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1 Introduction

A generic multi-objective optimization problem can be formulated as follows (Miet-
tinen 1999):
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min
x

[
f1(x) fi(x) fN(x)

]

x ∈ Ω ⊂ �n

gj (x) ≤ 0

hk(x) = 0

(1)

where fi are the N objectives, x is the n-dimensional vector of the design variables
whose domain is Ω , gj and hk are the inequality and equality constraints functions,
respectively. The solution for this optimization problem is not unique if the objective
functions are conflicting. Miettinen (1999) proposed a definition of optimality for this
type of problems. A solution x∗ is Pareto optimal if the following condition holds

�xi :
{

fj (xi) ≤ fj (x
∗) j = 1 : N

∃k : fk(xi) < fk(x
∗)

(2)

This definition leads to a set of solution called Pareto optimal set which represents
the set of best compromise solutions. Therefore, in order to solve the multi-objective
optimization problem the Pareto set (or an approximation of the set, see Zitzler et al.
(2008) for quality assessment of Pareto set approximations) must be computed.

Finding an accurate approximation of the Pareto optimal set is difficult due to
the problem high dimensionality and due to the non linearity of the functions f , g

and h. Often f , g and h are not analytical functions but they are the output of time
consuming numerical simulations (FEM, CFD, multi-body. . .) and the computing
effort plays a key role. Therefore, accuracy and efficiency are key features for every
algorithm.

In the literature many algorithms and techniques capable of solving multi-
objective optimization problems can be found. There are basically two approaches,
the first one based on single objective optimization algorithms (scalarization) and the
second that approximates the Pareto set at once (vector optimization).

The scalarization converts the multi-objective problem into an equivalent single-
objective problem. Some examples are the weighted sum method (Mastinu et al.
2006), the ε-constraint method (Mastinu et al. 2006), the normal boundary inter-
section (Das and Dennis 1998) and the normal constraint method (Messac et al.
2003). These methods may fail in finding all the Pareto solutions, i.e. the weighed
sum method cannot find Pareto solution when the feasible solution set in the objec-
tive domain is not convex (Das and Dennis 1997), the normal constraints and normal
boundary methods in some case can leave some regions unexplored (in Messac and
Mattson (2004) the algorithm is modified to overcome this issue), the ε-constraint
method needs a priori information about the maximum and minimum values of the
objective functions. Moreover, they compute only one Pareto solution at a time by
solving the equivalent problem.

In Zhang et al. (2010) a multi-objective problem is decomposed into a set of single-
objective sub-problems and a kriging (Van Beers and Kleijnen 2003) predictive model
is built for each sub-problem on the basis of the solutions evaluated during the opti-
mization procedure to reduce the computational effort. The weighted sum method is
finally applied to solve the multi-objective problem.



The whole Pareto set can be obtained by changing some parameters in the al-
gorithm (i.e. the weights for the weighted sum method) and iteratively solving an
equivalent single objective problem for each Pareto-optimal solution. The opportu-
nity to apply optimality conditions (KKT condition (Kuhn and Tucker 1951)) to solve
the equivalent problem with the desired tolerance and to use efficient gradient based
minimization algorithms (i.e. SQP) (Papalambros and Wilde 2000) is a relevant ad-
vantage of scalarization algorithms.

Vector optimization approaches compute the whole Pareto set by solving directly
the original problem. Among these methods there are the parameter space investi-
gation method (PSI) and evolutionary algorithms. PSI (Mastinu et al. 2006) method
explores the design variables domain by means of uniformly distributed sequences.
By this approach, many feasible design points are computed and the Pareto set ca be
found by sorting these solutions by applying the definition (2). It is obvious that the
quality of the Pareto approximation depends strongly on the uniformity of the points
in the design variables domain (Statnikov and Matusov 1995; Niederreiter 1987;
Tezuka 1995). The method is robust, the gradient of the functions is not required
and only one parameter has to be set, the number of points. Unfortunately, the choice
of the number of points influences the accuracy of the results and it is not straightfor-
ward, it depends on the sequence uniformity properties and on the Lipschitz constant
(Statnikov and Matusov 1995) of the functions which is typically unknown a pri-
ori.

Evolutionary algorithms are able to approximate the Pareto set by starting from an
initial set of design solutions (the so called the initial population). Among these al-
gorithms, genetic algorithms (see Goldberg 1989 and Michalewicz 1994), simulated
annealing (Kirkpatrick et al. 1983) and particle swarming (Eberhart and Kennedy
1995) are widely known. These algorithms work on an entire population by means
of stochastic operators (i.e. crossover and mutation for the genetic algorithms) that
lead the population towards the Pareto front. As the PSI method, evolutionary al-
gorithms make no assumptions on the functions and on the Pareto set (convexity,
continuity. . .). One of the advantages of genetic algorithms lies in the possibility
to perform optimization with discrete design variables because the algorithm does
not work directly on the design variables but on a coding of the variables them-
selves (i.e. binary coding, . . .). Moreover, the probability of being trapped in local
minima is reduced by working on the entire population. The drawback lies in the
large number of algorithm parameters to be set to improve convergence and accu-
racy.

As already stated, the computational efficiency plays a key role, because engineer-
ing optimization problems involve complex models to compute the objective and con-
straint functions. In this case, it is useful to rely on global approximation techniques
which consist in the use of “black box” models able to reproduce the input-output re-
lationship of the original model (Mastinu et al. 2006; Papalambros and Wilde 2000;
Goel et al. 2007) and (Gobbi and Mastinu 1999). Typical approximation models are
response surfaces (Myers and Montgomery 1995), artificial neural networks (Haykin
1998), kriging (Van Beers and Kleijnen 2003). These models are accurate on the
whole domain (global approximation) while the designer wants to focus only on the
Pareto region. To reduce the computational effort needed to identify these approxi-



mated models it is possible to rely on local approximated models which are accu-
rate only in the neighborhood of the Pareto front (i.e., close to the area where the
Pareto front is supposed to be) while they are intentionally left inaccurate far from
it (Mastinu et al. 2006). There are many algorithms and approaches which have ad-
vantages and disadvantages and are suitable for some type of problems while are
inefficient or do not work in other cases.

Local approximation methods are proposed to perform an approximation of the
Pareto surface in the vicinity of a selected optimal solution (mainly for sensitiv-
ity analysis (Zhang 2003)). Linear (Tappeta et al. 2000) and quadratic approxima-
tions (Maginot et al. 2008) are generally considered. A method for identifying non-
differentiable Pareto points has been included in Maginot et al. (2008).

In this paper an optimization algorithm based on Messac and Mattson (2004) is
presented. The aim is to supply a useful tool among (and not to replace) the exist-
ing ones to solve efficiently multi-objective optimization problems. The algorithm is
designed by taking into account efficiency and accuracy features. It is based on the
normal constraint method applied to a neural network model which realizes the local
approximation. At each iteration of the normal constraint algorithm, the neural net-
work model is updated in order to move along the Pareto set. This way, the method
should exploit the power of local approximation in terms of efficiency with the good
uniformity properties of the normal constraint method.

In the Sect. 1 the new algorithm (named Approximate Normal Constraint, ANC)
is presented and in Sect. 2 its performance is tested by means of some well known
test problems. In the last paragraph of Sect. 2 the multi-objective optimization of a
ground vehicle suspension system is performed by means of the ANC. Some general
observations on the efficiency of the most used algorithms are reported in Sect. 3.
Conclusions are provided to summarize the paper.

2 Approximate normal constraint method (ANC)

Before introducing the ANC, the normal constraint method (NC) is briefly described.

2.1 Normal constraint (NC) method

The NC is based on the minimization of a single objective function on a reduced
feasible domain (Messac et al. 2003) and (Messac and Mattson 2004). The reduction
of the feasible domain is performed by imposing an additional inequality constraint
to the original problem (1).

Let x∗
i be the design point where the minimum of the i-th objective function is

reached and Fi be the so called anchor point as defined below

f ∗
i = fi

(
x∗
i

) = min
x

fi(x)

Fi = [
f1(x

∗
i ) f ∗

i fN l(x∗
i )

] (3)

The utopia plane is the hyper plane which contains all the anchor points (despite of
its name, it does not contain the utopia point).



Let P a point on the utopia plane, and vij the vector joining the i-th and the j -th
anchor points

vij = Fi − Fj (4)

The space reduction is performed as follows

x ∈ Ω

g(x) ≤ 0

h(x) = 0

vij

(
F(x) − P

) ≤ 0

(5)

where F is a point in the objective functions domain

F(x) = [
f1(x) fN(x)

]
(6)

A single objective problem is solved on the reduced domain to find a Pareto solution

min
x

fi(x)

x ∈ Ω

g(x) ≤ 0

h(x) = 0

vij

(
F(x) − P

) ≤ 0 ∀j 	= i

vij = Fi − Fj ∀j 	= i

(7)

In Fig. 1 the domain reduction is shown for a two dimensional space (N = 2). By
minimizing f2 on the reduced domain, the Pareto point is computed. By changing
the point P on the utopia plane the whole Pareto set can be approximated. It can be
noticed that at the Pareto solution the normal constraint is active.

Fig. 1 Domain reduction by
NC method. F1,2 are the anchor
points, P is one of the points of
the utopia plan



Fig. 2 ANC, step 1 and 2. The minimum (green dot) is computed and design solutions are sampled in its
neighborhood (the shaded area around the minimum)

2.2 Approximate normal constraint algorithm

The ANC algorithm is based on the NC algorithm described in the previous sec-
tion. The main idea behind the ANC is the use of a local approximated utopia plane
instead of the utopia plane defined in the previous paragraph. The following steps
explain how to construct this plane and how the algorithm works. Figures refer to a
bi-objective problem which can be conveniently plotted.

1. Minimize one objective function (i.e. find point Fi , see the green point in Fig. 2).
The NC requires N minimizations (N anchor points) to construct the utopia plane
while the Pareto exploration of ANC starts from one single anchor point.

2. Sample the design variables domain locally around the anchor point and evalu-
ate the constraint and objective functions (see the shaded areas around the green
points in Fig. 2). The relationship between the design variables and the response
(both objectives and constraints) functions is approximated in terms of metamod-
els. Such models use parameterized equations to relate the input to output and
the parameters are tuned in order to minimize the error between the actual model
responses and the metamodel response. Since the input-output pairs are sampled
around the anchor point in proximity of the Pareto front, the metamodel will be a
local approximation of the model equations. The metamodels will have to predict
the response for values of the design variables as required by the minimization
algorithm, which will be different form the sampled points. Feed-forward arti-
ficial neural networks are used due to their good generalization properties. The
universal approximation theorem states that a feed-forward neural network with
a single hidden layer can approximate any scalar function with any desired accu-
racy (Haykin 1998). The solutions in the neighbourhood of the anchor point are
sampled in the design domain (blue area around X2 in Fig. 2) and their images in
the objective space are obtained (yellow area in proximity of the anchor point F2).

3. Compute the remaining N − 1 anchor points by using the ANN, (i.e. find F̃j ,
see Fig. 3). A low computational effort is required. The utopia plane obtained is
local and approximated due to the use of the ANN. These anchor points must
be obtained in a limited region in which the neural network is accurate. For this
purpose additional constraints on the variables are introduced.

4. Define and solve the equivalent approximated problem via NC algorithm with
different Pk belonging to the local approximate utopia plane in order to generate



Fig. 3 ANC, step 3. The ANN
is used to locate the anchor
point F̃j . A local utopia plane is
generated through the ANN
approximation

a portion of the Pareto front (see Fig. 4).

min
x

f̃i(x)

x ∈ Ω

g̃(x) ≤ 0
h̃(x) = 0
vij

(
F̃ (x) − Pk

) ≤ 0 ∀j 	= i

vij = Fi − F̃j ∀j 	= i

(8)

5. Update the ANN. The objective and constraint functions are evaluated at the
(nearly) Pareto points computed through the approximated neural network model
at the previous step. This procedure strongly improves the algorithm convergence.
These new points are added to the previous points to train a new ANN and the
region in which the approximated model is accurate moves along the Pareto set
(see Fig. 5). As the algorithm moves forward, new Pareto points are computed and
added to the training set.

6. Define a new equivalent approximate problem by using the new approximated
functions. The new utopia local plane is defined in order to move towards the
unexplored regions.

7. The algorithm continues to update the ANN and solve the locally approximated
problem until a termination condition is met.

Fig. 4 ANC, step 4. The NC algorithm is applied for different points belonging to the utopia plane (see
Fig. 3). The blue dots represent the Pareto optimal solutions



Fig. 5 ANC, phase 5. Generated Pareto optimal solutions are used to train the ANN in order to locally
improve its accuracy

Fig. 6 Local approximation
and the utopia plane

The main difference between Messac’s ANC (Messac and Mattson 2004) lies in the
utopia plane used to perform the NC algorithm. The local utopia plane is a local
approximation, the actual utopia plane can be quite far from the Pareto set while the
local approximation can be more accurate (see Fig. 6).

3 ANC test

The ANC algorithm is used to solve the test problems ZTD1 and ZTD2 (Deb et al.
2005). A comparison between the genetic algorithm, constraints method and the ANC
is presented. The genetic algorithm belongs to the family of evolutionary algorithms
which are able to find the Pareto set at once and the ε-constraint is a multi-objective
method based on the scalarization. As it will be shown in the next paragraphs, the
ANC is able to approximate the Pareto with high efficiency, only few function evalu-
ations are needed to compute each Pareto solution.



Fig. 7 GA and ANC Pareto set
approximations for the ZTD1

3.1 Problem ZTD1

In this paper the ZTD1 problem with n = 5 design variables is considered. In Fig. 7
the objective functions domain and the Pareto set are shown.

min
x

[
x1

g(x)(1 −
√

x1
g(x)

)

]

g(x) = 1 + 9

n − 1

n∑

i=2

x2
i

(9)

The results are reported in Table 1. The efficiency is the ratio between the number of
function evaluations and the number of the Pareto solutions identified. The values in
Table 1 are averaged, for the GA, over 10 different runs.

Some of the steps of the ANC algorithm are reported to demonstrate how the
exploration of the Pareto set occurs. The first anchor point F2 obtained by minimizing
f2(x) corresponds to the point (1,0) in the objective domain. A hundred points are



Table 1 Algorithms performance—ZTD1 test problem

Genetic algorithm ε-constraint method ANC

Population size 50 100 150 – –

Computed Pareto set size 50 100 150 51 91

Function evaluations 1200 3200 5100 990 344

Efficiency 24 32 34 19.4 3.8

Fig. 8 ZTD1 problem.
Algorithm initialization. The
points are sampled around the
anchor point and the local utopia
plane is constructed

randomly sampled in the neighborhood of the first anchor point in the design variables
domain. The values of the objective functions are computed at these points and this
data is used as a training set for the neural network. The anchor point and the image
of the sampled points are shown in Fig. 8.

The second anchor point required to generate the local utopia plane is generated
minimizing f1(x). For this step the neural network local approximation is used (ad-
ditional constraints on the variables are introduced to bound the solution to be in the
region where the neural network is accurate). Once the local utopia is located, ten
points are evenly placed on it (see Fig. 8).

This implies that ten single objective problems are solved generating as many
(nearly) Pareto solutions (see Fig. 9). The actual values of the objectives are evaluated
at these new points which are added to the neural network training set. In this way,
the neural network approximation is updated by using the points in the neighborhood
of the Pareto set (the approximation is local). As long as points are added to the
training set, some points are removed from it to keep the size of the training set
constant throughout the process. The older points, the ones that are the farthest from
the exploration region are removed (points crossed in Fig. 9). The local utopia plane
used to compute new Pareto points at the next iteration is shown in Fig. 9 as well.

The iterations shown in Fig. 10 demonstrate how the Pareto set is approximated
iteration by iteration. The points approximating the Pareto set are plotted in Fig. 11.
In the case of the simulation whose steps are shown in this section, 90 Pareto points
are obtained requiring only 288 function evaluations. This result in an efficiency ratio



Fig. 9 ZTD1 problem. First
iteration. Pareto points are
computed and added to the
training set. A new utopia plane
is constructed to move to
unexplored regions

of 3.2 function evaluations per Pareto point (in agreement with the averaged value in
Table 1).

3.2 Problem ZTD2

In this paper the ZTD2 problem with n = 5 design variables is considered. In Fig. 8
the objective functions domain and the Pareto set are shown.

min
x

[
x1

g(x)(1 − ( x1
g(x)

)2)

]

g(x) = 1 + 9

n − 1

n∑

i=2

x2
i

(10)

The results are reported in Table 2. The values in Table 1 are averaged, for the GA,
over 10 different runs.

As shown in Fig. 12 and partially in Fig. 7, the Pareto points obtained with the
ANC algorithm are not evenly distributed on the Pareto front. The loss of uniformity
is due to the local utopia plane which will have at each iterations different orientation
and extension. As shown in Fig. 13, two different local utopia planes generate two
sets of solutions which are not evenly spaced on the Pareto front. The partial loss of
uniformity is balanced by the large increase in the computational efficiency. This is

Table 2 Algorithms performance—ZTD2 test problem

Genetic algorithm ε-constraint method ANC

Population size 50 100 150 – –

Computed Pareto set size 50 100 150 51 97

Function evaluations 2000 6000 10500 1030 430

Efficiency 40 60 70 20.2 4.4
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Fig. 11 The points
approximating the Pareto front

Fig. 12 GA and ANC Pareto
set approximations for the ZTD2



Fig. 13 Loss of uniformity of
the Pareto points computed by
the ANC

not a major issue since due to the objective function nonlinearity, the solutions in the
design variable domain will probably be not evenly distributed (Fadel and Li 2002).

3.3 Application of the ANC: ground vehicle suspension design

In this section the ANC is used to solve a well known problem in the automotive
field, the optimal choice of the suspension system stiffness and damping of a road ve-
hicle (Mastinu 1994; Gobbi et al. 2004). The design variables affect the road holding,
comfort and working space (a.k.a. rattle space) which are conflicting performance in-
dexes. The suspension system is modeled by the “quarter vehicle” linear model (see
Fig. 14) which is considered sufficiently accurate (Mitschke 1990) to capture the re-
lationship between the considered objective functions and the design variables. The
masses m1 and m2 are the unsprung and sprung masses respectively, k2 and r2 are the
design variables representing the suspension stiffness and damping respectively and
k1 is the tire stiffness.

The road input ξ1 is described by a random process with the following power
spectral density

PSD = Abv

Ω2
(11)

where Ab is a parameter, v is the vehicle speed and Ω is the spatial frequency (i.e. the
inverse of the road irregularity wave length). This simple formula fits the measured
data with sufficient accuracy (Hrovat 1993).

The performance indexes are computed as the standard deviation (Gobbi and
Mastinu 2001) of the tire-road contact force (road holding RH), vehicle body ac-
celeration (discomfort DC) and suspension deflection (working space WS) while the



Fig. 14 Quarter vehicle linear
model

vehicle is passing over an uneven road

DC = A ·
√

(m1 + m2)

m2
2r2

k2
2 + k1r2

m2
2

RH = A ·
√

(m1 + m2)3

m2
2r2

k2
2 − 2

m1k1(m1 + m2)

m2r2
k2 + k1r2(m1 + m2)2

m2
2

+ k2
1m1

r2

WS = A

√
m1 + m2

r2

where A =
√

1

2
Ab · v (12)

As shown in Gobbi and Mastinu (2001), the Pareto set can be found by the application
of the KKT optimality condition. The Pareto set is the (thin) surface (it is not a line)
in Fig. 15. The Pareto solutions are a portion of the 2D design domain which will be
mapped into a surface in the 3D objective domain. In Fig. 15 the Pareto set computed
by the AG and the ANC respectively is shown in the objective function domain.

As in the previous section, the genetic algorithm, the constraints algorithm and
the ANC are compared (see Table 3) in terms of number of function evaluations and
efficiency.

3.4 Application of the ANC: ground vehicle suspension design—non-linear
dampers

he design of the dampers for a passenger vehicle should be performed considering
both low and high frequency motions. The former is related to the pitch and roll



Table 3 Algorithms performance—Ground vehicle suspension optimal design. Vehicle data are reported
in Gobbi and Mastinu (2001)

Genetic algorithm ε-constraint method ANC

Population size 50 100 150 – –

Computed Pareto set size 50 100 150 50 85

Function evaluations 650 1300 1950 1151 500

Efficiency 13 13 13 23 5.9

Fig. 15 Pareto surface for the
3D suspension system
optimization problem solved by
the GA and the ANC. Vehicle
data are reported in Gobbi and
Mastinu (2001)

motion of the vehicle body (about 1 Hz), the latter to the motion of the unsprung
mass derived from the road unevenness (8–10 Hz). The road excitation will result in
vibrations which determine the vehicle comfort (up to 100 Hz) and the road holding.
For this reason the dampers have a non linear characteristic curve to take into account
the different frequency ranges. The curve is also non symmetric providing different
forces in compression and extension. The curve can be described by a linear piece-
wise function presenting different slopes in four different working conditions, low
and high deflection velocity both in compression and extension (see Fig. 16).

The characteristic curve as well as the stiffness of the suspension spring and roll
bars will determine the vehicle dynamics and must be optimized in two different
scenarios. In this example, the running over the uneven road and the roll motion
during a turn maneuver are considered.

The quarter model presented in Sect. 3.3 is used to describe the comfort and the
road holding, requiring numerical integration since the damper is considered non
linear as shown in Fig. 16. The model for the roll motion (see Fig. 17) is briefly de-
scribed. The vehicle is modeled as a rigid body connected to the suspension systems
on the left and right side. Each suspension system is described in terms of unsprung
mass, spring stiffness and nonlinear damper characteristic. Since the simulation is
performed by considering a smooth road surface, the front and rear suspensions are
“collapsed” in a single “equivalent” suspension system at each side of the vehicle.
The unsprung mass, stiffness and damping force of the suspension are given by the
sum of the respective values at the front and rear axles. The vehicle turn maneuver is



Fig. 16 Damper characteristic
curve

Fig. 17 Model for the vehicle
roll motion

simulated by applying as input a step moment to the rigid body which represents the
roll moment generated by the lateral centrifugal force.

The problem is to optimize on the following objective functions

• Rear tire road holding: this index is computed as the standard deviation of the
contact force at the rear tire while passing over an uneven road. The index has to
be minimized.

• Front tire road holding: this index is computed as the standard deviation of the
contact force at the front tire while passing over an uneven road. The index has to
be minimized.

• Discomfort: this index is computed as the standard deviation of sprung mass while
passing over an uneven road. The index has to be minimized.

• Roll angle overshoot: this index represents the difference between the maximum
roll angle and the steady state roll angle. The difference is normalized over the
steady state value. The index has to be minimized.



Table 4 Algorithm
performance—Ground vehicle
suspension design

MOGA PSI ANC

Computed Pareto set size 200 381 4951

Function evaluations 5600 8138 16388

Efficiency 28 22 3.3

• Response time: it is the time needed by the system to reach the 90 % of the steady
state roll angle value. The index has to be minimized.

The design variables in the problem are listed below

• Stiffness of the front suspension spring.
• Stiffness of the rear suspension spring.
• Slopes of the piece-wise linear damper characteristic curve of the front suspension

(4 design variables).
• Slopes of the piece-wise linear damper characteristic curve of the rear suspension

(4 design variables).
• Roll stiffness.

The problem has 5 objective functions which have to be optimized with respect to
11 design variables. The ANC method presented in this paper has been applied and
compared to two widely used multiobjective algorithms, the Multi-Objective Genetic
Algorithm (MOGA) and the Parameter Space Investigation (PSI). The results are
plotted on bidimensional projections of the objective domain space in the Appendix.
The Pareto solutions computed by all the three methods are almost superimposed
while the computational cost is significantly different as shown in Table 4. As previ-
ously observed on the test problems, the ANC performs better in terms of number of
functions evaluations needed to compute one Pareto solution.

An order of magnitude is gained by using the ANC based on the local approxima-
tion.

4 Remarks on the efficiency of ANC optimization algorithm

The ANC, in terms of efficiency, performed better than the other tested algorithms.
The reason lies in the way the local approximation is updated. The following for-
mula gives a rough yet meaningful estimation of the number of function evaluations
required by the ANC

N = NAP + NNET + NP (13)

The total number N is the sum of the evaluations needed to compute the first anchor
point NAP (see step 1), the size of the ANN training set NNET (see step 2) and the
number of nearly Pareto points computed at which the objective/constraint functions
are evaluated to update the ANN approximation (see step 5). Being NP the total
number of Pareto points obtained, the efficiency is then easily computed as follows

εANC = N

NP

= 1 + NAP + NNET

NP

(14)



Efficiency improves as the number of computed Pareto solutions increases. This re-
lation explains the capability of an approach based on the local approximation. The
NC method is able to approximate the Pareto set with an almost evenly distributed set
of points (Messac and Mattson 2004), therefore by increasing the number of Pareto
solutions the ANC algorithm guarantees a good Pareto frontier coverage with good
efficiency. The lower bound for the efficiency is

ε̄ANC = lim
NP →∞

N

NP

= 1 (15)

Similar relationships can be found for the most used algorithms. For instance, for the
genetic algorithms the following estimation can be considered

εGA = N

NP

= n
S

NP

= n (16)

where S is the population size and n is the number of generations. At the last gener-
ation, all the individuals of the population are Pareto solutions (S = NP ).

Among the scalarization methods, the ε-constraints method is considered. In this
case, the following relationship holds

εC = N

NP

= CM

NP

= M (17)

where C is the number of the equivalent single objective problems that has to be
solved and M is the average number of evaluations needed to perform each sin-
gle objective minimization. Obviously for each problem a Pareto solution is found,
therefore C = NP . The number M depends on the minimization algorithm and on the
tolerance on the termination condition. Typically M is proportional to the number of
design variables. For a gradient based algorithm, being s the size of the design vari-
able vector, s + 1 function evaluations are needed to estimate the gradients by means
of finite differences.

For the global approximation approach the efficiency is

εG = NI

NP

(18)

where NI is the size of the data set used to tune the approximated model. By increas-
ing the number of the Pareto points NP , the limit is

ε̄G = lim
NP →∞

NI

NP

= l 	= 0 (19)

The limit l it is greater than 0 because NI it is not independent on NP . The number
NP should be increased to reach the desired accuracy of the Pareto set approximation.
In this case an approximated model with the adequate accuracy must be used and the
model accuracy is a consequence of the data set size NI used to identify the model
parameters.



Table 5 Efficiency of some widely used algorithms

ANC Genetic algorithm ε-constraint method Global approximation

εANC = 1 + NAP+NNET
NP

εGA = n S
NP

= n εC = CM
NP

= M εG = NI
NP

An upper bound for the function f accuracy is given by the following inequality
(Statnikov and Matusov 1995; Niederreiter 1987)

�f ≤ LdN (20)

where L is the Lipschitz constant of the function f and dN is the dispersion of the
sequence used to generate the identification data set. To reduce dN and improve the
accuracy, the sequence size NI must be increased. In the case of local approxima-
tion, the data used to update the approximated model are the Pareto (or nearly Pareto)
solutions found at previous iterations. By increasing the identification data set size
the efficiency it is not affected because the number of Pareto solutions NP increases
as well. These simple considerations, summarized in Table 5, explain why the ANC
and more in general local approximation based algorithms can be very efficient. Ob-
viously, ANC requires a tuning phase of the approximated model as long as other
methods require different parameters to be set. This phase should be taken under
consideration while analyzing the algorithm efficiency.

The exploration of the Pareto set may be more difficult if the number of objective
functions increases. For bi-objective problems the ANC exploration of the Pareto set
is very efficient and robust. As the number of constraints increases, the algorithm
requires more effort as long as, in general, other approaches. Since the method is
based on local approximation, it could be used to refine the solutions obtained with
other methods which approximate the Pareto set at once (i.e., genetic algorithms and
quasi Monte Carlo method).

5 Conclusion

An algorithm based on the local approximation approach is presented and tested with
good results on some known test functions. The algorithm is used to determine the
stiffness and damping of a passenger vehicle suspension system to optimize on con-
flicting objectives such as comfort, road holding. A linear quarter model vehicle is
used to simulate the system while passing over an uneven road. The problem is fur-
ther extended by optimizing the low frequency roll motion of the car body while
turning as well as the ride comfort and road holding. Non linear dampers have been
considered. The Pareto set is computed with good accuracy and higher efficiency with
respect to some widely used optimization algorithms; less functions evaluations are
needed to compute each Pareto solution. Through the local approximation of the ob-
jective and constraint functions many evaluations are saved because the approximated
model is accurate close to the Pareto set and it is left intentionally inaccurate far from
it. More in general, the results show that local approximation based algorithms, if
properly designed, have an intrinsic high efficiency which is not strongly affected by
the number of functions evaluations required to improve the solution accuracy.
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