as:

Γ1(V̂c) =
∑
G∈G

dpw(V̂c, Vc
G),

where dpw is the pairwise vector distance and V Gc is the

vector representing the graph G in G. In (3), α is set

to 0.7 in case of ncut segmentation and to 0.55 in the

case of corr segmentation. After τ1 = 300 iterations

the sampled vector V̂c is considered as final and the

sampling continues with the next step.

3 4 5 7 8 9 10 12

3 4 5
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10 12
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Fig. 6 An example of the sampling steps for generating a
graph Ĝ. Subfigure A shows the sampled cluster configura-
tion. Subfigure B represents the sampled functional graph.
Subfigure C displays the sampled subgraphs for each cluster.
Subfigure D shows the final sampled semantic map. Numbers
denote clusters of subgraphs.
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In the example of Fig. 6, the sampled cluster con-

figuration is:

V̂c = {0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 2}

where |C| = 12, and is graphically represented in Fig. 6A.

5.3.2 Functional graph sampling

In the second sampling step, the sampled functional

graph Ĥ = (Ŝ, Û) is computed from the cluster config-

uration V̂c. Ĥ is obtained creating a node ŝi ∈ Ŝ for

each subgraph indicated by v̂i and sampling an edge

û = (ŝi, ŝj) between two subgraphs ŝi and ŝj that will

be later connected.

This step is performed using the Metropolis Hast-

ing algorithm introduced in Section 5.2 by selecting a

random initialization for the edges of Ĥ. The transi-

tion kernel T2 is symmetric and consist in three moves:

add an edge to the graph (randomly selecting the two

nodes ŝi and ŝj to be connected), remove an exist-

ing edge (selected randomly), and swap a node in an

edge û (randomly select û = (ŝi, ŝj) and replace ŝj
with a different node ŝt, thus transitioning from û to

û
′

= (ŝi, ŝt)). Each move is chosen using the following

probabilities:

Padd = 1− e−λ1
|Ŝ|
|Û| ,

ε = 1− eλ2
|Û|
|Ŝ| ,

Premove = (1− Padd)ε, and

Pswap = (1− Padd)(1− ε),

where |Ŝ| and |Û | are the number of nodes and edges

in Ĥ, respectively, and λ1 and λ2 are user defined pa-

rameters that are set empirically to reduce the mixing

time of the MCMC. In our experiments, λ1 = λ2 = 0.1.

A transition is either accepted or rejected by evalu-

ating a cost function Γ2:

Γ2(Ĥ) =
∑
Hi∈H

K(Ĥ,Hi)

where K is a graph kernel. For this step we use KWL

as graph kernel, since it guarantees similar performance

but at a significant lower computational cost than KGH,

and the cost function Γ2 should be evaluated once for

every iteration of the MCMC. The total number of iter-

ations τ2 for this step is selected to be a random number

higher than 2000.

In the example of Fig. 6, the generated functional

graph Ĥ is shown in Fig. 6B, where the numbers indi-

cate the cluster of each subgraph (node of the functional

graph).

5.3.3 Subgraphs sampling

In the third sampling step, a specific subgraph ŝi ∈ Ci
for each node of Ĥ is selected. This is done by picking

with uniform probability a subgraph ŝi from cluster Ci
until v̂i subgraphs are sampled from Ci. Note that a

cluster C can contain several repetitions of the same

subgraph, due to its repeated presence in the graphs G.

The subgraphs sampling step is performed atomically

and does not use the MCMC framework.

In the example of Fig. 6, the sampled subgraphs are

listed in Fig. 6C. Boxes are highlighted using the same

colors for nodes in Figs. 6A and 6B, and the cluster

number is shown at the bottom left in each box.

5.3.4 Node connections sampling

The last step is the node connections sampling, where

the final graph (semantic map) Ĝ = (N̂ , Ê) is obtained

from the functional graph Ĥ = (Ŝ, Û). N̂ is the set of

all the nodes N̂i of the subgraphs ŝi = (N̂i, Êi) sampled

in the previous step, while Ê is initialized with the sub-

graphs edges Êi (and with no edges between nodes of

different subgraphs). Then, for each edge û = (ŝi, ŝj) ∈
Û in the functional graph Ĥ, an edge e = (n̂k, n̂l) ∈ Ê
between two nodes n̂k ∈ ŝi and n̂l ∈ ŝj should be

created (here, with a slight notation overload, we use

n̂k ∈ ŝi instead of n̂k ∈ N̂i, where ŝi = (N̂i, Êi)). Ide-

ally, this step is the opposite of the graph segmentation

procedure described in Section 3, and a new connec-

tion e should be added where a cut c would have been

performed during segmentation.

Adding a connection e is a local edit operation on

the graph Ĝ which results in a global change in the
graph’s layout and in its structural properties. Given a

connection û = (ŝi, ŝj) between two subgraphs ŝi and

ŝj defined in the functional graph, call Sû the set of all

pairs of nodes belonging to the two subgraphs:

Sû = {(n, n′) : n ∈ ŝi, n′ ∈ ŝj}.

Each pair of nodes in Sû is a potential candidate for

adding a connection between the two subgraphs con-

nected by û in the functional graph Ĥ. Given a pair of

nodes (n, n′) ∈ Sû and the local neighbourhoods of n

and n′ in Ĝ, the function Φ : Sû → [0, 1] represents the

probability that a connection exists between the two

nodes. Φ is computed as a product of different poten-

tials, exploiting the local structure of the neighbours of

the nodes:

Φ(n, n′) = Ξ(n, n′) · Λ(n) · Λ(n′) · Υ (L(n),L(n′)).

The first potential, Ξ(n, n), is based on the local

neighbourhood of the candidate edge (n, n′). We define
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as Nε(e) the ε-neighbourhood of an edge e = (n, n′),

which is a subgraph composed of the edge e, its two

nodes n and n′, and all the nodes and edges that are

at distance ε from n or n′ (distance is the number of

hops). Given the set C of all cuts c performed on the

original graphs in G, we compute the set Q of all their

1-neighbourhoods, Q = {N1(c) : c ∈ C}. The potential

Ξ is then computed as:

Ξ(n, n′) =

∑
x∈Q

k(d(N1(n, n′), x), d̄x)∑
x∈Q

∑
y∈Q

k(d(y, x), d̄x)
,

where d̄x = 1
|Q|

∑
y∈Q

d(x, y), d(x, y) is the distance be-

tween two graphs x and y computed using a graph

kernel (KWL in our case), and k is a Gaussian kernel

k(d′, d′′) = e−
‖d′−d′′‖2

2σ2 (σ = 0.5 in our experiments).

The second potential, Λ(n), is based on the pref-

erential attachment principle introduced by Barabási

and Albert (1999) (and empirically observed in graphs

representing indoor buildings in Aydemir et al (2012)),

which assigns to each node n a probability of having a

connection that is proportional to its degree D(n):

Λ(n) =
D(n)∑

n′′∈N̄c
D(n′′)

,

where N̄c is the set of the nodes that appear in a cut

c ∈ C. Λ(n′) is computed similarly.

The third (and last) potential function, Υ (L(n),L(n′)),

is evaluated considering all the cuts in C. Considering

the nodes n and n′ and their labels L(n) and L(n′), Υ

calculates the frequency of a cut c ∈ C between two

nodes with the same labels.

The probability Φ(n, n′) is then used to select, for

each edge û between two subgraphs in a functional

graph Ĥ, which pair of nodes n, n′ belonging to the two

subgraphs should be connected in Ĝ. This step is per-

formed using the MCMC algorithm. A transition kernel

T4 selects randomly an edge û from the set of edges Û

of the functional graph Ĥ and selects randomly a pair

of nodes from Sû to be connected according to the fol-

lowing probability distribution:

Pconn(n, n′) =
Φ(n, n′)∑

ṅ,ṅ′∈Sû
Φ(ṅ, ṅ′)

.

The transition obtained with this edit operation is ac-

cepted or rejected according to a cost function Γ4:

Γ4(Ĝ) =
∑
G∈G

K(Ĝ,G), (4)

whereK is a graph kernel. For this last step, the MCMC

is run for more than 100 iterations, after starting from

a random initialization of the connections between two

nodes in Sû for each û ∈ Û computed using Pconn.

We use KWL as graph kernel in (4), since it guarantees

similar performance, but at a significant lower computa-

tional cost, than KGH, and the cost function Γ4 should

be evaluated once for each iteration.

In the example of Fig. 6, the final sampled semantic

map is shown in Fig. 6D. The edges added in the last

sampling step are highlighted in red.

5.4 Availability of Initial Knowledge

The sampling process depicted in this section assumes

that no a priori knowledge about the generated build-

ing is available, but samples a completely new instance

of a building from an empirical distribution. It is easy

to adapt the process to the case in which some initial

knowledge is available.

Specifically, assume that a portion of a building is

known in form of some subgraphs {s̄1, s̄2, . . .} which

are assigned to clusters {C̄1, C̄2, . . .}. The cluster con-

figuration sampling is thus performed as reported in

Section 5.3.1, but considering the value of v̂C̄1
relative

to C̄1 as bounded in the interval [1,max
G∈G

(vi
G)] (the in-

terval starts from 1 since s̄1 has been observed and will

belong to Ĝ). Similarly, for v̂C̄2
relative to C̄2 and so

on. In the sampling of the functional graph, the known

edges between {s̄1, s̄2, . . .} are not modified. Subgraphs

{s̄1, s̄2, . . .} are considered fixed also during subgraphs

sampling. Connection between known and unknown nodes

are also preserved; for instance, if a corridor connected

to five rooms has been explored and only three of them

have been already explored, the two edges connected

to the still unknown rooms are preserved and sam-

pled rooms are connected to them. Finally, in sampling

node connections, known connections between nodes of

{s̄1, s̄2, . . .} are considered as fixed and are not modified

during this last sampling step.

6 EXPERIMENTAL RESULTS

In this section, a quantitative evaluation of our method

for sampling new instances of graphs is presented. The

proposed method has been implemented1 in matlab

R2015b and executed on a i7QuadCore Intel 820QM

16GB computer.

We use either GS (with 50 labeled graphs represent-

ing schools) or GO (with 40 labeled graphs representing

offices) and we generate sampled graphs Ĝ. For each

1 Code is available at: https://github.com/goldleaf3i/

generativeCMLgraphs.

https://github.com/goldleaf3i/generativeCMLgraphs
https://github.com/goldleaf3i/generativeCMLgraphs
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metric GS Ĝcorr Ĝncut
nodes 35.24 (18.33) 34.15 (14.73) 35.27 (14.56)
nodes R 27.84 (15.05) 26.72 (11.55) 27.88 (12.00)
nodes C 7.42 (4.45) 7.43 (3.89) 7.39 (3.49)
path-length 3.33 (0.81) 3.29 (0.55) 3.38 (0.65)
diameter 6.34 (2.30) 6.25 (1.59) 6.67 (1.87)
art-points 8.8 (5.81) 8.61 (4.27) 9.08 (4.15)
assortativity -0.51 (0.20) -0.50 (0.14) -0.48 (0.12)
betw-cen 0.039 (0.011) 0.040 (0.012) 0.040 (0.015)
betw-cen R 0.005 (0.006) 0.006 (0.006) 0.010 (0.010)
betw-cen C 0.181 (0.090) 0.172 (0.066) 0.157 (0.058)
closn-cen 0.328 (0.086) 0.322 (0.056) 0.317 (0.063)
closn-cen R 0.309 (0.077) 0.302 (0.051) 0.298 (0.055)
closn-cen C 0.418 (0.160) 0.401 (0.088) 0.389 (0.097)
eig-cen 0.256 (0.078) 0.254 (0.066) 0.260 (0.083)
eig-cen R 0.197 (0.062) 0.190 (0.052) 0.197 (0.064)
eig-cen C 0.498 (0.181) 0.497 (0.141) 0.503 (0.172)
katz-cen 0.181 (0.045) 0.179 (0.042) 0.177 (0.046)
katz-cen R 0.166 (0.045) 0.165 (0.039) 0.164 (0.045)
katz-cen C 0.241 (0.076) 0.236 (0.056) 0.232 (0.056)

Table 2 Values of metrics relative to the School building type for original graphs GS and graphs generated with the
proposed approach using corr and ncut segmentation (Ĝcorr and Ĝncut, respectively). Entries report average µ over the graphs
and standard deviation σ (in parenthesis). R means room and C means corridor.

metric GO Ĝcorr Ĝncut
nodes 39.64 (18.44) 41.63 (18.69) 35.62 (14.05)
nodes R 30.83 (15.47) 32.5 (15.01) 27.57 (11.77)
nodes C 8.81 (4.38) 9.08 (4.32) 8.05 (3.43)
path-length 3.33 (0.62) 3.38 (0.56) 3.23 (0.51)
diameter 6.37 (1.74) 6.52 (1.66) 6.16 (1.54)
art-points 8.97 (4.23) 9.38 (4.48) 8.02 (3.13)
assortativity -0.55 (0.14) -0.55 (0.12) -0.54 (0.10)
betw-cen 0.035 (0.012) 0.035 (0.014) 0.038 (0.015)
betw-cen R 0.005 (0.007) 0.003 (0.004) 0.006 (0.011)
betw-cen C 0.141 (0.042) 0.154 (0.065) 0.151 (0.056)
closn-cen 0.321 (0.071) 0.294 (0.049) 0.326 (0.054)
closn-cen R 0.303 (0.068) 0.294 (0.049) 0.306 (0.047)
closn-cen C 0.387 (0.093) 0.387 (0.090) 0.399 (0.084)
eig-cen 0.251 (0.079) 0.239 (0.085) 0.257 (0.083)
eig-cen R 0.188 (0.065) 0.174 (0.085) 0.189 (0.068)
eig-cen C 0.471 (0.131) 0.482 (0.173) 0.492 (0.156)
katz-cen 0.166 (0.040) 0.164 (0.046) 0.175 (0.045)
katz-cen R 0.152 (0.039) 0.149 (0.044) 0.159 (0.044)
katz-cen C 0.220 (0.045) 0.221 (0.059) 0.231 (0.052)

Table 3 Values of metrics relative to the Office building type for original graphs GO and graphs generated with the proposed
approach using corr and ncut segmentation (Ĝcorr and Ĝncut, respectively). Entries report average µ over the graphs and
standard deviation σ (in parenthesis). R means room and C means corridor.

data set G, we use either ncut or corr for segmenta-

tion and affinity propagation for clustering, together

with KGH, generating Ĝcorr and Ĝncut composed of 200

graphs each. Sampling is performed using KWL.

From preliminary tests we observed that the seg-

mentation methods impact on sampling (indirectly, via

formed clusters) and, for this reason, we consider both

segmentation methods in our tests.

We define a set of metrics representing structural

properties of a graph. To assess the similarity between

the original graphs G (either GS or GO) and the sampled

graphs Ĝ we compare the average µ and standard de-

viation σ of these metrics computed on both sets. This

allows us to check whether the structure of the gener-

ated graphs is consistent with that of the real buildings

present in G.

Metrics can be divided in two groups. Those of the

first group consider standard graph measures: the num-

ber of nodes (nodes), the average length of a shortest

path between each pair of nodes in the graph (path-
length), the maximum distance between two nodes along

their shortest path (diameter), the number of articula-

tion points (art-points; an articulation point is a node

whose removal separates the graph into two distinct
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components), and the degree assortativity (assortativity)

(Newman, 2003), which indicates whether nodes are

connected to other nodes with a similar degree (1) or

not (−1):

assortativity =
∑
i,j

DgiDgj
eDgi,Dgj − aDgiaDgj

σaσb
,

where Dgi and Dgj are the degrees of nodes i and j,

respectively, eDgi,Dgj is the fraction of edges between

a node with degree Dgi and a node with degree Dgj ,

aDgi is the fraction of the edges where at least one node

has a degree of Dgi (aDgj is defined similarly), and

σa and σb are the standard deviations of the empirical

distributions of aDgi and aDgj , respectively.

The second group of metrics measure the centrality

of each node in the graph. Centrality of a node indicates

its role within the graph relatively to the connections

between nodes. High centrality values indicate impor-

tant hub nodes, whose presence greatly impacts on the

graph layout, while low centrality values indicate pe-

ripheral nodes. Since centrality is a metric calculated

for each node, we compute the average centrality µ and

its standard deviation σ for each graph, by averaging

over the number of nodes in the graph. Moreover, since

in our domain corridor nodes are usually the most

important (and thus should result in higher centrality

values), while room nodes are usually connected only

to a corridor, the centrality measures are evaluated also

separately for these two types of nodes. In the literature

there exist several metrics for computing node central-

ity. We select four centrality measures among the most

used ones.

Betweenness centrality betw-cen for a node n ∈ N of

a graph G = (N,E) is defined as the number of shortest

paths between two nodes u 6= t (6= n) that pass through

n:

betw-cen(n) =
∑

u,t∈N,u6=n 6=t

τut(n)

τut
,

where τut is the total number of shortest paths from u

to t and τut(n) ≤ τut is the number of these paths that

pass through n.

Closeness centrality (closn-cen) for a node n is de-

fined according to the shortest distance between n and

all other nodes:

closn-cen(n) =
∑

t∈N\{n}

2−dG(n,t),

where dG(n, t) is the length of the shortest path on

G between the nodes n and t. Eigenvector centrality

(eig cen) assigns a relative score to all nodes in the

graph based on the idea that connections to high-scoring

nodes contribute more to the score of a node than con-

nections to low-scoring nodes. It is calculated as:

eig cen(n) =
1

λ

∑
t∈N

mt,n eig cen(k),

where λ 6= 0 is a constant and mt,n is the element (t, n)

of the adjacency matrix M of the graph G.

Katz centrality (katz) computes the centrality of a

node n based on that of its adjacent nodes:

katz(n) = α
∑
n′∈N

mn′,nkatz(n′) + β,

where α and β are constants and mn′,n is the element

corresponding to the (n′, n) element in the adjacency

matrix M of G.

Tables 2 and 3 shows that the generated graphs Ĝ
are similar to the original ones in G, according to all the

metrics. Statistical equivalence is checked by perform-

ing the Wilcoxon test for all metrics of Tables 2 and

3. The test is successfully passed in all cases except for

the case of betw-cen R for offices using corr and for

the case of betw-cen R for schools using ncut.

The results show that our method can sample new

graphs with a similar structure as the original ones.

In particular, node importance in graphs Ĝ is consis-

tent with the node importance of the real graphs G.

It is important to point out that centrality measures

are relative to the entire structure of the graph and are

not dependent on any local pattern nor on single nodes.

Similar centrality measures for G and Ĝ mean that they

actually contain similar graphs. Moreover, the differ-

ent values of all four centrality metrics (although more

evident for betw-cen) for nodes room and corridor

(with low and high values, respectively) indicates that

also the roles of the nodes are distributed similarly over

G and Ĝ.

Fig. 7 displays a visual representation of how graphs

in GS and Ĝ are distributed, for both segmentation tech-

niques corr and ncut. Using KWL we compute the sim-

ilarity between each graph in Ḡ = GS ∪ Ĝ, obtaining a∣∣Ḡ∣∣ × ∣∣Ḡ∣∣ similarity matrix. This high-dimensional fea-

ture space is then reduced to a two-dimensional one

using a t-distributed stochastic neighbor embedding (t-

SNE) (van der Maaten and Hinton, 2008). t-SNE mod-

els each high-dimensional object as a two-dimensional

point in such a way that similar objects are modeled

by nearby points and dissimilar objects are modeled by

distant points. In both Fig. 7a and Fig. 7b the origi-

nal graphs (in blue) and the sampled ones (in orange)

are similarly distributed, thus providing a visual confir-

mation that the two graph sets contain similar graphs.

Results from GO are similar and data are not reported

here.
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(a) corr

(b) ncut

Fig. 7 2D representation of graph distributions for graphs
in GS (blue) and in Ĝ (orange) using t-SNE.

Fig. 8 shows a sampled semantic map Ĝ and a sim-

ilar semantic map from GS . The two graphs share the

same structure composed of a corridor tree to which

other rooms are attached and this visually confirms the

outcome of quantitative analysis that they represent

two instances of the same class of buildings. In Fig. 9,

we report some examples of sampled graphs in Ĝcorr
relative to the school building type, in order to show

the variety of generated environments, both in struc-

ture (e.g., with or without loops of corridors) and in

size (number of nodes).

Table 4 reports computing times for the sampling

of graphs using our approach. It emerges that node

connections sampling is the most expensive operation,

since, for every iteration of the method and for every

connection in the functional graph between two sub-

(a) real

(b) sampled

Fig. 8 A graph representing a real school building from GS
(a) and a graph Ĝ sampled using our method (b).

graph kernel step 1 step 2 step 3 step 4
KWL 10−1 10−1 10−3 10
KGH 10−1 10 10−3 102

Table 4 Computing time (order of magnitude, in seconds)
for each sampling step. Step 1 indicates cluster configuration
sampling, step 2 indicates functional graph sampling, step 3
indicates subgraphs sampling, and step 4 indicates node con-
nections sampling. For steps 1, 2, and 4 the time is intended
for a single iteration of the MCMC method explained in Sec-
tion 5. Steps 1 and 3 do not use graph kernels.

graphs ŝi, ŝj , it computes a score for connections be-

tween every possible pair of nodes n̂k and n̂l belonging

to ŝi and ŝj , respectively.

Sampling results obtained using ncut as segmenta-

tion method are similar to those obtained using corr.

However, when the task is to sample new graphs from

scratch, it is advisable to use ncut, since it divides the

original graphs into subgraphs of similar size and per-
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Fig. 9 Six sampled graphs randomly selected from Ĝcorr obtained fro the school building type.

forms cuts between nodes independently of their seman-

tic labels, thus providing more different results when

sampling subgraphs and reconnecting nodes. Segmenta-

tion using corr is designed to facilitate the recognition

of a subgraph by a robot during the (online) explo-

ration of a building, and it should be employed when

our method is used to generate hypotheses about the

structure of a partially visited building given the avail-

able semantic map. An example of this application is

provided in the next section.

7 PREDICTION

We envisage at least two perspective applications of the

proposed approach, in simulation and in exploration.

In the first application, the proposed generative model

can be used to create new realistic environments from

scratch (without initial knowledge), which can be em-

bedded in a simulator to ease the test of the perfor-

mance of autonomous mobile robots in several settings.

This ides is described in Amigoni et al (2014) and is not

discussed further here. Instead, we focus on the second

application, exploration, in which the proposed gener-

ative model can be used to generate hypotheses on the

structure and the labeling of the unexplored parts of a

partially known environment, in order to provide infor-

mation that can speed up the exploration, for example

by better coordinating robots (Quattrini Li et al, 2016).

Our goal here is not to provide a robotic system for ex-
ploration, but just to illustrate a potential use of the

method we propose in this paper.

Consider a simplified setting in which an initially

unknown (floor of a) school building is being explored

by one or more robots. We assume that the exploration

proceeds as follows:

1. exploration starts from one of the rooms labeled as

entrance, elevator, or stairs;

2. the robots move to the first corridor room con-

nected to the entrance;

3. each room connected to the corridor is explored us-

ing a breadth-first exploration strategy; the seman-

tic map is expanded accordingly with the correct

semantic labels for the explored rooms;

4. after all the rooms connected to the first corridor

have been explored the robots predict the structure

of the unexplored part of the building;

5. the robots move to the nearest corridor discovered

and repeat from step 3, until the entire building has

been explored.
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For this setup we use corr as segmentation method.

This allows us to automatically detect the subgraphs

during exploration, since, when step 3 above is exe-

cuted, the robots explore a new subgraph (as explained

in Section 3, corr segments the graphs assuming that

subgraphs are formed by a corridor and its neigh-

bouring rooms). Under these premises, possible struc-

tures of the building are generated every time a new

subgraph is explored. Prediction is tested on the same

GS composed of 50 graphs of Section 6 using leave-one-

out (the explored graph for which the predictions are

made is removed from the data set when training the

model M).

In order to show how our approach can be applied

to the above setting, we present in detail two examples.

Given the importance of corridors for exploration (see,

for instance, (Quattrini Li et al, 2016; Stachniss et al,

2006)), we are particularly interested in generating pre-

dictions of the structure of the corridors of the unvis-

ited part of the environment. For each example, we dis-

play the original graph (representing the environment

being explored), its corridor structure, the predicted

graph, and its corridor structure during an incremen-

tal exploration of the environment. The known (already

explored) part of the original graph is highlighted with

a grey overlay.

As a first example, consider the environment of Fig. 10a,

whose cross-shaped “skeleton” of corridors is shown in

Fig. 10b (refer to Fig. 2a for the labels). Figs. 11a-

11b show the predictions after the exploration of the

initial corridor and the connected rooms. The rest of

Fig. 11 shows three other predictions made after the ex-

ploration of larger and larger parts of the environment.

As expected, the more the initial knowledge used for

sampling an environment (see Section 5.4), the more

accurate the generated hypotheses when compared to

the real environment of Fig. 10. This holds especially

for the corridor “skeleton” of the building, which is cor-

rectly predicted to be cross-shaped.

We also evaluate how well our approach can predict

the labels distribution (i.e., the percentage of rooms

with a specific label) in the unvisited part of the en-

vironment. Figs. 11c, 11f, 11i, and 11l show the labels

distribution of the real graph of Fig. 10 (in yellow),

the average labels distribution for all the graphs in GS
(in green), and the predicted labels distribution at each

step (in purple). Ideally, the purple bars should be more

similar to the yellow ones than to the green ones, mean-

ing that our approach is able to actually predict the

distribution of labels for a given environment and does

not simply return a “blind” prediction based on the av-

erage of labels distributions of the initial graphs. This

is actually the case for the most relevant labels, espe-

cially when the exploration proceeds. For instance, see

the corridors and the classrooms in Fig. 11i and Fig. 11l.

The second example, relative to a building with

loops of corridors (two loops of corridors and a third

one closed by a cafeteria), is shown in Figs. 12 and 13.

Also in this case, the loops of corridors that represent

the “skeleton” of the environment are predicted cor-

rectly by the hypotheses generated with our approach

after step 1 of exploration. Note that in both the ex-

amples (and in several other tests that are not shown

here), the prediction is not always accurate with re-

spect to the exact shape of the unvisited environment,

but nevertheless it captures well the structure of the

building (respectively, the cross shape of the first ex-

ample and the loop shape of the second example). This

is sound with the observation at the core of the idea of

building type (see Section 3), namely that every school

building is different but all school buildings share some

similarities, which are actually captured by our model.

For a quantitative evaluation, Table 5 reports the

values of the same metrics of Section 6 now calculated

for the original graphs GS and for 224 graphs (Ĝcorr)
generated from partially explored graphs Ḡ. Using leave-

one-out, we simulate three exploration runs for each

graph G ∈ GS . Each simulated exploration run on G

produces some randomly-selected graphs Ḡ (from 1, for

small graphs G, to 5−6, for large graphs G, depending

on the number of corridors/subgraphs present in G).

Each Ḡ results in a prediction obtained by generating

a Ĝ with our approach, and all Ĝ are collected in Ĝcorr.
Note that, from the table, although graphs Ĝcorr are sig-

nificantly larger than those in GS (since larger graphs

contribute with several Ḡ and, thus, with more graphs

Ĝ in Ĝcorr), the values for the centrality measures are

similar. These results show that the hypotheses gener-

ated for the unknown part of a graph G are plausible,

namely are consistent with graphs in GS (recall that G

is excluded).

In our discussion, we assumed to have a perfect

knowledge of the labels of the already explored sub-

graph Ḡ, which can be difficult to obtain in a real world

scenario. We now justify this assumption by showing

that similarity between graphs computed using graph

kernels, which is at the basis of our approach, is robust

wrt changes of labels of few nodes, because it consid-

ers the global structure of the graphs. If we consider

G and we normalize the distance KGH(G,G′) between

any two graphs G and G′ of G to [0, 1], then the dis-

tance KGH(G,G′) between G and its copy G′ in which

10% of the labels are randomly changed is 0.002 (on

average over G). The distance KGH(G,G′) between G

and its copy G′ where 5% of the nodes are changed
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(a) Real environment. (b) Corridor structure.

Fig. 10 An environment being explored (first example).

metric GS Ĝcorr
nodes 35.24 (18.33) 45.23 (17.17)
nodes R 27.84 (15.05) 35.95 (14.17)
nodes C 7.42 (4.45) 9.28 (4.14)
path-length 3.33 (0.81) 3.69 (0.60)
diameter 6.34 (2.30) 7.29 (1.73)
art-points 8.8 (5.81) 11.09 (5.31)
assortativity -0.51 (0.20) -0.50 (0.14)
betw-cen 0.039 (0.011) 0.034 (0.011)
betw-cen R 0.005 (0.006) 0.006 (0.006)
betw-cen C 0.181 (0.090) 0.152 (0.052)
closn-cen 0.328 (0.086) 0.287 (0.048)
closn-cen R 0.309 (0.077) 0.272 (0.043)
closn-cen C 0.418 (0.160) 0.347 (0.074)
eig-cen 0.256 (0.078) 0.214 (0.060)
eig-cen R 0.197 (0.062) 0.162 (0.049)
eig-cen C 0.498 (0.181) 0.427 (0.139)
katz-cen 0.181 (0.045) 0.153 (0.033)
katz-cen R 0.166 (0.045) 0.141 (0.032)
katz-cen C 0.241 (0.076) 0.205 (0.045)

Table 5 Values of metrics relative to the School building type for original graphs GS and graphs generated after partial
explorations with the proposed approach using corr segmentation (Ĝcorr). Entries report average µ over the graphs and
standard deviation σ (in parenthesis). R means room and C means corridor.

(randomly attached to other nodes, thus changing the

graph structure), results in an average value of 0.05.

Note, finally, that the generation of hypotheses for

unknown parts of environments made with our approach

and discussed in this section cannot be attained with

the methods performing local predictions (see Sections 1

and 2), because they can only predict the presence and

the labels of nodes adjacent to the known nodes. More-

over, the predictions obtained with our approach are

not limited to be equal to portions of the initial build-

ings in G (as in Aydemir et al (2012)), but can be arbi-

trary compositions of the subgraphs of the initial build-

ings.

8 CONCLUSIONS

This paper has presented an approach that builds a

generative model of graphs representing the topological

structure and the semantic labeling of indoor environ-

ments and that uses the model to create new instances

of (parts of) buildings. The three main steps of the pro-

posed approach, namely segmentation, clustering, and

sampling, are based on the use of graph kernels to eval-

uate the similarity between graphs and on a hierarchical

MCMC sampling algorithm. The experimental valida-

tion shows that the generated buildings, although not

identical, share many features with the original build-

ings used to create the model and, significantly, have

similar structures. The approach can be used to gener-

ate hypotheses on unknown parts of partially explored

buildings or to generate new buildings from scratch.
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(a) Predicted semantic graph
after step 1.

(b) Predicted corridor structure
after step 1.
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(c) Labels distribution after step 1.

(d) Predicted semantic graph
after step 2.

(e) Predicted corridor structure
after step 2.
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(f) Labels distribution after step 2.

(g) Predicted semantic graph
after step 3.

(h) Predicted corridor structure
after step 3.
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(i) Labels distribution after step 3.

Fig. 11 Predictions made during exploration of the environment of Fig. 10. (Continues on the next page.)
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(j) Predicted semantic graph
after step 4.

(k) Predicted corridor structure
after step 4.
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(l) Labels distribution after step 4.

Fig. 11 Predictions made during exploration of the environment of Fig. 10. (Continued from the previous page.)

(a) Real environment. (b) Corridor structure.

Fig. 12 An environment being explored (second example).

Possible future work includes the further assessment

of the proposed approach, applying it to other building

types and possibly refining the methods that implement

its three main steps. We expect that the method can

be smoothly applied to other structured environments

(like hospitals), while its application to environments

that are less structured (like houses, which are also rela-

tively small) could be less straightforward. In addition,

we will investigate the actual benefits to autonomous

exploration of unknown environments, starting from

the results reported in the previous section and em-

bedding our approach in exploring robot systems like

those of Wurm et al (2008) and Solanas and Garcia

(2004). More generally, our aim is to develop methods

that provide reliable predictions about unvisited parts

of buildings.

Appendix: Graph Kernels

The task of learning a model of structured data like graphs,
as we do in this paper, is often complex and requires ad hoc
techniques since standard machine learning techniques can-
not be naturally adopted due to the dimensionality of the
data (De Raedt, 2008). We make a substantial use of graph
kernel methods, which use a decompositional approach to
measure the similarity between two graphs. In this appendix
we provide a general overview on the concept of graph ker-
nel, as introduced by Haussler (1999), and we describe the
graph kernels that we use in our method. Graph kernel meth-
ods are the equivalent for structured data of kernel methods
(Gärtner et al, 2004), which are typically defined in a vectorial
space. Among the graph kernel families, the general class of
convolutional kernels proposed by Haussler (1999) represents
the guiding principle in kernel design for structured objects
(Costa and De Grave, 2010; Gärtner et al, 2004). Convolu-
tional kernels are based on the idea that the structure of a
graph can be captured by a relation R between the graph and
its parts. A graph kernel is then defined as a composition of
kernels defined on different parts of the graph.

Let G = (N,E) ∈ G be a graph and {g1, . . . , gD} one
of its decompositions into (possibly overlapping) parts (sub-
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(a) Predicted semantic graph
after step 1.

(b) Predicted corridor structure
after step 1.
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(c) Labels distribution after step 1.

(d) Predicted semantic graph
after step 2.

(e) Predicted corridor structure
after step 2.
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(f) Labels distribution after step 2.

(g) Predicted semantic graph
after step 3.

(h) Predicted corridor structure
after step 3.
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(i) Labels distribution after step 3.

Fig. 13 Predictions made during exploration of the environment of Fig. 12.
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graphs). Each part gd in an element of a countable set Gd,
for d = 1, . . . , D, D ≥ 1. Consider a relation R defined on
G1 × . . .×GD × G, where R(g1, . . . , gD, G) is true if the set
{g1, g2, . . . , gD} is one of the possible sets of the parts (sub-
graphs) of G (i.e., in which G can be decomposed). Given
R, we can define the function R−1 as the decomposition
function which returns the sets of parts (decompositions)
of G: R−1(G) = {g1, . . . , gD : R(g1, . . . , gD, G)}. Consider
now any positive definite kernel function Kd over Gd × Gd,
d = 1, . . . , D. For two graphs G,Q ∈ G, we can define a con-
volutional or decomposition kernel on graphs as the function:

K(G,Q) =
∑

g1,...,gD∈R−1(G)

q1,...,qD∈R−1(Q)

D∏
d=1

Kd(gd, qd).

Given a generic graph kernel K, the similarity measure be-
tween two graphs G,Q ∈ G can be defined as the normalized
version of the graph kernel:

Knormalized(G,Q) =
K(G,Q)√

K(G,G)K(Q,Q)
.

In this work we use two instances of convolutional graph ker-
nels: the Weisfeiler-Lehman Subtree Kernel (KWL) (Sher-
vashidze et al, 2011) and the Graph Hopper Kernel (KGH)
(Feragen et al, 2013). Several other kernels, such as those
by Costa and De Grave (2010), Menchetti et al (2005), and
Kashima et al (2003) have been empirically tested with less
convincing results (numerical results are not reported here).

1

1 1

2

2

3

1

2 3

3 4
4

4
5

5 6

6

(a)

Fig. 14 An example of a d = 2 subtree rooted from node 1.

TheKWL belongs to the family of Weisfeiler-Lehman graph
kernels (Shervashidze et al, 2011), that exploit the Weisfeiler-
Lehman test of isomorphism on graphs as a rapid feature
extraction scheme. KWL is implemented as an iterative pro-
cedure in which, at each iteration, the node labels are aug-
mented by concatenating to the current label of each node the
sorted list of labels of its adjacent nodes. The resulting aug-
mented label list is then compressed into a new, shorter label
list using an hash function. Each graph G is thus mapped to a
sequence of graphs {G0, G1, . . . , Gh} = {(N,E,L0), (N,E,L1),
. . . , (N,E,Lh)}, where Gi and Li are the graph and the label
set (one label per node) after i iterations of the algorithm, re-
spectively, and h is the total number of iterations. Given any
graph kernel Kb called base kernel, KWL is then computed
as:

KWL(G,Q) = Kb(G0, Q0) +Kb(G1, Q1) + . . .+Kb(Gh, Qh).

In our setting we use as base kernel Kb(Gi, Qi) a subtree
kernel. It computes all the rooted subtrees of G = (N,E)

(a rooted subtree is an acyclic sub-graph of G with a given
depth d and rooted on a node n ∈ N , where nodes n′ ∈ N can
be repeated in different branches of the tree; an example of a
rooted subtree is shown in Fig. 14). These rooted subtrees are
the outcome of the decomposition R−1. For each iteration i,
i = 1, . . . , h, Kb counts the number of common labels between
all the subtrees of Gi and Qi rooted in two nodes with the
same label l∗ ∈ Li. The complexity of KWL when applied to
a set of N graphs is O(Nhm + N2hn), where N is the total
number of graphs, and n and m are the number of nodes and
edges of the graphs respectively (assumed equal for all graphs
for simplicity).

In KGH (Feragen et al, 2013), the decomposition relation
R−1 is based on the shortest path between each pair of nodes:

KGH(G,Q) =
∑

π∈P,π′∈P′
kp(π, π

′
),

where kp is a kernel defined on paths and P and P ′ are the
sets of shortest paths between all pairs of nodes of G and Q,
respectively. The path-kernel kp is defined on two paths π
and π′ as:

kp(π, π′) =

{∑|π|
j=1 kn(π(j), π′(j)) if |π| = |π′|

0 else
,

where π(i) = ni indicates the i-th node in the path π =
(n1, . . . , n|π|). We use a linear node kernel kn(ni, nj) that
returns 1 if ni and nj have the same label and 0 otherwise.
Total complexity of KGH is O(N2(n2(m + logn + d + δ2)))
where N , n, and m are defined as in KWL, δ is the length of
the longest shortest path, and d is a constant.
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