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Abstract

Interest on Large Space Structures (LSS), orbiting in strategic and possi-
bly long-term stable locations, is nowadays increasing in the space commu-
nity. LSS can serve as strategic outpost to support a variety of manned and
unmanned mission, or may carry scientific payloads for astronomical obser-
vations. The paper focuses on analysing LSS in the Earth-Moon system,
exploring dynamical structures that are available within a multi-body grav-
itational environment. Coupling between attitude and orbital dynamics is
investigated, with particular interest on the gravity gradient torque exerted
by the two massive attractors. First, natural periodic orbit-attitude solutions
are obtained; a LSS that exploits such solutions would benefit of a naturally
periodic body rotation synchronous with the orbital motion, easing the ef-
fort of the attitude control system to satisfy pointing requirements. Then,
the solar radiation pressure is introduced into the fully coupled dynamical
model and its effects investigated, discovering novel periodic attitude solu-
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tions. Benefits of periodic behaviours that incorporate solar radiation pres-
sure are discussed, and analysed via the variation of some parameters (e.g
reflection/absorption coefficients, position of the centre of pressure). As a
final step to refine the current perturbed orbit-attitude model, a structure
flexibility is also superimposed to a reference orbit-attitude rigid body mo-
tion via a simple, yet effective model. The coupling of structural vibrations
and attitude motion is preliminarily explored, and allows identification of
possible challenges, that may be faced to position a LSS in a periodic orbit
within the Earth-Moon system.

Keywords:
Circular Restricted Three-Body Problem, Orbit-Attitude Dynamics, Large
Space Structures

1. Introduction

Nowadays, the Earth-Moon system is attracting more and more interest
as a well suited location for near, and far future, long term missions for
Large Space Structures (LSS). For designing LSS deep understanding of the
orbital and attitude coupled motions is warranted; interesting dynamical
structures underlie the orbit-attitude coupled problem, and periodic orbit-
attitude solutions may be found. A vehicle which exploits a natural periodic
attitude behaviour may allow to relieve some of the control effort from the
Attitude Control System (ACS), for example, by satisfying coarse pointing
requirements via passive stabilization.

Pioneering studies [1, 2] and more recent research [3, 4] investigate the
dynamics of a rigid body at a Lagrangian point; Wong et al. [5] also introduce
the coupling between small, linearised orbital motion and attitude dynamics,
presenting resonance conditions.

More recent investigations are devoted to the fully coupled orbital-attitude
dynamics. Guzzetti and Howell [6, 7, 8] identify orbit-attitude periodic so-
lutions for planar orbits, providing a distinction between elementary planar
motions and three-dimensional solutions; Knutson et al. investigate the rigid
body motion that is associated with planar [9] and three-dimensional [10, 11]
orbits, identifying bounded and unbounded attitude responses. A wide range
of techniques to search, identify and exploit coupled orbit-attitude behaviours
for space mission design is provided by Guzzetti [12].
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Periodic and quasi-periodic orbits, in the Circular Restricted Three-Body
Problem (CR3BP), are a valuable tool for mission analysis. A wide range
of techniques is currently available for their generation and analysis; sev-
eral periodic solutions were investigated with numerical techniques [13, 14]
and semi-analytical methods [15, 16, 17], both in the three-dimensional and
planar case. Recent works [18] provide catalogues for fast generation and
analysis of periodic orbits in the Earth-Moon system.

The main scope of the present work is to map the solution space for cou-
pled orbit-attitude dynamics within a perturbed multi-body regime, defining
a framework for the operational exploitation of such solutions, and introduc-
ing novel tools for their analysis. The study is focused on the Earth-Moon
system, although the proposed methods have a general validity for other
three-body dynamical systems. A correct utilization of periodic behaviours
may, in fact, be an aid to the ACS for a space vehicle that operates in a
multi-body gravitational environment, and it may open new scenarios for
mission design. Previous works on coupled orbit-attitude dynamics focus on
gravity gradient torque only, whereas, at the Lagrangian points of the Earth-
Moon system, Solar Radiation Pressure (SRP) torque may be as large as the
gravity gradient torque. This work displays that, through a simplified SRP
model, periodic orbit-attitude solutions may still exist, when the period of
the solution is commensurate to the period of the apparent Sun motion. As
an additional step to increase the fidelity of the model, the flexibility of the
spacecraft is introduced, analysing its effect on the periodic solutions.

Graphical mapping of the solution space, as introduced in this paper,
may be a valuable tool for orbit-attitude dynamics investigation. Numerical
targeting strategies provide a method to search periodic orbit-attitude solu-
tions, however, they do not directly enable a clear visualisation of the solution
space; a main advantage of graphical mapping techniques is the possibility
to intuitively classify families of solutions. A more complete representation
of the solution space facilitates comparison between reference and perturbed
dynamics. Limitations of graphical mapping are noted, when the number of
design variables is increased, since mapping multiple variables into two/three
dimensional graphics may be challenging.

The paper is organized as follows: Section 2 provides the models and the
nomenclature used for the analysis; Section 3 presents periodic orbit-attitude
solutions and their classification into families, leveraging a graphical mapping
of the solution space; Section 4 further elaborates the dynamical model,
introducing the effect of Solar Radiation Pressure (SRP) and demonstrating
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novel periodic solutions, that exploit the SRP torque; Section 5 investigates
the effect of structural flexibility on attitude motions obtained under the
rigid body approximation, fostering the application of periodic solutions to
real space structures; Section 6 provides an applicative example.

2. Model and assumptions

2.1. Equations of motion

Let us consider a rigid spacecraft, with an attached principal inertia frame
x̂bŷbẑb, moving under the gravitational pull of two massive attractors m1 and
m2, called primaries. The translational dynamics is conveniently described
in a rotating frame X̂sŶsẐs, centred in the barycentre of the primaries, whose
angular velocity equals the relative mean motion of the two primaries, de-
picted in Figure 1; r1 and r2 represent the position of the spacecraft with
respect to the primaries, r1 and r2 denote the norm of r1 and r2, respec-
tively. This problem is known as the Circular Restricted Three-Body Prob-
lem (CR3BP). Additionally, the ẑb direction coincides with the Ẑs axis.

Equations of motion are conveniently normalized with respect to the time,
length and mass units of the primary system [14]. Throughout this docu-
ment, units of measure are omitted when plotting non-dimensional quanti-
ties; the absence of units for such quantities is indicated by a dash (-) in the
corresponding axis label.

ẍ− 2ẏ − x = −1− µ
r31

(x+ µ)− µ

r32
(x− 1 + µ) (1)

ÿ + 2ẋ− y = −1− µ
r31

y − µ

r32
y (2)

The resulting set of equations (1),(2) is governed by a single parameter,
called mass ratio, defined as

µ =
m2

m1 +m2

(3)

Although the CR3BP does not possess a closed-form solution, five rela-
tive equilibrium points are known. Families of periodic trajectories (in the
rotating frame) emanate from the proximity of these equilibria, where the
centrifugal and gravitational forces null each other.

Planar rotational dynamics is described by Euler’s equation about ẑb
direction.
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Figure 1: Reference frames

ω̇z = 3
Iy − Ix
Iz

(
1− µ
r31

e1e2 +
µ

r32
l1l2

)
(4)

Ix, Iy and Iz in equation (4) denote the principal inertia moments of the
spacecraft, about the centre of mass, in the body frame x̂bŷbẑb; e1e2 and l1l2
are the direction cosines of r1 and r2, respectively, in body axes x̂bŷbẑb; the
right-hand side denotes the gravity gradient torque [4] exerted by the two
primaries.

Observing equation (4), the inertia topology for the spacecraft, in the
planar dynamics, may be described through a coefficient Kz, defined as

Kz =
Iy − Ix
Iz

, (5)

and called inertia ratio.
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Considering a planar case only, the rotation of the spacecraft may be
represented by a single parameter; the angle φ is, therefore, selected (referring
to Figure 1), being the angle between the x̂b and the X̂s axes, measured
positively in counterclockwise direction.

2.2. Families of orbits

Within the CR3BP, a large variety of planar periodic motions are ac-
cessible, along with a vast literature that discusses numerical techniques to
produce those solutions [18, 17, 19]. Figure 2 portrays a sample of planar
orbit families that are often proposed as a final destination for lunar explo-
ration, or as a staging location for interplanetary missions. Accordingly, the
present analysis focuses on this type of trajectories.

Planar Lyapunov orbits branch out from the collinear Lagrangian points
towards the primaries; a few Lyapunov orbits around L1 and L2 are depicted
in Figure 2. The L2 orbits might be suitable for trans-lunar infrastructures
to support interplanetary travels and lunar activities, while orbits around
L1 could be exploited to ease transfers from Earth to lunar orbits and back
[20, 21]. Distant Retrograde Orbits (DRO) are particularly appealing for
lunar missions design for their high degree of stability [22, 23]; in addition,
these orbits encircle both Lagrangian points L1 and L2 and may exploit other
orbits transfer manifolds to and from other orbit families [20]; DROs are also
among the possible parking orbits considered for NASA’s Asteroid Redirect
Mission [24]. As common practice in specialized literature, Lyapunov orbits
and DROs are classified according to their amplitude Ay, measured positively

from the X̂s axis along Ŷs direction.

3. Periodic orbit-attitude solutions

The exploitation of the dynamical coupling between orbit and attitude
motion may offer operational possibilities for space mission design. Before
including additional external perturbations, the orbit-attitude coupled dy-
namics for a rigid body are explored with the extension of the gravity action
to the attitude motion. Periodic orbit-attitude solutions exist in the planar
CR3BP; such solutions are a peculiar combination of translational and angu-
lar motion, where the dynamical behaviour repeats at regular intervals both
in the trajectory and in the attitude response.
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3.1. Model and algorithm

To identify periodic orbit-attitude solutions a search method needs to
be defined. The search method is developed on the assumption of a rigid
spacecraft travelling within an unperturbed CR3BP, where the only forces
and torques are induced by the gravitation pull exerted by the two primaries.
Kane [25] provides an expression to compute the acceleration induced by a
massive point attractor on the centre of mass of an extended rigid body; such
expression differs from the well-known gravitational acceleration between two
point masses, since a series of terms is added to describe the effect of the
finite size of the rigid body. Such additional terms, which depend on the
inertia properties of the rigid body, may be negligible with respect to other
significant perturbations in the Earth-Moon system [23], and, accordingly,
are excluded from the present dynamical model. The set of equations (1)
and (2), thus, does not need to be modified.

An algorithm to search for a periodic orbit-attitude solution may be sum-
marized in the following steps:

1. A periodic orbit is obtained, using standard differential correction tech-
niques;

2. The spacecraft topology is defined through a single parameter, Kz;

3. The attitude motion is propagated along one orbital period, T , for a
span of initial body angular velocities, ωz(0), between -10 and 10 non-
dimensional units, starting with body axes aligned with the rotating
frame;

4. For each value ωz(0), values of angular velocity ωz(T ) and rotation
angle φ(T ) after one orbit period are collected, and variations with
respect to initial conditions ∆ωz,∆φ

∆ωz = ωz(T )− ωz(0) ∆φ = φ(T ) (6)

are computed;2

5. A periodic solution is identified when both ∆ωz and ∆φ are simulta-
neously zero (within a tolerance of 10−9 non-dimensional units, corre-
sponding to 10−15 rad/s, sufficient for a trade-off between accuracy and
computational speed).

2Recall that φ(0) = 0, since x̂b coincides with X̂s at the initial instant.
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A graphical example of the algorithm rationale is depicted in Figure 3 (the
term ”periodic solution” refers to the value of ωz(0) which is necessary, for a
given orbit, to establish a periodic planar attitude motion). The identification
of the solution, i.e. the point where both the angular velocity residual, ∆ωz,
and the angle residual, ∆φ, are zero, is performed as follows, referring to
Figure 3:

1. The residuals ∆ωz and ∆φ are computed on a small interval of values
ωz(0), centred on a guessed value, e.g. the solution at the previous
step;

2. Two residual curves are constructed, describing angular velocity and
angle difference ∆ωz and ∆φ, respectively, and the residual curve that
presents the steepest derivative in the interval, is selected for the next
step;

3. The curve with the steepest derivative is interpolated to find an esti-
mate for the value ωz(0), where this curve intersects zero. This estimate
ωz(0) is employed to evaluate the residual function on the remaining
curve, also using linear interpolation;

4. If an accurate estimate for the angular velocity ωz(0) is identified, the
residual functions ∆ωz and ∆φ are both zero (within a given tolerance).

The selection of the steepest curve, at point 2, guarantees a good identifica-
tion of the zero point, better conditioning the interpolation of said curve.

Guzzetti and Howell [7, 8] describe a different algorithm to obtain pe-
riodic orbit-attitude solutions, one that leverages a differential correction
update for both the spatial orbit and attitude motions to achieve periodicity.
The present algorithm fixes the operational orbit and specializes on periodic
attitude behaviours strictly associated to a given trajectory.

Furthermore, the algorithm used in the present investigation searches a
sole parameter, ωz(0), whereas the initial attitude and orbital conditions are
kept fixed. It is noted that, as portrayed in Figure 3, the proposed method-
ology exploits the knowledge of the dynamical behaviour, i.e., searches for a
point where both the angle and the angular velocity residuals are zero. Due
to the nature of the attitude dynamics problem, the angle and the angular
velocity residuals must be zero at the same time, in order for a periodic so-
lution to exist; any other parameter optimization method could be employed
to search for ωz(0), although losing the advantage of knowing such relation,
coming from the dynamical system at hand.
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3.2. Families of solutions

Considering a planar periodic orbit, there exist multiple values of ωz(0)
that guarantee a periodic, planar rotational motion, as noted in [26] during
the study of distant retrograde orbits. In general, for the type of solutions
currently identified, an initial angular velocity corresponds to N spacecraft
rotations, about its ẑb axis, any one orbit revolution; this observation yields
a classification of the solutions into families, each characterized by its own
number of rotations, N . The sign of N determines the spacecraft rotation
direction, which is positive for counterclockwise rotations about the ẑb axis.

Figure 4 portrays attitude periodic families for DROs, and considering
a vehicle with Kz = 0.8. The reference periodic trajectory is represented
along the horizontal axis, identified by its period; the vertical axis corre-
sponds to the initial angular velocity ωz(0), that generates a periodic atti-
tude behaviour, superposed to the reference orbital motion. Throughout this
document, different curves correspond to different attitude families.

Observe that the lines belonging to different families, characterized by the
number of rotations N , may be interpreted as the contour lines of a residual
function, which evaluates the residual

∆(ωz(0)) = ∆ωz + ∆Nφ (7)

for a given value of initial angular velocity ωz(0), where ∆Nφ represents
the angular residual, ∆φ, after N rotations. The algorithm in Section 3.1
corresponds, in fact, to a zero-search of the function in equation (7).

A set of sample solutions is depicted in Figure 5, including time histories
for the rotation angle and the body angular velocity for a DRO with period of
17 days. In Figure 5, each line renders a different family of attitude periodic
solution, as indicated by the number of rotations, N . This solution profile
matches results obtained by Guzzetti [12].

3.3. Attitude periodicity maps

Once the attitude periodic solutions are identified and classified into fam-
ilies, it is possible to step forward in mapping the solution space. Families
of solutions exist for different values of inertia ratio Kz, and may be, thus,
plotted together to visualize a more informative picture of the solution set.

Recall that, an identification effort for periodic attitude solutions is neces-
sarily tied to the model, and classification, employed. That is, for the current
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work, a planar attitude behaviour where the body carries out an integer num-
ber, N , of rotations per orbit. Other orbit-attitude solutions exist, both in
the planar and three-dimensional case [12], and might be also explored and
classified.

Attitude periodicity maps represent a useful tool to graphically depict
the orbit-attitude solution space. For example, Figure 6 portrays an attitude
periodicity map for DROs, considering the whole span of Kz values. The
different families may be visually identified, as the lines belonging to the
same family are close to each other.

Figures 7 and 8 depict, respectively, attitude periodicity maps for planar
Lyapunov orbits around the Lagrangian points L1 and L2. Note that, the
Kz = 0 case is equivalent to a planar torque-free motion, since such mass
distribution would not experience any attitude perturbation due to gravity
gradient. Thus, the periodic solutions for Kz = 0 correspond to a triv-
ially commensurate orbit-attitude motion, produced by an initial condition
ωz(0) = 2πN

T
, where T is the orbital period. The lines corresponding to

Kz = 0 are families of hyperbolas. Families associated to no revolutions,
N = 0, are rendered by straight lines.

A recent work [27] obtained an analytical solution, for planar attitude
dynamics of a rigid body located at the Lagrangian points. Such solution
might be exploited to obtain the exact value, ωz(0), that establishes a peri-
odic attitude behaviour at a Lagrangian point. The exact periodic motion
at a collinear Lagrangian point is a good initial guess for Lyapunov orbit
periodicity maps. This value guarantees, in fact, a precise initialization of
the numerical algorithm that is discussed in Section 3.1.

4. Effect of solar radiation pressure

The gravity gradient torque strongly affects the rotational motion for a
rigid body, nonetheless, within a multi-body environment, it may not be
the largest moment in magnitude. In particular, large space structures with
extended surfaces (e.g. solar arrays) are subjected to a large force generated
by Solar Radiation Pressure (SRP). SRP forces generally perturb both orbital
path and attitude motion; SRP produces, in fact, an acceleration on a vehicle
centre of mass, and, also, a torque, when there exists a lever between the
solar radiation centre of pressure and the spacecraft centre of mass. Since
an additional SRP moment may largely perturb a periodic attitude solution,
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that is available within a simplified gravitational model, the inclusion of SRP
in the framework is warranted.

Our investigation only explores the effects of SRP on the spacecraft rota-
tional motion; SRP force is not included in the dynamics, thus, the vehicle
travels along unperturbed CR3BP reference trajectories. This simplification,
in general, is not a sufficiently accurate representation for an actual natural
motion, however, a station-keeping system is typically employed to maintain
the nominal path in real mission applications. Therefore, the present study
may focus on the torque component only, without a loss of generality and
applicability of the results.

4.1. Model for solar radiation pressure

Consider an infinitesimal surface dA, subject to an incoming Sun radia-
tion flux W0 (e.g., '1361 W/m2 in the Earth-Moon system). The infinitesi-
mal force generated by SRP [28] may be written as

dFSRP = −W0

c0
dA(ŝ · n̂)

[
2Cs|ŝ · n̂|n̂+ Cd

(
2

3
n̂+ ŝ

)
+ Caŝ

]
(8)

depending on the fraction of radiation reflected specularly (Cs), diffusively
(Cd) or absorbed (Ca). The symbol ŝ denotes the Sun direction, n̂ indicates
the direction of the normal to the surface dA, whereas c0 is the speed of light
in vacuum; in the case of an opaque surface, note that the three coefficients
Cs, Ca, Cd satisfy the following identity

Cs + Ca + Cd = 1 (9)

so that only two coefficients are sufficient to fully describe an SRP interaction.
For a preliminary analysis including the SRP torque along orbit-attitude

periodic solutions, it is convenient to lump all the external area of the space-
craft into a single flat surface, A, whose normal n̂ is known in the x̂bŷbẑb
frame [26]. Such surface is exposed to radiation on both sides, so that the
total acceleration acting on the spacecraft may be reduced to a more compact
form.

aSRP = −W0

c0

A

m
(ŝ · n̂)

[
(1− Cs)ŝ+

(
2Cs|ŝ · n̂|+

2

3
(1− Cs − Ca)

)
n̂

]
(10)

Within a lumped-area approach, the SRP torque may be modelled through
the knowledge of the position dc of the centre of pressure with respect to the
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centre of mass; by assumption, dc is fixed in the principal inertia frame. The
total torque due to SRP, thus, results in

TSRP = dc ×maSRP (11)

where m is the total mass of the spacecraft, and the SRP acceleration derives
from equation (10). In the present planar case, both dc and FSRP lie in the
X̂sŶs plane, so the resulting torque vector is directed as Ẑs.

4.2. Sun motion model

The relative direction of the Sun within the Earth-Moon system may
be described, as a first approximation [29], assuming an apparent planar
motion within the X̂sŶs plane, with constant angular velocity, Ωsun. The
actual out-of-plane components of the SRP torque are, roughly, 1% of the
in-plane component over a synodic period, and may thus be neglected for
some orbital periods, within the current framework.

The angle, θsun, between the Sun and the X̂s axis is, then, a linear function
of time. Figure 9 portrays the Sun position obtained within such a simplified
model. Additionally, when the Sun radiation reaches the Earth-Moon system,
it is approximated by a parallel ray beam. Since the principal objective is to
investigate periodic orbit-attitude solution, the inclusion of SRP generates a
periodic excitation, whose period depends on the relationship between the
orbital period and that of the apparent Sun motion. If an integer ratio exists
between the reference trajectory period and the period of the SRP action, a
periodic solution may exist, one whose period is commensurate both to the
apparent motion of the Sun, and to the orbit period.

Planar orbits whose period is a submultiple of the apparent Sun period,
called Sun-resonant orbits, are a reasonable starting point to explore the
interaction of solar radiation with orbit-attitude periodic dynamics. Most of
the attention will be devoted to a 1:2 resonance, i.e., the spacecraft carries
out two orbital revolutions, while the Sun revolves once in the rotating frame.
Such resonance exists both for DROs and Lyapunov orbits.

4.3. Modified periodic solutions

Using Sun-resonant orbits, the search for a periodic attitude solution
is extended to an SRP-perturbed environment. If a periodic behaviour is
available, that may serve as a mean of passive attitude stabilization for the
spacecraft; coupling effects due to gravity gradient and SRP-induced torques
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may be cleverly combined to further alleviate the attitude control effort.
Virtually, the SRP-induced torque might be not actively compensated; more
realistically, ACS will have to control all the perturbations not included in
the model, primarily the out-of-plane component of SRP, and those due to
the actual motion of the Earth, Moon and Sun.

The algorithm used to search a periodic orbit-attitude solution is anal-
ogous to the one presented in Section 3; when SRP torque is introduced,
equation (4) is modified using equation (11).

ω̇z = 3Kz

(
1− µ
r31

e1e2 +
µ

r32
l1l2

)
+
TSRP
Iz

(12)

noting that the torque, TSRP , computed with equation (11), is a scalar in
equation (12), since the problem at hand is planar and only the Ẑs component
of the torque vector is necessary to describe rotational dynamics. Some
additional parameters define a dynamical response when a SRP torque is
included, namely:

• The area-to-mass ratio A/m;

• At least two of the coefficients Ca, Cs, Cd;

• The position dc of the centre of pressure;

• The orientation n̂ of the Sun-exposed surface in the principal inertia
frame.

Furthermore, the moment of inertia Iz appears directly in equation (12),
thus the sole inertia ratio Kz is no longer sufficient. Note also that the initial
epoch generally dictates the starting Sun angle θsun(0), and, therefore, alters
the attitude time history. Mapping the solution space for periodic orbit-
attitude behaviours that include SRP, is significantly more complex, because
the number of parameters has increased, adding to a large number already
in a planar orbit-attitude dynamics. Any combination within the parameter
set may be virtually employed; the following discussion considers the initial
Sun position θsun(0) = 0, and the inertia moment Iz = 96.95 · 106 kgm2,
varying the other spacecraft properties, in order to map a portion of the
multi-parameter space of solutions.

Consider to practically construct an orbit-attitude periodic solution that
includes SRP. Exploiting a 1:2 Sun-resonant DRO (Ay = 103000 km), the
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correct tuning of the angular velocity ωz(0) allows to obtain a periodic at-
titude behaviour, which synchronizes with the apparent Sun motion. The
numerical algorithm follows the scheme described in Section 3.1; the dif-
ference lies in the attitude propagation, which is here performed including
SRP torque. At this stage, the solution solely including the gravity gradient
torque may be employed as initial guess.

The resulting motion is visible in Figure 10. Profiles of angular coordi-
nates are similar, in shape, to those obtained when solely including a gravity
gradient perturbation, whereas the periodicity of the solution remains at each
two orbital period. For different resonance ratios (e.g. 1:3, 1:4) periodic so-
lutions may be again obtained, with an attitude behaviour that follows the
periodicity of the apparent Sun motion.

Beyond assembling an individual periodic response, it is, also, possible to
map the solution space, providing a visual tool to identify an angular velocity
that yields periodic attitude motion under SRP. Due to a large number of
parameters that contribute to SRP, a periodicity map only renders a set
of all possible solutions along the reference span of orbits; to preserve an
easy visualization of the results, it is convenient to create different maps for
different parametric sets.

Figure 11 presents the periodicity map for a LSS in a 1:2 Sun-resonant
DRO. The lines correspond again to families of periodic orbit attitude solu-
tions; the horizontal axis represents the arm of the SRP force with respect to
the centre of mass for the spacecraft, and it is proportional to the magnitude
of the SRP torque. The maps are referred to a structure with external di-
mensions and mass similar to the International Space Station (ISS); a large
area exposed to solar radiation generates a solution very sensitive to SRP
torque. Ultimately, if the distance |dc| is large enough, the SRP torque is
dominant over the gravity gradient moment. Different inertia ratios are pre-
sented in the periodicity maps, to analyse the sensitivity of the solutions to
such a parameter.

Figure 12 portrays the periodicity map, referred to the same structure,
for a 1:2 Sun-resonant Lyapunov orbit around L1 (Ay = 73500 km).

Currently available periodicity maps with SRP exhibit a discontinuous
behaviour, with gaps and scattered lines, due to an increased numerical dif-
ficulty in satisfying tolerances after the introduction of SRP torque. In these
cases, the algorithm did not converge with the desired tolerance; such solu-
tions might correspond to bounded behaviours, where a quasi-periodic time
history is manifested but attitude periodicity is not guaranteed. Finer mesh
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grids and integration tolerance may be employed to overcome such discon-
tinuity, even though numerical precision issues were observed for excessively
tight tolerances. Further analysis is warranted to clarify the distinction be-
tween bounded and periodic solutions, starting from the investigation of dis-
continuous regions within the solution space.

The sensitivity to other spacecraft parameter may be explored with the
same mapping technique, selecting the desired variable and creating period-
icity maps. An additional example of the many possibilities is reported in
Figure 13; the set of periodic orbit-attitude solutions on a 1:2 Sun-resonant
DRO is mapped, varying the specular reflection coefficient Cs for fixed values
of Kz and Cd.

5. Effect of spacecraft flexibility

This Section addresses the dynamics of a flexible spacecraft in the CR3BP
environment, assessing the resulting effect on attitude motion. Large space
structures may possess low structural stiffness and poor structural damping,
as far as present, and near-future, materials and technologies are employed.
Some low frequency natural modes might, then, be excited by the orbital
and rotational motion; in return, flexible vibrations may perturb the vehi-
cle nominal trajectory and/or pointing profile. Effects of this perturbation,
in general, appear first as an alteration of the attitude dynamics. Accord-
ingly, this work, first explores how the rotational motion for an actual elastic
structure may be different from the nominal rigid body solution, for a fixed
reference trajectory.

5.1. Model

A lumped-parameters approach is employed to describe the flexible parts
of a spacecraft. Because of the discrete representation for flexible compo-
nents, lumped-parameters models are in general not able to capture the full
dynamical spectrum for an elastic structure. They may, however, be suitable
to approximate the first fundamental natural modes.

Presented in [26], Figure 14 portrays the model employed for the analy-
sis: a rigid spacecraft, with inertia moment Īz, with Nf flexible components
attached. Each i-th flexible part is modelled as a Single-Degree-Of-Freedom
(SDOF) system, with mass m̄i, stiffness k̄i, connected to the rigid body at
the coordinates x̄i, ȳi. The variable s̄i indicates the elongation for the cor-
responding spring, and may represent a generic quantity that is associated

15



with a flexible behaviour. The angle ᾱi describes the orientation for the i-th
SDOF system; for the present investigation, orientation angles, ᾱi, are fixed.
Let us also denote, with Ω̄i =

√
k̄i/m̄i, the fundamental frequency of each

flexible part. The rotational and vibrational motion are constrained within
the x̂bŷb plane, which coincides with the X̂sŶs plane for the present planar
dynamical framework.

5.2. Equations of motion

Employing a Lagrangian approach [23, 30], Nf + 1 coupled equations
of motion are obtained: that is, a set of Nf equations that describe flexible
dynamics, plus one equation for rotational dynamics as a first approximation.
No external forces are assumed to act on the masses m̄i. Gravitational pull
of the Earth and the Moon is only applied to the rigid part of the spacecraft,
therefore, with no effect on structural dynamics.

Each SDOF system is governed by a second-order differential equation

m̄i ¨̄si + (k̄i − m̄iω
2
z)s̄i = m̄iω

2
zLi − m̄iω̇zAi (13)

where two auxiliary coefficients have been defined

Li = (x̄i cos ᾱi + ȳi sin ᾱi) (14)

Ai = (x̄i sin ᾱi − ȳi cos ᾱi) (15)

for a more compact notation. The following equation governs rotational
dynamics

ω̇z

Īz +

Nf∑
i=1

m̄i(s̄
2
i + x̄2i + ȳ2i + 2s̄iLi)


+ ωz

Nf∑
i=1

2m̄i(s̄i ˙̄si + ˙̄siLi) = Tz −
Nf∑
i=1

m̄i ¨̄siAi (16)

where Tz represents the sum of all external torques acting on the spacecraft
(e.g., gravity gradient, SRP torque, etc.).

It is interesting to analyse how the attitude dynamics is affected by struc-
tural vibrations; looking at equation (16), one may observe the followings:

• The first term (between square brackets) represents the overall inertia
moment, Iz, of the body, considering both the rigid and the flexible
sections;
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• The second term is a non-linear coupling term, between the body an-
gular velocity and linear velocities of the flexible parts;

• The last expression is an equivalent torque, exerted on the spacecraft,
due to the inertia forces of the vibrating parts.

5.3. Case study: high structural frequencies

The following paragraphs provide a deeper analysis of the flexible dy-
namics, developing the formulation under some working assumptions. It is
usually reasonable to assume, for present and near-future space structures,
that

Ω̄i � ωz,
2π

T
∀ i (17)

i.e., the orbital and attitude natural frequencies are much lower than the
structural ones. Under such assumption, the behaviour of a spacecraft is
dominated by the rigid body motion, and the flexible contributions in the
left-hand term of equation (16) may be dropped, since they are first- or
second-order infinitesimal quantities [26, 23]. Equation (13) may be further
reduced to

¨̄si + Ω̄2
i s̄i = ω2

zLi − ω̇zAi (18)

neglecting the gyroscopic contribution to stiffness. It is further assumed that,
small flexible vibrations do not significantly perturb an attitude motion, and,
thus, the time history for the spin rate ωz may be obtained by integrating
the rigid body motion, along a fixed orbit, with gravity gradient torque (SRP
may be added, too). Having the angular velocity, ωz, a periodic behaviour,
equation (18) describes a SDOF, periodically forced system. The resulting
problem may be investigated as follows:

1. A rigid body, periodic orbit-attitude solution is obtained, with the tech-
niques described in the previous sections;

2. The time history for the angular velocity, ωz, associated to the rigid
body solution (with gravity gradient solely, or GG+SRP), is acquired;

3. The set of Nf equations (18) are solved numerically, or in closed form
if the solution for the variable ωz is approximated with an analytic
expansion (e.g. Fourier series);

4. The resulting values ¨̄si are employed to compute the attitude pertur-
bation due to vehicle flexibility.
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The attitude perturbation that results from point 4 of the list above is the
right-hand term of equation (16), which may be integrated, again, including
both external torques and such perturbation. When equation (17) is a valid
model, the flexibility of the spacecraft does not significantly perturb the atti-
tude motion, resulting in a small, periodic torque with no secular component
(as a first approximation in the present framework).

However, a potential value within this analysis is the computation of
the coordinates s̄i, which may be employed to foresee maximum and mean
displacements, and provide preliminary information for structural analysis.

5.4. Case study: low structural frequencies

Complementary to the analysis for high frequencies, is the case when
structural frequencies are very low, in the neighbourhood of the attitude
and orbital frequencies, since strong coupling may arise between rotational
motion, orbital path and vibrations of flexible components. The analysis for
low structural frequencies is, at present, less connected to a real application,
acknowledging the fact that disposing a highly flexible structure in space is
beyond the current technological capability; nonetheless, it is included for
completeness, and to provide a preliminary insight into the problem. The
sole attitude dynamics is considered, in analogy with the previous Section;
the orbital motion may be investigated in future studies.

Dropping the assumption reported in equation (17), the attitude motion
needs to be numerically integrated, together with the motion for the flexible
parts. In fact, a non-linear coupling between the elastic displacements and
the body angular velocity, i.e., the second term in equation (16), arises, and
may be significant in the description of the fully-coupled motion.

Figure 15 portrays the angular velocity time history for a spacecraft with
lowered structural frequencies; the perturbed attitude profile is displayed to-
gether with the nominal solution, that is obtained using a rigid body periodic
orbit-attitude solution. The reference orbit is a DRO with period T = 14.75
days, which corresponds to a frequency of 7.85× 10−7 Hz.

As the relative time scaling among the fundamental frequencies for the
coupled motion (orbit, attitude, and flexible behaviours) varies, different
responses are observed:

• When structural angular frequencies are low with respect to the orbit-
attitude motion ones (Figure 15a), the attitude motion encounters
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small short-period perturbations, which do not hinder the overall be-
haviour; the flexibility of the spacecraft may, thus, be considered as a
perturbation of the rigid body attitude solution.

• If structural frequencies are in the neighbourhood of the orbital fre-
quency, a strong coupling arises between attitude motion and elastic
vibrations. The angular velocity time history (Figure 15b) reveals a
strongly non-linear behaviour; its periodicity is no longer dominated
by the rigid body solution, since large oscillations are due to a flexible
structure excitation.

• When structural frequencies are much lower than those of orbital and
attitude motion, the elastic components dictate the overall spacecraft
behaviour. The body angular velocity (Figure 15c) rapidly deviates
from the nominal behaviour, settling in the neighbourhood of zero;
accordingly, the movement of the flexible parts is dominant, as their
inertia forces attenuate the impact of the gravity gradient torque on
the final response.

These observations may be employed for preliminary spacecraft design,
to assess the effect of flexible components (e.g. large solar arrays, deployable
modules, etc.) on the attitude motion. If the assumption in equation (17)
is accurate, the spacecraft dynamics analysis may be based on the rigid
body solutions, and flexible behaviours may be treated as small attitude
perturbations.

6. 1:2 Sun resonance DRO example: full dynamical model

A final applicative example is provided, in order to highlight the oper-
ational possibilities opened by a correct exploitation of the natural envi-
ronment. A 1:2 Sun resonant DRO (Ay = 103000 km, T = 15 days) is
envisaged as promising staging location for a LSS in lunar vicinity, since the
orbit period resonance with the Sun period allows to identify periodic orbit-
attitude solutions which include the effect of SRP; furthermore, the stability
properties of the DRO family provide a high degree of robustness towards
perturbations. A sample LSS is employed for the analysis, with a specular
reflection coefficient Cs = 0.4, absorption coefficient Ca = 0.6, moment of in-
ertia Iz = 96.95·106 kgm2, area-to-mass ratio A/m = 0.016 m2/kg, and three
flexible modes, with principal frequencies of 10−6, 10−5, 10−4 Hz. Considering
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a nominal solution, obtained with the techniques and models (CR3BP + GG
+ SRP + flexibility) presented throughout the paper, Figure 16 portrays the
deviations, with respect to such nominal solution, of the rotation angle and
angular velocities time history. A perturbation on the initial angular velocity
equal to the 1% of the nominal value is considered, together with a 5 degrees
error in the initial angle; furthermore, a 1% modelling error is introduced in
the parameters Iz, Ca, Cs, A/m. It is noted that the resulting deviation from
the nominal profile is small, and bounded in amplitude; the non-divergence
of the perturbed solution is a preliminary demonstration that some periodic
orbit-attitude behaviours, within simpler dynamical models, may serve as
stable and robust references for mission design in higher fidelity. Further
studies are, however, required to explore the effects of additional perturba-
tions, that are not incorporated into the current dynamical model.

7. Final remarks

The paper presents a framework to investigate planar orbit-attitude dy-
namics in both a standard, and a perturbed CR3BP environment.

Periodic solutions, where both orbital and rotational motion are repeated
regularly, may be established, assuming the spacecraft to be a rigid body
perturbed by gravity gradient torque only. Such solutions are systematically
classified into families, and periodicity maps are employed to more efficiently
visualize the solution space. These maps may provide the mission analyst
a valuable tool for a preliminary analysis, allowing to recognize desired or
undesired attitude behaviours without using extensive numerical simulations
within complex, higher-fidelity models. The periodic orbit-attitude solutions
might offer novel possibilities for future missions involving large space struc-
tures, and the results of the paper may serve as a starting point for further
investigations.

The model is, then, refined with the introduction of Solar Radiation Pres-
sure (SRP) torque, combined with a simplified representation of the space-
craft. Artificially fixing the reference orbit, periodic orbit-attitude solutions
may still be possible, in condition of resonance with the Sun apparent motion
in the rotating frame.

Future studies may include the investigation of SRP perturbation on the
trajectory, exploring its consequences when both, nominally periodic, orbit
and attitude motions are simultaneously perturbed. Novel periodic orbit-
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attitude solutions may be searched for and explored in such a refined model,
exploiting the results obtained within the presented assumptions.

Eventually, the perturbation induced on the attitude motion by flexible
components is introduced. Such perturbation remains small and bounded
as long as the natural frequencies of the flexible structure are much higher
than those representative of the orbital attitude motion; when the two sets of
natural frequencies possess the same order of magnitude, strong non-linear
couplings may emerge, leading to possible diverging behaviour. The results
are obtained with a lumped-parameters first order model; more refined mod-
els can offer a greater insight on the structural-attitude coupling, and further
analyses might highlight peculiar behaviours in case or structures with large
compliance.
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Figure 5: Sample periodic solution Kz = 0.8, DRO with T = 17 days
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Figure 6: Periodicity maps for distant retrograde orbits. Ay = 36300− 228100 km
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Figure 7: Periodicity maps for L1 Lyapunov orbits. Ay = 1200− 183800 km
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Figure 8: Periodicity maps for L2 Lyapunov orbits (note the partial overlapping of families
N = 0 and N = −1). Ay = 6000− 76000 km

31



 

�̂� 

𝜃𝑠𝑢𝑛 = Ω𝑠𝑢𝑛𝑡 

𝑥𝑏 

�̂�𝑏 

𝜙 

�̂�𝑠 

�̂�𝑠 

𝑆𝑢𝑛 

Figure 9: Apparent Sun motion in the CR3BP
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Figure 14: Spacecraft lumped-parameters model

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/T (-)

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6
ω
z
(-
)

Rigid spacecraft
Flexible spacecraft

(a) Natural frequencies O(10−6) Hz

0 1 2 3 4 5 6 7 8 9 10

t/T (-)

-1.2

-1

-0.8

-0.6

-0.4

ω
z
(-
)

Rigid spacecraft
Flexible spacecraft

(b) Natural frequencies O(10−7) Hz

0 5 10 15 20 25 30

t/T (-)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

ω
z
(-
)

Rigid spacecraft
Flexible spacecraft

(c) Natural frequencies O(10−8) Hz

Figure 15: Body angular velocity with low structural frequencies Ω̄i
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