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1. Introduction

Maintaining posture is a complex task attained by the

postural control system throughout the integration of

information from visual, vestibular and somatosensory

systems in conjunction with the passive properties of the

musculo-skeletal system. Static standing balance is defined

as a state, in a quiet stance, of maintaining (or controlling)

the position of the whole body’s centre of mass within the

base of support without falling: for this reason, standing is

characterised by repeated adjustments of body position to

counteract the constantly occurring small perturbations

(Duarte and Zatsiorsky 2000). One of the most widely used

experimental measurements to understand the postural

system is the recording of postural sway data, which could

provide information concerning motor control system.

Quantitative analysis of centre of pressure (COP) data in

quiet standing was carried out in several experiments using

different approaches: some works (Soames and Atha 1982;

Shumway-Cook and Woollacott 1985; Winter 1990;

Schumann et al. 1995; Westcott et al. 1997; Stoffregen

and Smart 1998; Winter et al. 1998; Rocchi et al. 2006)

describe the posture control system using the analysis of

COP signal in time domain, considering the shifting of COP

during the maintenance of standing position in anterior–

posterior (AP) and medio-lateral (ML) directions. Others

quantify the COP displacements in frequency domain using

Fast Fourier Transform or autoregressive (AR) model

(Soames and Atha 1982; Massion 1992; Alessandrini et al.

2006; Rocchi et al. 2006).

More recently, the dynamical structure of COP trend

during quiet standing has been described using nonlinear

approaches (Doyle et al. 2006; Roerdink et al. 2006;

Manor et al. 2010). In particlar, fractal dimension (FD) and

entropy measurements were investigated.

FD was associated with patient stability (Blaszczky and

Klonowsky 2001) with an increase in FD linked to an

augmented postural instability. Roerdink et al. (2006)

observed an increased dimensionality of the COP

displacements in stroke patients in respect to healthy

subjects in both sagittal and frontal planes. The finding was

interpreted as the sign of a more complex postural control

strategy.

In their work, Manor et al. (2010) studied the sample

entropy associated with the COP displacements in sagittal

plane during quiet standing: they related the sample entropy

to the complexity of a system, and consequently to system

functionality as defined by the capacity to generate adaptive

responses to stressors. Their analysis revealed that

biological ageing or diseases are often associated with a

sample entropy reduction in AP direction: chronic sensory

impairments lower the physiological complexity of

postural sway dynamics and consequently lower the

adaptive capacity of the system. The changes in sample

entropy seem to be related to the pathology and its

impairment. In fact, Roerdink et al. (2006) augmented
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sample entropy in AP direction in stroke patients in

comparison with healthy subjects. Considering postural

analysis in subjects with Down syndrome (DS), Rigoldi

et al. (2010) displayed the increasing of COP oscillations in

both directions, as consequences of compensatory strat-

egies in order to supply to the hypotonia, the ligament laxity

and higher time of response that characterised this

pathology, resulting in a clumsy movement.

The impairments to one or more subsystems that

regulate postural control, such as somatosensory, vestibular

and/or visual sensors feedback networks, reduce the

complexity of the system diminishing its adaptive ability.

Considering the clumsy nature of DS movements and the

dynamical approaches previously exposed to analyse these

aspects, the aim of this study was to explore new techniques

in analysing postural control using nonlinear time-series

analysis in the description of posture in subjects with DS.

2. Methods

2.1 Subjects

For the analysis of posture strategies, the data from 35

young adults (Down syndrome group, DSG, range: 20–40

years, body weight: 57.9 ^ 10.8 kg) with DS were collected

in the Posture and Motion Analysis Lab of IRCCS

‘San Raffaele-Pisana’, TOSINVEST Sanità (Rome, Italy).

The inclusion criteria for DS participants were

presence of trisonomy 21 or mosaic DS, normal vision

and hearing, absence of congenital heart defects, no

history of seizures, absence of current medications,

independence in ambulation and no previous orthopaedic

treatment. In order to compare the DSG data, a control

group (CG), composed of 10 age-matched healthy subjects

(CG: range, 20–40 years; body weight, 68.3 ^ 19.2 kg),

was taken. The selection criteria for the CG participants

were no signs of any orthopaedic or neurological diseases

or disorders, no impairment of somatosensory, hearing,

vestibular and uncorrectable visual functions and no

developmental disabilities. All participants gave their

informed consent to participate in the study, and all

investigations were done in conformity with the ethical

and humane principles of research. The researchers

explained the purpose, procedures, risks and benefits of

the study to parents who gave their informed consent.

2.2 Instrumentation and data acquisition

The equipment utilised for data acquisition during the

posture trials consisted of a force platform (Kistler,

Winterthur, Switzerland), used to obtain the COP

displacement values, and two TV cameras (VideoCon-

troller, BTS, Milan, Italy) synchronised with the force

platform for the video recording of the participants, used to

ascertain whether any undesired behaviour occurred.

The participants were instructed to maintain an upright

standing position for 30 s with arms at their sides and feet

positioned over sketches representing the foot with an

angle of 308 respect to the AP direction. The participant

chose the width of the base of support in order to maintain

posture in a safety way.

Data were collected in two consecutive trials. In the

first, the participants were asked to maintain an upright

standing position with eyes open (OE), looking at a black

target located 1.5 m far away the subject (a circle with a

diameter of 6 cm). The target was positioned vertically to

be in the patient’s direct line of sight. In the second trial, the

participants were requested to keep their eyes closed (CE).

Participants were requested to sit for a period of about 120 s

after the completion of each trial in order to rest. After that,

participants were asked to reassume the aforementioned

foot position in preparation for another trial.

2.3 Data processing

The outputs of the force plate are time series of COP

displacements in AP and ML directions. The first 10 s

interval was discarded in order to exclude the transition

phase needed to reach a postural steady state, as previously

suggested (Mitchell et al. 1995; Raymakers et al. 2005).

2.3.1 Traditional parameters: time domain analysis

From each of the 2D components of COP displacements,

the ML excursion (ROMPx) and the AP excursion

(ROMPy) were computed as the difference between

absolute maximum and absolute minimum values of COP

displacements in both considered directions.

In addition, the trajectory length (TL) of the COP was

computed. All traditional parameters were normalised to

subject’s height.

2.3.2 Frequency domain analysis

In this work, a spectral analysis was carried out using

parametric estimators based on AR modelling of the data

(Galli et al. 2008). The use of this method allows for the

efficient quantification of the centre frequency (CF) and

the power of each spectral component. In this work, the

AR model order was set to 10.

In order to characterise the spectral patterns, we

calculated the CF of the main spectral peak of both the AP

COP displacements spectrum ( fy) and the ML COP

displacements spectrum ( fx).

2.3.3 Nonlinear approaches: FD and entropy

2.3.3.1 Fractal dimension. FD of COP signal was

computed using the box-counting algorithm.



To calculate the FD for a given set S, imagine this

fractal set lying on an evenly spaced grid, and count how

many boxes are required to cover the set. The box-

counting dimension is calculated by seeing how this

number changes when the grid is made finer and finer.

Suppose that N(1) is the number of boxes of side length

1 required to cover the set. Then the box-counting

dimension is defined as follows (1):

FD ¼ lim
1!0

logNð1Þ

logð1=1Þ
: ð1Þ

Thus, FD corresponds to the slope of the plot logN(1)

versus log(1/1) (see Figure 1). FD was computed for the

sway of all participants in both conditions (OE and CE).

2.3.3.2 Entropy measures. Let x(t) be the temporal

evolution of a given signal and S its discrete evolution,

obtained by a regular sampling, given by

S ¼ {xk; k ¼ 1; . . . ;K}; ð2Þ

where xk stands for x(tk), i.e. the signal value at the time

tk ¼ k £ T, where T is the sampling period. Thus, given the

sequence S, consisting of K measurements and specified

the pattern length m, two patterns, pm(i) and pm( j), are

considered similar if the difference between any pair of

corresponding measurements in the patterns is less than

the tolerance r, i.e. if (3)

jxiþk 2 xjþkj , r for 0 # k # m: ð3Þ

Considering the set Pm of all patterns of length m

within S,

CimðrÞ ¼
nimðrÞ

N 2 mþ 1
; ð4Þ

where nim(r) is the number of patterns in Pm that are

similar to pm(i). The quantity Cim(r) is the fraction of

patterns of length m that resemble the pattern of the same

length that begins at interval i. Cim(r) is calculated for each

pattern in Pm and Cm(r) is defined as the mean of the Cim(r)

values. The quantity Cm(r) expresses the prevalence of

repetitive patterns of length m in S. Finally, the ApEn of S,

for patterns of length m and threshold r, is defined as (5)

ApEnðS;m; rÞ ¼ ln
CmðrÞ

Cmþ1ðrÞ

� �
; ð5Þ

i.e. the natural logarithm of the relative prevalence of

repetitive patterns of length m compared with those of

length m þ 1.

In this work, ApEn of COP signal in ML direction

(ApEnML) and in AP direction (ApEnAP) was computed

for all the participants.

Methods for estimation of the entropy of a system

represented by a time series are not, however, well suited

for analysis of the short and noisy data-sets and may lead

to inconsistent results. For this reason, the sample entropy

(SampEn) was introduced to avoid bias due to the

shortening of the data. SampEn over performed ApEn over

a broad range of conditions as reported by Richman and

Moorman (2000): for this reason, in this work we

computed this index also.

2.4 Statistics

To explore the statistical differences, within and between

the DS and CG, in computed parameters, we analysed

category results (between DS and CG in the same

condition) and condition results (within the same

population in different conditions of OE and CE) using

ANOVA; p value was set at 0.05.

Figure 1. Binarisation of original image in order to prepare the box-counting process (a); FD corresponds to the slope of the plot
logN(1) versus log(1/1) (b).



3. Results

3.1 Traditional parameters and frequency analysis

DS participants evidenced a general increase in the ROM

in both AP and ML directions in comparison with CG

(see Table 1). The increase was evident in both OE and CE

conditions.

Frequency analysis pointed out no statistical differ-

ences between DS and CG participants and between OE

and CE conditions: the value of frequency indicated the

rate at which the subject adapts control in order to

compensate external forces. DS and CG use the same

frequency but DS participants showed an increase in ROM

in ML and AP directions, evidencing a precarious balance

that they tried to compensate using a ‘clumsy’ strategy.

3.2 FD and entropy

Nonlinear analysis was computed in terms of the FD and

entropy.

As reported in Table 2, DS participants evidenced an

increase in the FD in comparison with CG: the

dimensionality of DS participants pointed out higher

values in both groups and in both conditions.

Concerning entropy analysis results, ApEnML and

ApEnAP did not evidence statistical differences between

groups and conditions.

Accordingly, SampEn (Figure 2) pointed out no

statistical differences between groups in AP directions:

both groups showed the same regular trend of COP AP

trajectories. However, a statistical increase in DS

participants in ML direction was observed: DS participants

exhibited a more irregular sway than healthy subjects in ML

COP fluctuations. Moreover, in OE versus CE comparison,

SampEn revealed an increase in CE condition, pointing out

a less regular signal in both AP and ML directions.

4. Discussion

Postural and in general motor control in DS subjects

evidenced many differences in comparison with healthy

subjects: the hypotonia and the ligament laxity in union

with neurological diseases act on the control of all the

inputs the motor system required.

In the first part of this work, we analysed postural

control using traditional parameters that describe the

movement of COP in ML and AP directions throughout

the computation of the excursions during trial.

The movement of COP is connected to the ability of a

subject to compensate the movement of centre of mass

using vestibular, proprioceptive and visual inputs: the

synergic work of these systems let us to maintain posture.

The extent of COP movements permits to understand how

much the subject has to move to maintain COP inside the

base of support. In this work, DS participants exhibited

larger movements than normal subjects both in AP and,

especially, in ML directions, evidencing a less stable

equilibrium. DS participants suffered from hypotonia and

ligament laxity that work increasing COP movements:

moreover, in CE condition, visual inputs are deleted and

the proprioceptive and vestibular system alone cannot

supply to the lack of information.

Table 1. Results of traditional parameter analysis for the two groups considered in OE and CE conditions.

DSG CG

OE CE OE CE

ROMPx (cm/m) 22.28 ^ 8.8* 22.81 ^ 8.8* 15.78 ^ 5.2 20.26 ^ 5.8
ROMPy (cm/m) 16.49 ^ 7.4* 15.93 ^ 7.9* 8.53 ^ 3.9 8.95 ^ 6.9
TL (cm/m) 226.1 ^ 15.6* 225.1 ^ 15.4* 157.3 ^ 24.8 141.2 ^ 18.6
fx (Hz) 0.26 ^ 0.21 0.42 ^ 0.32 0.15 ^ 0.12 0.18 ^ 0.14
fy (Hz) 0.28 ^ 0.22 0.26 ^ 0.22 0.15 ^ 0.27 0.37 ^ 0.29

*p , 0.05 DSG versus CG; þp , 0.05 OE versus CE.

Table 2. Results of nonlinear analysis for the two groups considered in OE and CE conditions.

DSG CG

OE CE OE CE

ApEnML 0.43 ^ 0.38 0.45 ^ 0.15 0.42 ^ 0.19 0.41 ^ 0.17
ApEnAP 0.31 ^ 0.25 0.39 ^ 0.11 0.38 ^ 0.16 0.43 ^ 0.08
SampEnML 0.4 ^ 0.35* 0.54 ^ 0.3*,þ 0.2 ^ 0.09 0.27 ^ 0.08
SampEnAP 0.26 ^ 0.13 0.32 ^ 0.11þ 0.23 ^ 0.09 0.29 ^ 0.07þ

FD 1.67 ^ 0.06* 1.71 ^ 0.04* 1.57 ^ 0.04 1.6 ^ 0.02

*p , 0.05 DSG versus CG; þp , 0.05 OE versus CE.



Frequency analysis adds information to the traditional

parameters, analysing the rate at which the COP direction

changes, reflecting the action–reaction times between

external perturbations and compensatory movements in

order to re-establish balance. DS participants pointed out

the same frequency of CG, even if the ROM is higher in all

directions.

Nonlinear approach takes into account the dynamic of

the signal: we found higher values for DS participants in

FD. In agreement with the findings of Blaszczky and

Klonowsky (2001), this fact can be interpreted as a

decrease in postural stability in DS subjects. In addition,

Roerdink et al. (2006) suggested to interpret these findings

according to the recruitment of additional control

processes (degrees of freedom), for instance to compen-

sate for the reduced efficacy of ankle mechanisms in

controlling posture. This is in line with the entropy results

that evidenced a stronger involvement of ML direction for

DS participants.

SampEn evidenced statistical differences between OE

and CE conditions: in CE condition, this index increases in

both groups in both directions, revealing a less regular

signal in both directions without visual inputs. Moreover,

resultant COP trajectories of the DS participants in ML

direction were less regular than those of the CG, as

indexed by significantly higher sample entropy values.

These findings reflect less effective physiological

control, as documented by large use of ML plane in

compensatory strategies actuated by DS people in order to

conserve balance: since DS participants feel precarious

equilibrium controlling postural sway with only AP

movements and try to compensate using ML movemets.

The increase in SampEnML recording for DS participants

revealed a less regular signal and a more complex system,

developed in order to supply to the lack of balance in AP

direction, which is not for healthy subjects.

The more regular COP trajectories in both directions in

the conditions comparison indexed by the increase in

SampEn could be explained by an increase in system

complexity and adaptability, present in both considered

groups.

The system is continuously subjected to external

perturbation that a person can contrast integrating the real-

time input and the prediction system based on past input:

the information given by the nonlinear approach can

describe this mechanism.

Considering the neurological aspect of people suffer-

ing from DS and given that the entropy and FD could

analyse the dynamics of the COP signal, it seems that the

complete integration of all the systems required in

maintaining posture was not achieved by the examined

pathological group.

Moreover, the movements of DS subjects are presented

in the literature as ‘clumsiness’: their movements appear

as always under perturbation and the adaptation process is

longer than the starting of a new perturbation.

The rehabilitative approach would take into account

not only the ‘mechanical’ aspect introduced by the

presence of ligament laxity and hypotonia but also a

re-educational programme that could act on the integration

of the systems acting in postural control.

In our work, these indexes are suitable in order to

better describe the postural control in DS.
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