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1 Introduction

In its most general meaning, vulcanization may be defined as any treatment that 
decreases the flow of an elastomer, increases its tensile strength and modulus, but 
preserves its extensibility.

Methods for rubber curing have historically received considerable attention in 
man-ufacturing process, especially for rubber items with relatively large size, 
because in such cases, the different temperature profiles of the core and the skin 
occurring during vulcanization play a role into the resultant reticulation degree 
achieved at the end of the heating phase [2].

Among the others, vulcanization with sulphur is maybe the most popular technique 
for both natural rubber (NR) and its synthetic counterpart (IR), as well as for other 
synthetic rubbers such as polybutadiene (BR), styrene–butadiene rubber (SBR), nitrile 
rubber (NBR), butyl rubber (IIR), and ethylene–propylene–diene rubber (EPDM), only 
to indicate the most important in the market.

Sulphur is used in combination with one or more accelerators (e.g. delayed-action 
sulphenamides, thiazoles, thiuram sulphides, etc.) and an activator system, as for 
instance soluble zinc—which increases drastically the efficiency of crosslinking 
formation—and fatty acid. In this context, many reagents are nowadays at disposal 
associated with sulphur vulcanization of polydienes [3,4] allowing a drastic 
improve-ment of the basic cure capabilities obtainable with sulphur.

In general, it is commonly accepted that vulcanization with sulphur takes place 
roughly into three steps, namely induction, crosslinking and post-crosslinking.

The idea comes from the macroscopic interpretation of what happens to a sam-ple 
during controlled temperature curing conditions in the rheometer chamber. The 
rheometer curve, which is simply the measure of the torque resistance of a sample 
subjected to fixed temperature cure at increasing time, typically exhibits an initial 
plateau with low and slightly decreasing torque, a rapid crosslinks formation with a 
significant torque increase and eventually a final degradation, i.e. a torque decrease, 
at sufficiently large vulcanization times, usually denoted with the term 
“reversion” [5–14]. Reversion is a key distinctive aspect of the vulcanization with 
sulphur and, from a macroscopic point of view, consists in a remarkable decrease or 
rubber vulcanized properties at the end of the curing process. It depends on a series 
of concurring factors, the most important being rubber type, its structure, % of 
double bonds [5], presence of additives, in particular the accelerators, and co-
adjuvants, as well as vulcanization temperature.



Reversion is often associated with high-temperature curing. Loo [6] was probably 
the first to systematically demonstrate that, as the cure temperature rises, the crosslink 
density drops, thus increasing the degree of reversion. Chen et al. [7] shown that this 
phenomenon seems to appear when two reactions are competing during vulcanization, 
whereas Morrison and Porter [8] confirmed that the observed reduction in vulcanizate 
properties is caused by de-sulphuration and decomposition, which always proceed in 
parallel.

Chemical reactions associated with sulphur vulcanization are complex and involve 
only a few atoms in each polymer molecule; therefore, to propose a quantitative macro-
scopic model to predict vulcanization in terms of the physical properties of the rubber 
is, still now, a very challenging issue.

The so-called phenomenological approach was probably the first to be applied in 
practice and essentially relies into a mathematical scheme with constants obtained 
fitting experimental data, but without a clear kinetic interpretation connected to the 
reactions occurring during curing. Kamal and Sorour’s [15] model, followed by many 
others in the recent and less recent past [16–18], belong to this category and essentially 
are conceived to mathematically fit the rubber behavior in a rheometer chamber by 
means of a macroscopic approach.

While such procedures are very effective in practice and are particularly suited 
for a direct implementation in common software for the curing industrial analysis of 
items with very complex geometries (as for instance tires) [2], their application is only 
possible after a costly experimental validation at different temperatures of the blend 
under study and does not provide any information on the actual chemical reactions 
occurring. They therefore fail to be predictive in different conditions than those tested 
experimentally.

With the increased understanding of the nature of the reaction, more attention 
has been paid to the so-called kinetic approach. Basically, the procedures belonging 
to this latter family rely into the determination of mathematical relations between 
degree of cure and time capable to fit experimental data, once that a chemi-
cal reaction scheme is hypothesized and translated into mathematical differential 
relations.

Ding and Leonov [9] and Ding et al. [10] were probably the first to propose a 
complex kinetic scheme for NR trying to interpret induction, crosslinking and devul-
canization. The approach essentially relies into summing exponential laws, where 
crosslinking and devulcanization are ruled by two distinct kinetic constants, derived 
from the simplified kinetic scheme proposed by Coran [11].

Han et al. [19], recently, have provided a reasonable description of reversion, using a 
reduced number of kinetic parameters (with physical meaning), basing on the assump-
tion that during vulcanization, after an induction period during which no crosslinking 
reaction takes place, both stable and unstable sulfur crosslinks can be formed by first 
order reactions, the latter being subject to subsequent degradation due to another first 
order reaction. The model was partially modified by Leroy et al. [20], and again by 
Milani et al. [21], where a quite complex but fully comprehensive mathematical model 
with 7 kinetic constants was proposed. The model has kinetic base and is aimed at 
predicting, by means of a very refined approach, the vulcanization degree of NR vul-
canized with sulphur. It needs as input only rheometer curves to fit and provides as 
out-



put kinetic constants of the detailed single reactions occurring during the crosslinking
process.

In order to supersede the major limitation of Milani et al. [21] approach, i.e. its
complexity which does not allow dealing with closed form functions for the crosslink-
ing degree, Milani and Milani [1] slightly simplified the kinetic scheme. Despite the
introduction of such complexity downgrading, the model proved to fit reasonably
well experimental data, at the same time allowing to rigorously deriving a closed
form solution for the curing degree. The main limitation of this latter approach is
that the determination of the unknown kinetic constant parameters passes through the
utilization of non-linear least squares fitting where data to fit are rheometer curves.
As well known, especially in presence of multivariable problems, the success of the
least squares minimization is strictly connected to the starting point choice. In some
cases, indeed, the algorithm may fail in finding the optimal solution or may require
prohibitive computational times.

The aim of the present paper is to propose a rigorous strategy to determine analyt-
ically such starting point. In addition it is demonstrated how the function with kinetic
constants derived analytically fits in the majority of the cases experimental data very
well, meaning that the utilization of least squares may be by-passed. In the model, it is
shown how the analytical condition deduced from the scorch point (second derivative
of the rheometer curve equal to zero) and two further conditions, e.g. the time at 90 %
of vulcanization and the reversion percentage, allow the simple direct evaluation of
kinetic constants, providing a closed form analytical formula to predict well the state
of cure of the rubber under consideration.

To assess the results obtained with the model proposed, two sets of experimental
data available from [20] and [22] are considered.

The first set of data studied refers to a number of rheometer curves performed on the
same NR blend in presence of different accelerators at variable concentrations, also in
presence of moderate and strong reversion, whose a few specifics are available from
the literature in [22]. To obtain full rheometer curves, the procedure proposed in [1]
to obtain surrogate data from a few experimental information available, is applied and
meta-data are treated as they were real experimental rheometer curves.

The second set of data is constituted by 5 rheometer curves obtained on the same
blend in [20] at different temperatures, exhibiting strong reversion when the temper-
ature is increased up to 170 ◦C.

In both cases, the procedure proved to be very fast and reliable and has the advan-
tage of providing very accurate results even without the utilization of least-squares
fitting.

The approach is general and can be used in presence of any rubber compound,
provided that suitable but limited experimental data are at disposal to characterize
crosslinking reactions at different temperatures.

2 The kinetic mathematical model revised

A mechanistic model, based on a simplified kinetic scheme, is here presented to
numerically reproduced rheometer curves for NR vulcanized with sulphur. The uti-
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Fig. 1 Products and schematic reaction mechanisms of NR accelerated sulphur vulcanization

lization of a mechanistic model is particularly useful because it allows deducing kinetic 
constants at the base of the partial reactions characterizing final crosslinking of the 
blend, thus providing information on the behaviour of rubber under curing at different 
temperatures. The cure percentage obtained at the end of an industrial process may 
therefore be predicted without the need to perform extensive experimentation case by 
case [2].

A quite complex model for the vulcanization with sulphur of NR and requiring 
the iterated solution of an Ordinary Differential Equations System (ODES) has been 
recently proposed by the authors in [21]. Here, a new approach is proposed, which 
simplifies the mathematical formulation [21], but allowing to deduce a closed form 
equation for the degree of vulcanization as a function of time, with the possibility to 
suitably represent reversion when appropriate.

The basic reaction schemes assumed in the present paper are schematically rep-
resented in Fig. 1. Such scheme simplifies well established chemical interpretations 
available from the technical literature, see e.g. [9,19,20].

In particular, the scheme assumed may be regarded at the same time as a simplifi-
cation of the procedure proposed in [21] and a modification with an increase of both 
the level of complexity and accuracy with respect to the well-known Han et al. [19] 
and Leroy et al. [20] model.

As can be seen, the main reactions that are considered relevant within the overall 
complexity of the vulcanization process are five, occurring in series and parallel.

The chain reaction is initiated by the formation of macro-radicals or macro-ions 
representing the intermediate cross-link precursor. Such reaction is associated to a 
velocity represented by the kinetic constant K0.

The actual cross-linking proceeds through two pathways, which have been shown 
to be additive, namely the formation of more stable and unstable S–S bonds.

Since a multiple S–S bond is unstable, unmatured crosslinked polymer evolves 
either to matured crosslinked polymer exhibiting a single S or double bond between 
chains or leading to break of the bond and hence de-vulcanzation, which occurs again 
with a backbiting of the bond in the same backbone chain. All these reactions occur 
with a kinetic velocity depending on the temperature reaction, associated to four kinetic 
constants: K1, K2, K3 and K4.

To summarize, adopting for NR the kinetic scheme constituted by the chemical 
reactions shown in Fig. 1, the following schematization holds:



S
k0→ S∗

S∗ k1→ X1
k3→ D′

S∗ k2→ X2
k4→ D (1)

In Eq. (1), S is the uncured polymer, S∗ the unmatured crosslinked polymer, which
evolves into matured crosslinked polymer X1 + X2, with X1 indicating the stable
crosslinked part and with X2 the unstable part. Part of both X1 and X2 may evolve
into D and D′ unvulcanized polymer due to multiple S–S chains breaks and consequent
backbiting. K0,...,4 are kinetic reaction constants. Here it is worth emphasizing that
K0,...,4 are temperature dependent quantities, hence they rigorously should be indicated
as K0,...,4(T ), where T is the absolute temperature. In what follows, for the sake of
simplicity, the temperature dependence will be left out.

Differential equations associated to chemical reactions (1) are the following:

(a)
d S

dt
= −KoS

(b)
d S∗

dt
= K0S − (K1 + K2) S∗

(c)
d X1

dt
= K1S∗ − K3 X1

(d)
d X2

dt
= K2S∗ − K4 X2 (2)

From Eq. (2)(a) we can derive directly the analytical function for S by separation of
variables as:

d S

S
= −Kodt ⇒ ln

S

S0
= −K0t ⇒ S (t) = S0e−K0t (3)

where S0 is the initial concentration of S (t), which is assumed unitary to fit normalized
experimental data.

Substituting Eq. (3) into Eq. (2)(b), we obtain a first order non homogeneous linear
differential equation (1ODE) as follows:

d S∗

dt
+ (K1 + K2) S∗ − K0S0e−K0t = 0 (4)

The solution of the characteristic polynomial for the homogeneous part of (4) is λ =
− (K1 + K2), whereas substituting the equation S∗

P = K0S0/(K1 + K2 − K0)e−K0t

into (4) we obtain an identity 0=0, meaning that S∗
P is a particular solution for (4).

Therefore, the solution of the differential equation (4) turns out to be the following:

S∗ = C2e−(K1+K2)t + K0S0

K1 + K2 − K0
e−K0t (5)



where C2 is an integration constant. If we assume the reasonable initial condition
S∗ (t) = 0, then:

C2 = − K0S0

K1 + K2 − K0
(6)

and:

S∗ = K0S0

K1 + K2 − K0

(
e−K0t − e−(K1+K2)t

)
(7)

Substituting (7) into Eq. (2)(c) and (d) we obtain respectively:

d X1

dt
+ K3 X1 = K1C2e−(K1+K2)t + K1 K0S0

K1 + K2 − K0
e−K0t (8)

and

d X2

dt
+ K4 X2 = K2C2e−(K1+K2)t + K2 K0S0

K1 + K2 − K0
e−K0t (9)

Eqs. (8) and (9) admit the following similar closed form solutions:

X2 (t) = C4e−K4t − C2
K1

K1 + K2 − K4
e−(K1+K2)t

− K1 K0S0

(K0 − K4) (K1 + K2 − K0)
e−K0t

X1 (t) = C6e−K3t − C2
K2

K1 + K2 − K3
e−(K1+K2)t

− K2 K0S0

(K0 − K3) (K1 + K2 − K0)
e−K0t (10)

The role played by constants K3 and K4 in (10) is swapped: they represent reversion
for X1 and X2 respectively. Assuming X1 (0) = X2 (0) = 0 it is possible to determine
constants C4 and C6 as follows:

C4 = C2
K1

K1 + K2 − K4
+ K1 K0S0

(K0 − K4) (K1 + K2 − K0)

= − K0 K1S0

(K1 + K2 − K0) (K1 + K2 − K4)
+ K1 K0S0

(K0 − K4) (K1 + K2 − K0)

= K0 K1S0 (K1 + K2 − K4 − K0 + K4)

(K0 − K4) (K1 + K2 − K0) (K1 + K2 − K4)



= K0 K1S0

(K0 − K4) (K1 + K2 − K4)

C6 = K0 K2S0

(K0 − K3) (K1 + K2 − K3)
(11)

A closed form solution for the crosslink degree, intended as α = X1 + X2, may
therefore be deduced from relations (11), (10) and (6). In particular, the variation of
the cure degree as a function of time t assumes the following form:

α = X1 + X2 = C4e−K4t + C6e−K3t − C2
K1

K1 + K2 − K4
e−(K1+K2)t

−C2
K2

K1 + K2 − K3
e−(K1+K2)t +

− K0 K1S0

(K1 + K2 − K0) (K0 − K4)
e−K0t

− K0 K2S0

(K1 + K2 − K0) (K0 − K3)
e−K0t (12)

Having indicated with C2, C4 and C6 the following integration constants:

C2 = − K0S0

K1 − K0 + K2

C4 = K0 K1S0

(K0 − K4) (K1 + K2 − K4)

C6 = K0 K2S0

(K0 − K3) (K1 + K2 − K3)
(13)

And with S0 the initial amount of unvulcanized polymer, which, as already mentioned,
has to be put equal to 1 when the crosslink percentage α (ranging from 0 to 100 %)
has to be determined.

3 Starting point determination

In order to evaluate kinetic constants of the model, a non-linear least squares routine—
to fit with the mathematical model normalized rheometer curves—has to be used,
see [23]. The utilization of non-linear optimization algorithms is not always effective,
may fail in some cases in finding the minimum point or may require an excessive
processing time. It is therefore interesting to analytically deduce a reasonable starting
point for the algorithm, which furnishes predictions of the crosslinking degree via
Eq. (12) near the experimental data.

A reasonable strategy to find such a starting point may be followed assuming no
reversion, i.e. K3 = K4 = 0.



In this way, Eq. (12) simplifies as follows:

α = X1 + X2 = S0 − C2e−(K1+K2)t − (K1 + K2)S0

(K1 + K2 − K0)
e−K0t (14)

with:

C2 = − K0S0

K1 − K0 + K2

C4 = K1S0

K1 + K2

C6 = K2S0

K1 + K2
(15)

It is worth noting that, as expected, in Eq. (14) α (0) = 0 and lim
t→+∞ α (t) = S0.

In addition, it is interesting to underline that Eq. (14) is a function depending on the
kinetic constants K1 + K2 = K ′ and K0, i.e. it is possible to reduce kinetic constants
from 3 (K1, K2 and K0) to 2 (K ′ and K0).

Re-writing (14) and its first derivative in terms of K ′ and K0, we obtain:

⎧⎨
⎩

α
S0

= 1 + K0
K ′−K0

e−K ′t − K ′
K ′−K0

e−K0t

1
S0

dα
dt = − K ′K0

K ′−K0
e−K ′t + K ′K0

K ′−K0
e−K0t

(16)

The first derivative reported in Eq. (16) exhibits clearly a maximum point, which
physically occurs in correspondence of the scorch point t2, being indeed t2 defined
as the time where there is a sign variation of the rheometer curve concavity (from
concave to convex). t2 time is hence evaluated equating to zero the second derivative
of the crosslink function as follows:

1

S0

d2α

dt2 = − K ′K0

K ′ − K0

(
K ′e−K ′t − K0e−K0t

)
= 0

⇒
(

K ′e−K ′t2 − K0e−K0t2
)

= 0

⇒ K ′

K0
= e−K0t2

e−K ′t2
⇒ K ′

K0
= e−(K0−K ′)t2 = e

−K1

(
K0
K ′ −1

)
t2

⇒ t2 = ξ ln ξ

−K ′ (1 − ξ)
= ξ ln ξ

K ′ (ξ − 1)
(17)

where ξ indicates K ′/K0 ratio.
From (17), once time t2is known from experimental evidences, the kinetic constant

K ′ may be estimated as a function of the ratio ξ = K ′/K0 as follows:

K ′ = ξ ln ξ

t2 (ξ − 1)
(18)



Imposing the passage of the function (14) through a point, say (t1 α (t1)), we obtain
the following non-linear equation which depends exclusively on the unknown ξ ratio:

α (t1) = 1 + 1

ξ − 1
e
− ξ ln ξ

t2(ξ−1)
t1 − ξ

ξ − 1
e
− ln ξ

t2(ξ−1)
t1 (19)

From Eq. (19) the following function F (ξ) may be derived:

F (ξ) = −α1 + 1 + 1

ξ − 1
e
− ξ ln ξ

t2(ξ−1)
t1 − ξ

ξ − 1
e
− ln ξ

t2(ξ−1)
t1 (20)

According to authors’ experience, F (ξ) exhibits only one solution for ξ ranging within
the expected interval, say from 1 to 3, which is the common variability range of the
ratio between K ′ and K0. It is worth noting that it is expected that always K ′ > K0.

The identification of the zero point for function F (ξ) may be done graphically
(plotting the absolute value of F (ξ)) or numerically and it allows to obtain an estima-
tion for ξ to substitute into (18), and hence permits the evaluation of kinetic constants
K ′ and K0 by means of the following relations:

F (ξ) = −α1 + 1 + 1

ξ − 1
e
− ξ ln ξ

t2(ξ−1)
t1 − ξ

ξ − 1
e
− ln ξ

t2(ξ−1)
t1 = 0

K ′ = ξ ln ξ

t2 (ξ − 1)
(21)

Once K0 and K ′ are known, reversion kinetic constants are evaluated on the original
Eq. (12) with reversion, assuming at a first attempt K3 = 0. Such hypothesis appears
physically quite reasonable because K3 is related to reversion of stable simple and
double bonds. It is therefore expected that K3 is much lower than K4.

Within such assumption, the equation expressing the crosslinking degree assumes
the following form:

α = X1 + X2 = C4e−K4t + C6 − C2
ρK ′

K ′ − K4
e−K ′t − C2

(1 − ρ) K ′

K ′ e−K ′t +

− K0ρK ′S0

(K ′ − K0) (K0 − K4)
e−K0t − K0 (1 − ρ) K ′S0

(K ′ − K0) (K0)
e−K0t

C2 = − K0S0

K ′ − K0

C4 = K0ρK ′S0

(K0 − K4) (K ′ − K4)

C6 = K0 (1 − ρ) K ′S0

K0 K ′ (22)

where the parameter ρ ranges from 0 to 1 and indicates the amount of K ′ due to K1, i.e.
K1 = ρK ′, and to K2, i.e. K2 = (1 − ρ) K ′. Such parameter should be a-posteriori
determined by means of suitable experimentations identifying the percentage of single



and multiple bonds in the cross-linked rubber. In this paper, for the sake of simplicity
ρ = 0.5 is assumed.

Imposing that Eq. (22) passes through point P3 = (t3 α3) of the rheometer chart,
where P3 is placed in the reversion range far from the maximum of the rheometer
curve, it is possible to estimate K4 finding the zero of the following single variable
function:

F2 = −α3 + K0ρK ′S0

(K0 − K4) (K ′ − K4)
e−K4t3 + K0 (1 − ρ) K ′S0

K0 K ′

+ K0S0

K ′ − K0

ρK ′

K ′ − K4
e−K ′t3 + K0S0

K ′ − K0

(1 − ρ) K ′

K ′ e−K ′t3 +

− K0ρK ′S0

(K ′ − K0) (K0 − K4)
e−K0t3 − K0 (1 − ρ) K ′S0

(K ′ − K0) (K0)
e−K0t3 (23)

4 Numerical applications

In this Section, a validation of the closed form approach proposed in the previous 
Section is performed considering two distinct sets of experimental data. The first 
is a NR blend vulcanized with sulphur in presence of different accelerators at the 
same curing temperature (144 ◦C). A few data of the rheometer curves are available 
in [22], representing the characteristic points of the cure curves. Due to the insufficient 
information available in [22], a meta-data approach, based on a numerical fitting of the 
experimental data available through a non-mechanistic model based on cubic splines 
has been used in [1], and surrogated rheometer curves so obtained will be used in this 
Section for the validation of the present model.

The second set of examples deals with a NR blend tested at five different tempera-
tures in [20] and also in [21], where full rheometer curves are at disposal.

4.1 NR cured with different accelerators, meta data curves fitting

Experimental data utilized in the present sub-section for the validation of the mathe-
matical model proposed may be found in [22], where the reader is referred for details.

In [22], only a few meaningful points representing the whole experimental cure 
curves are reported, as usually done in common practice to characterize cure properties 
of commercial blends. With the aim of deducing from such experimental available 
information, an estimation of the entire rheometer curves (not available), in [1] a
procedure based on natural cubic splines has been proposed, which puts at disposal to 
users surrogate meta-data passing through the experimental points.

In this section, such meta-data will be considered as they were experimental cure 
curves to fit with the kinetic closed form approach proposed.

The composition of the blend considered within the present validation is provided 
in Table 1. Several accelerators are added to the same blend with the aim of testing 
their activity at a fixed curing temperature equal to 144 ◦C. Accelerators names, with 
their acronyms used, are summarized in Table 2, whereas in Table 3 a synopsis of the



Table 1 Composition of the 1st
NR blend used for model
validation

Component phr

Natural rubber (SMR 5CV) 100

N330 carbon black 50

Naphthenic oil 5

Stearic acid 6

Sulphur 2

ZnO 5

Table 2 Typology of
accelerators used experimentally
to test the activity of different
accelerators in NR
vulcanization, 1st NR blend
used for model validation

MBTS benzothiazyl disulfide

MBS N-oxydiethhylen-2-benzothiazyl-
sulfenamide

TBBS N-t-butyl-2-benzothiazyl-sulfenamide

TSSR 2-ethylamino-4-diethylamino-6-
heptyldithio-sym-triazine

PYSSPY 2,2’-dithiobispyridine-N-oxide

TSST bis-(2-ethylamino-4-diethylamino-6-
sym-triazinyl)disulfide

PSSR beta-(di-n-butylphosphorodithioylthio)-
propionic acid,methyl
ester

TBBS N-t-butyl-2-benzothiazyl-sulfenamide

ZDBDP Zinc O,O-di-n-butylphosphorodithioate

CTP N-(cyclohexylthio)phthalimide

experimented data-sets, the numerical simulations performed and the concentration
and typology of accelerators used in the tests is reported.

As can be seen from Table 3, five different experimentation sets are considered for
validation purposes. Some data are replicated, in particular 1-1, 2-1, 3-1 and 4-1 refer
to the same accelerator TBBS with the same concentration (0.6 phr), 4-7 and 5-3 to
PYSSPY and 4-5 and 5-2 to MBTS.

In Figs. 2, 3, 4, 5, 6 the performance of the closed form approach in fitting (surrogate)
experimental cure curves is comparatively depicted.

Three numerical curves are compared with experimental data, namely (a) the closed
form solution without reversion of Eq. (14), (b) the approach with reversion where
kinetic constants are evaluated with the closed form procedure proposed in this paper,
Eq. (22), and (c) the curve corresponding to the same Eq. (22) after least squares best
fitting, with starting point corresponding to the collection of kinetic constants used to
plot curve (b).

As it is possible to notice, for all cases analyzed, the correspondence with the
curves to fit is almost always very promising. Obviously, the numerical curve without
reversion, curve (a), fits well experimental data only before the range where reversion
becomes relevant, i.e. at small curing times. The numerical performance of the second
curve (with reversion), curve (b), is very satisfactory in almost all the cases analyzed,



Table 3 1st NR blend used for model validation. Synoptic chart of the data sets considered for the com-
parisons

Label Data set #1 Data set # 2

1-1 1-2 1-3 2-1

# numerical
simulation

1 2 3 1

Accelerator
concentration
phr

TBBS 0.6 TBBS 0.2
ZDBDF 0.76

TBBS 0.2
ZDBDF 0.76
CTP 0.72

TBBS 0.6

Label Data set # 2 Data set # 3

2-3 2-4 3-1 3-2

# numerical
simulation

4 5 1 6

Accelerator
concentration
phr

TSST 0.7 TSSR 0.7 TBBS 0.6 TSSR 1.0

Label Data set # 3 Data set # 4

3-4 3-6 4-1 4-4

# numerical
simulation

7 8 1 9

Accelerator
concentration
phr

TSSR 0.5
PSSR 0.5

PSSR 1.0 TBBS 0.6 MBS 0.25
PYSSPY 1.0

Label Data set # 4 Data set # 5

4-5 4-7 5-2 5-3

# numerical
simulation

10 11 10 11

Accelerator
concentration
phr

MBTS 1.0 PYSSPY 1.0 MBTS 1.0 PYSSPY 1.0

also considering the fact that the utilization of non-linear least squares data fitting is 
not required.

Finally, curve (c) appears in the majority of the cases superimposable with the curves 
to fit, with a correct estimation of both initial curing rate and reversion percentage. In 
few cases, a small but still acceptable deviation in an initial range between numerical 
and meta-data is experienced, which appears more connected to the construction of 
the meta-data with a few experimental points instead of a lack of accuracy of the 
simplified mechanistic model of vulcanization proposed.

In addition, it is worth mentioning that the utilization of the kinetic constants used to 
plot curve (b) as starting point for curve (c) has the important advantage of both dras-
tically increase the robustness of the non-linear algorithm and to reduce considerably 
the time needed to achieve convergence.
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Fig. 2 1st NR blend, data set 1. a 1-1 data set, b 1-2 data set, c 1-3 data set

The convergence of the non-linear least squares routine is shown in Fig. 3 for
the first data set. The convergence trend of the model applied to the other data sets
is similar and is not reported here for the sake of conciseness. In Fig. 3, for each
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Fig. 3 1st NR blend, convergence performance during best fitting using the starting point proposed in the 
paper. a 1-1 data set, b 1-2 data set, c 1-3 data set

iteration, the absolute value of the difference between experimental normalized torque 
and numerical prediction is shown at increasing curing times. As can be noted, the 
deviation of the model from the target data is minimal and tends to quickly reduce after a 
few iterations. Typically, after 30–40 iterations, the algorithm may be considered near
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Fig. 4 1st NR blend, data set 2. a 2-1 data set, b 2-3 data set, c 2-4 data set
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Fig. 5 1st NR blend, data set 3. a 3-2 data set, b 3-4 data set, c 3-6 data set
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Fig. 7 Representation of functions |F | and |F2| as a function of ξ and K4, data set 1-1

enough the optimal solution, meaning that the efficiency of the approach proposed 
is drastically improved assuming as starting point that analytically found with the 
procedure proposed.

In Fig. 7, for the sake of completeness, curves |F | and |F2| where F and F2 are 
represented in Eqs. (21) and (23) respectively, are plotted as a function of ξ and K4 
for one of the cases analyzed (data set 1-1). Figure 7 allows to graphically identify the 
points where |F | and |F2| are equal to zero, which correspond to values of ξ and K4
used to plot curve (b).

4.2 Experimentally tested NR blend at different curing temperatures

A NR blend experimentally tested in [20] at 5 different temperatures is here re-
considered to show the capabilities of the numerical-analytical approach proposed 
when data to fit are direct experimental instead of surrogate meta-data following a 
cubic spline low.

In [20], the isothermal cure of the NR compound with composition as in Table 4 was 
tested at 130, 140, 150, 160 and 170 ◦C respectively, using a Moving Die Rheometer 
MDR.



Table 4 Composition of 2nd
NR blend used for model
validation

Component Parts (by weight)

Rubber gum 100

Carbon black 25

Oil 5

(ZnO / stearic acid) activator 6

Sulphur 3

Amine antioxidant 2
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Fig. 8 Experimental torque curves (a) and normalized curves (b) used to validate the numerical/analytical
model, 2nd NR blend
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Fig. 9 2nd NR blend, cure temperature 170 ◦C. a Experimental versus numerical rheometer curves,
b Convergence performance during best fitting using the starting point proposed in the paper

Since the aim of the present paper is to fit normalized experimental data, each
torque curve is divided by the maximum torque at that temperature, provided that the
induction phase is previously excluded from the analysis and curves are coherently
translated into the origin. It is worth noting that such normalization does not take
into account the experimentally observed decrease of the peak torque when the curing
temperature is increased. In order to take into account such effect, the relation proposed
by Sun and Isayev [24] to calculate the evolution of the vulcanisation degree αexp(t)
from rheometer S′(t) curves should be used:

αexp (t) = S′ (t) − Smin T

Smax T0 − Smin T0

(24)

where Smin T is the minimum value of torque S′ during a cure experiment at temperature 
T, Smin T0 and Smax T0 are the minimum and maximum torque values at a temperature 
T0 low enough to allow neglecting reversion.
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Fig. 10 2nd NR blend, cure temperature 160 ◦C. a Experimental versus numerical rheometer curves,
b Convergence performance during best fitting using the starting point proposed in the paper

While the aim of the present comparison is only to fit experimental data, without
making further considerations on the role played by high temperatures in reducing peak
crosslinking degree, a normalization where the maximum normalized torque is always
equal to a unitary value is adopted. The model is, however, capable of reproducing
curves normalized by means of Eq. (24).

Figure 8a shows the typical torque vs. time curves obtained experimentally at the
different cure temperatures. The reversion phenomenon, which can be clearly observed
at 160 and 170 ◦C, becomes very weak at 150 and 140 ◦C, and at 130 ◦C is completely
absent. Figure 8b shows normalized curves used for comparison purposes. For the sake
of conciseness, only three temperatures are considered, namely 170, 160 and 150 ◦C.
At 170 and 160 ◦C, indeed, a very marked reversion is obtained, whereas at 150 ◦C
reversion is mitigated. Such three temperatures are therefore the most interesting and
meaningful to fit numerically, because they allow to benchmark the model in presence
of strong reversion and in absence of devulcanization. Lower temperatures correspond



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time [min]

α
vu

lc
an

iz
at

io
n 

de
gr

ee
No reversion equation
Numerical model with reversion
Rheometer curve to fit
Optimized after best fitting

0 5 10 15 20
0

0.01

0.02

0.03

0.04

Numerical approach solution

Time [min]

|e
| e

=
nu

m
er

ic
 to

rq
ue

-e
xp

.

Niter=1

Niter=20

Niter=5

no
rm

al
iz

ed
 to

rq
ue

a

b

Fig. 11 2nd NR blend, cure temperature 150 ◦C. a Experimental versus numerical rheometer curves, 
b Convergence performance during best fitting using the starting point proposed in the paper

to curves exhibiting a stable unitary normalized torque under long time vulcanization 
and therefore, it is expected that the fitting quality of the model (even when dealing 
with the equation without reversion) is comparable to that observed at 150 ◦C, where 
reversion is very low.

Numerical cure curves are compared to normalized experimental evidences in 
Figs. 9a, 10a and 11a at 170, 160 and 150 ◦C respectively.

As it is possible to notice, the agreement with target data is almost perfect for all the 
three temperatures inspected, even near the end of the test (large curing times) in pres-
ence of strong reversion. In particular, even the curve obtained directly using kinetic 
constants analytically determined, seems to fit very well experimental data. Obvi-
ously, the same curve after best fitting through non-linear least squares and assuming 
as starting point the analytically determined one, improves further the accuracy of the 
approach, as it is shown by the convergence plot reported in Figs. 9b, 10b and 11b for
temperatures equal to 170, 160 and 150 ◦C respectively.



Since the analytical model already provides very accurate predictions of the nor-
malized torque, the improvement obtained through the application of the non-linear
least squares is limited, but in any case allows a further reduction of the discrepancies
between numerical predictions and experimental data.

5 Conclusions

Differently from a phenomenological approach, a kinetic numerical strategy allows to
simulate the accelerated sulphur vulcanization of NR blends, providing quantitative
information on the rate of reaction and crosslinking density, in all the vulcanization
phases (induction, curing and reversion), thus indirectly allowing to control and to
optimize the processing operation without the need of performing wide and costly
experimental campaigns.

Depending on the level of complexity of the kinetic model proposed, more detailed
or less precise information on the degree of curing, as well as on the single and
multiple-bond percentage of resulting links may be retrieved. However, an increased
complexity of the models results both into the impossibility to deal with closed-form
predicting expressions for the cure percentage and in complex numerical best fits
on experimental data available to estimate single kinetic constants representing the
chemical scheme adopted.

In the present paper, a detailed closed form approach with direct analytical deter-
mination of kinetic constants has been presented. The kinetic scheme is character-
ized by five reactions occurring in series and parallel, and hence five kinetic con-
stants, with the possibility to accurately reproduce the curing phase and, eventually,
the presence of reversion, with a precise determination of the stable and unstable
bonds and, separately, the amount of reversion due to the single/double and multiple
bonds break.

The major improvement of the present approach when compared to existing liter-
ature, and in particular with reference to the closed form kinetic procedure presented
in [1], is that (a) a closed form solution for the crosslinking density which does not
require any optimization algorithm has been proposed and that (b) a starting point for
the unknown kinetic constants, very near to the actual solution and thus very convenient
for a successive least squares minimization, has been deduced.

It has been proved how the combination of three analytical conditions on the
rheometer curves, namely position of the scorch point (second derivative of the
rheometer curve equal to zero), determination of time corresponding to, e.g. 90 %
of cure and reversion percentage, allows a relatively simple direct evaluation of the
kinetic constants characterizing the model. Such values, substituted into a closed form
analytical formula representing the state of cure, permit a direct numerical estimation,
in satisfactory agreement with experimental evidences, of the behavior of a given rub-
ber compound during assigned vulcanization conditions, without the need to utilize
optimization tools.

As well known, indeed, the non-linearity of the problem may result into convergence
failure of non-linear optimization algorithms, especially if an unsuitable starting point
is selected within the procedure.



In this context, it appears clear that the analytical knowledge of reasonable kinetic
constants near to the optimized ones, eventually allows the successive utilization of
non-linear least squares routines, increasing drastically their numerical convergence
and reducing consistently the processing time needed to find the optimal solution.

To assess the results obtained with the model proposed, a wide and comprehen-
sive validation of the procedure has been reported, studying in detail two different
NR blends in presence of different accelerators and cure temperatures, exhibiting fre-
quently marked reversion. The approach proved to be extremely robust, very reliable
and much faster when compared with existing literature.
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