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D ue to continuing and rapid advances of both hard-
ware and software technologies in camera and 
computing systems, we continue to have access 

to cheaper, faster, higher quality, and smaller cameras and 
computing units. As a result, vision based methods consist-
ing of image processing and computational intelligence can 
be implemented more easily and affordably than ever using a 
camera and its associated operations units. Among their var-
ious applications, such systems are also being used more and 
more by researchers and practitioners as generic instruments 
to measure and monitor physical phenomena. In this article, 
we take a look at this rising trend and how cameras and vision 
are being used for instrumentation and measurement, and we 
also cast a glance at the metrological gauntlet thrown down by 
vision-based instruments.

Instrumentation and Measurement (IM) as a field is pri-
marily interested in measuring, detecting, monitoring, and 
recording a phenomenon referred to as the measurand and 
its associated calibration, uncertainty, tools, and applica-
tions. While many of these measurands are invisible to the 
human eye, for example the amount of electrical current in a 
wire, there are many others that can be seen visually, such as 
the number of people in a room. As such, it is intuitive to de-
velop tools and methods that would see the measurand similar 
to the human eye and measure it. Such tools would be primar-
ily electrical and/or electronic devices, possibly (though not 
necessarily) computer-based and would receive a picture of 
the scene from a camera or similar visual sensor, sometimes 
able to sense in a wider band of electromagnetic radiation (in-
frared, UV, X-ray, etc.) than processed by the human eye, and 
perform certain operations and or computational processes to 
measure or detect the subject of interest. In this article, we re-
fer to such an (IM) approach as Vision-Based Measurement 
(VBM). Because it uses electronic devices and computers, 
VBM cannot only be automated but is also typically faster and 
more accurate than what the human eye can see and measure. 
In addition, since the main instrument is typically a camera 
plus associated operational or computational units, it is quite 
generic, affordable, and accessible by most researchers and 

practitioners, which has helped making VBM more ubiqui-
tous and applicable. 

The IEEE Transactions on Instrumentation and Measurement 
(TIM) has been publishing VBM papers since as far back as 
1989 [1], possibly older depending on what experts agree to 
constitute vision in the context of those times. However, due 
to the recent hardware and software advances described at 
the beginning of this article, we are witnessing a significant 
increase in the number of VBM papers both submitted to and 
accepted by TIM in recent years. In fact, since 2009, TIM has 
published more VBM papers than it had in its history up to that 
point, indicating a rising trend for the present and the future of 
IM. This has served as motivation for us to write this article to 
promote VBM and introduce it to IM practitioners who are not 
already familiar with it. 

Current Trends and Applications
In the context of IM, VBM is being proposed and used today 
in a wide variety of automated applications and scenarios: 
counting the number of people in a building, for safety rea-
sons, using existing surveillance cameras [2], detecting fire 
from video feeds of closed circuit cameras [3], camera-based 
vehicle instrumentation used to analyze the intentions and 
state of a driver (sleepy, yawning, not looking at the road 
ahead, etc.) and to detect potential driver errors before they 
happen to significantly reduce car accidents [4] and [5], and 
even counting the number of calories and the amount of nu-
trition in a meal simply by analyzing the image of the food [6]. 
An interesting observation about these applications is that, al-
though they seem to be in very different and unrelated fields, 
they all use the same IM principle: analyzing a picture taken 
by a camera or visual sensor to measure or detect a phenome-
non. The same principle also applies to biometric IM systems 
that detect the human face [7], and [8], iris [9], and [10], or 
fingerprint [11] and [12], as well as medical IM systems that 
detect, for example, skin problems such as dehydration or al-
lergic reactions [13], and finally, gesture detecting instruments 
for human-computer interfaces [14] and [15]. Another really 
interesting possibility with VBM is when the camera captures 



the scene beyond what is visible to the human eye. For exam-
ple, with an infrared camera, VBM can be used to measure the 
temperature of objects, such as steel production components 
that are otherwise very difficult to measure with other tech-
niques [16]. 

The last example brings up a whole different domain of 
VBM usage. While most of the applications described above 
are relatively recent, VBM has been used for many years in 
factories and production facilities for inspection of equip-
ment or products and detection of their properties, also 
known as no contact, non-invasive, or non-destructive in-
spection. The idea is again the same: a camera or visual sensor 
captures the subject of interest, and inspection is done by an-
alyzing the captured data using hardware and/or software. 
This reduces production and operation costs by not only de-
creasing the manual labor that would otherwise be needed 
for inspection but also reducing the number of defects that 
could be missed due to human errors. This domain of VBM 
continues to develop today with many examples in auto-
matic inspection: 

◗ measurements of fabric texture characteristics such as
weave repeat, yarn counts, and surface roughness [17], 

◗ inspection of automotive rubber profiles which are diffi-
cult to process due to their complex shapes [18], 

◗ lay length measurement of metallic wire ropes, which is
an important dimensional quantity to pinpoint possible
rope deformations and damages [19], 

◗ three-dimensional coordinate measurement of a large-
scale work piece, which is difficult in the mechanical
industry and is needed to evaluate the assembling qual-
ity [20], 

◗ defect detection in weld bead, which is important for
high-quality welding [21], 

◗ measurement of brake shoe thickness, which is a vital
inspection of a train’s braking system and is traditionally 
performed manually [22], 

◗ detection of discrete surface defects in rail heads, which
impact the riding quality and safety of a railway system
[23], and 

◗ detection of imperfections of a satin glass sheet as it is
moving on a conveyor [24], to name a few.

Last but not least, the final group of VBM applications in-
volve robot sensing and navigation to detect objects, obstacles, 
and paths [25], [26]. Such applications are used in a variety of 
industrial applications such as manufacturing as well as per-
sonal applications such as assistive robots for the elderly or the 
physically challenged.

As discussed, applications of VBM are indeed vast and far 
reaching in many sectors of industry and research: biomedi-
cal engineering, safety and security, vehicular technologies, 
transportation system, industrial inspection, human-com-
puter interfaces, surveillance, assistive systems, and robotics, 
to name a few, and are becoming even more widely used due 
to increased affordability and capability of VBM hardware and 
software. To understand how VBM works, let us now take a 
look at it from a technical perspective.

VBM Basics
The high-level architecture of a VBM system is shown in 
Fig. 1. At the hardware level, there are two main compo-
nents: a visual sensor to capture an image, and an operations 
unit to process the image and see the subject of interest, to-
gether known as vision. It should be pointed out that the 
term vision is often used to refer to both computer vision and 
machine vision, which is correct since both are vision. In ad-
dition, the two terms are sometimes used interchangeably 
by practitioners, which is a common mistake. Though simi-
lar in many aspects, computer vision and machine vision are 
not the same when it comes to design, implementation, en-
gineering, and applications. Traditionally, computer vision 
is mostly used in personal or daily-life applications and re-
lies on computational methods running on computers or 
generic processor based systems, whereas machine vision is 
mostly used in industrial inspection or robotic applications 
and is typically implemented in dedicated hardware, some-
times without any computers or processor-based systems 
[27]. However, both of them use many common algorithms 
from image processing and computational intelligence, and 
both of them are used in VBM. So for the purposes of this 
article, we will not get into their differences, and our dis-
cussions are generic enough to apply to both. With this in 
mind, let us now present the details of the components de-
picted in Fig. 1. 

Visual Sensor
The visual sensor can be a visible-light camera, an infrared 
camera, a laser scanner, an x-ray scanner, or any other sensor 
that can obtain an image of the physical scene containing the 
measurand. Since the most commonly used visual sensor is 
visible-light camera such as a Complementary Metal–Oxide–
Semiconductor (CMOS) or higher resolution Charge-Coupled 
Device (CCD), the captured image is most of the time very 
similar to a picture of the scene as seen by a human. For other 
types of sensors such as laser or x-ray, this image is different 
from what a human sees and is mostly meant for the consump-
tion of the operations unit. Irrespective of the type of visual 
sensor, a key contributing factor to accurate measurements is 
the calibration of the camera and precise knowledge of its po-
sition, orientation, focal length, aspect ratio, principal point, 
distortion, etc. A variety of techniques are already available 
for camera calibration [28] and more are being proposed in re-
cent research [29].

Operations Unit
The operations unit receives the image acquired by the visual 
sensor and performs the necessary operations to obtain the de-
sired measurements. This unit can be implemented in either 
software or hardware; i.e., it can either be programmed into a 
generic microprocessor based system such as the processing 
unit of a smart camera, or it can be implemented in dedicated 
hardware such as Field Programmable Gate Array (FPGA) or 
Application-Specific Integrated Circuit (ASIC). The unit itself 
consists of the following four major stages:



◗ Pre-Processing: the purpose of this stage is to prepare the
raw image for the next stage of operations. The image
as acquired by the visual sensor could have deficiencies
such as glare, noise, blurs, etc. In addition, it might not be 
in the form required by ensuing operations. For example, 
a fingerprint image is typically acquired in grey scale, but 
to be processed, it typically needs to be converted to pure 
black and white without any background. Pre-process-
ing takes care of such needs and performs operations
such as: normalization which modifies the pixel intensity 
and contrast of parts of the image, thresholding which
converts the image into a binary black and white image,
denoising which rids the image from additive white
Gaussian noise or other types of noise, resizing, cropping, 
etc. These operations are signal processing, specifically
image processing, with many methods and algorithms
available for their implementation.

◗ Image Analysis: the purpose of this stage is to analyze the
image and extract the necessary information for find-
ing the measurand and doing the measurements later.
This stage also uses image-processing operations, such
as segmentation which divides the image into multiple
segments each representing something meaningful in the 
scene, edge detection which finds the edges of objects in
the scene and helps us identify objects of interest, track-
ing of objects after they have been detected and as they
move through the scene, etc. For example, in Fig. 2 we
can see color analysis and contour detection applied to
food images so as to detect individual ingredients. At
the end of the image analysis stage, the output is either
the measurand itself or is information that can lead to

the identification of the measurand. In the former case, 
we can skip the next stage, measurand identification, 
and move straight to the measurement stage. For exam-
ple, to count the number of people in a room by counting 
the number of faces, once the faces have been detected in 
the image analysis stage, we can move straight to count-
ing them without any further operations. However, in 
some applications, more operations are needed to iden-
tify the measurand. For example, as shown in the bottom 
row of Fig. 2, even though individual ingredients have 
been detected, we still do not know what they are exactly 
(apple? orange? bread? etc.). Hence, an additional identi-
fication stage is needed to answer this question. This stage 
is typically performed using computational intelligence 
operations, as discussed next.

◗ Measurand Identification: the purpose of this stage is to
identify the specific measurand in the image, if it has
not already been identified in the previous stage of
image analysis. Techniques that are used here are mostly
based on computational intelligence, especially machine

Fig. 1. High-level architecture of vision-based measurement. Left to right: image is acquired by a visual sensor and is fed to the operations unit to perform image 
processing (green), computational intelligence (violet), and measurement operations (yellow).

Fig. 2. (top row) Food images as input to the image analysis stage and 
(bottom row) its output after performing color analysis and contour detection 
[6]. 



learning, and specifically pattern recognition and pattern 
matching, where the former provides a reasonable most 
likely matching of the given inputs to an output and hence 
introduces some uncertainties, while the latter looks for 
and reports exact matches of the given inputs to an a priori 
pattern. In this stage, we can find, match, and identify 
specific patterns, shapes, and classes of objects to identify 
our measurand. Optical character recognition and neural 
networks are also done at this stage if needed. For exam-
ple, by feeding the bottom row of Fig. 2 into a Support 
Vector Machine engine that has been previously trained 
with similar food images in terms of color, texture, shape, 
and size, we can identify what ingredients exist in the 
food with a certain degree of accuracy. In some applica-
tions where the physical phenomenon only needs to be 
detected as opposed to gauged, such as gesture detection, 
our task is finished at this stage with the detection and 
identification of the measurand. On the other hand, in 
many other applications the measurand has to go through 
further measurement operations, as discussed next.

◗ Measurement: at this stage we have the measurand, and we 
can perform the required measurement operation such as 
gauging which gives us the dimensions of the measur-
and and its circumference, area, volume, etc., as well as
temporal measurements when tracking the measurand
and its state over time. An example of gauging is shown in 
Fig. 3, where the area of a single food ingredient that has
been identified in the previous stage is determined. By
assuming a more or less constant thickness of the ingredi-
ent, we can measure its volume from the area, use readily 
available food density tables to find the mass of the ingre-
dient, and use nutritional tables to measure its calories
and nutrition. Calibration is another requirement at this
stage. In the above example, we need a reference to know 
the dimensions of the food ingredient, which in this case
is the user’s thumb (Fig. 3, right) that has been measured 
before and can be used for calibration here. As another
example for temporal measurements, consider a driver
monitoring application where, to detect yawning, we
must first detect and track a closed mouth, then detect if
the same mouth opens according to a certain pattern over 
a certain time, and then is closed again. The temporal
relationship between the various states of the mouth is of 
utmost importance, otherwise there will be false positives 
because singing, or talking will be mistaken for yawning.

Uncertainties and Their Sources
VBM systems, like every system employed for measurement 
purposes, can be considered actual measurement systems if 
they provide measurement results. The International Vocab-
ulary of Metrology (VIM) [30] together with the Guide to the 
Expression of Uncertainty in Measurement (GUM) [31] rep-
resent the most important reference documents in metrology 
and define a measurement result, in clause 2.9, as a “set of quan-
tity values being attributed to a measurand together with any other 
available relevant information.”

VIM also states, in note 1 about this definition, that 

A measurement result generally contains “relevant infor-
mation” about the set of quantity values, such that some 
may be more representative of the measurand than 
others. This may be expressed in the form of a probabil-
itydensity function (PDF).” 

In note 2 about the same definition, A measurement result is 
generally expressed as a single measured quantity value and a mea-
surement uncertainty. Measurement uncertainty is hence an 
essential and necessary part of a measurement result, and ac-
cording to the GUM [31], it is a “parameter, associated with the 
result of a measurement that characterizes the dispersion of the values 
that could reasonably be attributed to the measurand.”

To define this parameter, the GUM makes an important as-
sumption in clause 3.2.4 [31]: 

It is assumed that the result of a measurement has been cor-
rected for all recognized significant systematic effects and that 
every effort has been made to identify such effects. 

Under this assumption, the only significant remaining ef-
fects are random, and consequently, the dispersion of values 
that could reasonably be attributed to the measurand can be 
represented by the standard deviation of a given, or assumed, 
PDF [32]. This standard deviation is called standard uncertainty 
and represents the fundamental stone on which measurement 
uncertainty is evaluated, also when the measurement result is 
not directly provided by a single instrument but is obtained as 
a combination of measurement results [32].

According to these concepts, to characterize a VBM system 
as a measuring instrument, it is imperative that the following 
steps are accomplished:

◗ All significant systematic effects shall be identified and
recognized, and proper corrections shall be applied.

◗ The dispersion of values that could reasonably be attrib-
uted to the measurand shall be characterized in terms of
standard uncertainty.

◗ If different parts of the instrument, including both hard-
ware components and algorithms, are expected to
contribute to the dispersion of values that could reason-
ably be attributed to the measurand, these two steps shall 
be repeated for all of them, and the individual obtained
standard uncertainty values shall be suitably combined

Fig. 3. Food portion area measurement [6].



[31], [32] to obtain the final, combined standard uncer-
tainty associated to the measured value provided by the 
VBM system.

It is also imperative that the above steps are followed ac-
cording to the GUM recommendations [31], since this is the 
only way to characterize the obtained measured values and 
compare them with measurement results obtained by instru-
ments based on different measurement principles.

Specifically, as far as the VBM visual sensors are concerned, 
we can list the following main sources of uncertainties:

◗ Lighting: the lighting of the scene directly affects the
values of the pixels of the resulting image, which affect
the Image Processing parts in Fig. 1. Since the output of
the image processing parts are input to the remaining
parts, we can see that lighting conditions, in fact, affect
the entire measurement system. Hence, applications in
which the lighting conditions may vary are affected by
this parameter. Lighting conditions can be seen either as
systematic effects (for instance the presence of shadows is 
a systematic effect if they do not change during the whole 
measurement process) and random effects (for instance
due to short term fluctuations of the lighting conditions). 
Both effects shall be taken into account when evaluating
uncertainty.

◗ Camera angle: the angle with which the image is taken is
also important in applications where the camera has a free 
angle and is not fixed, since the angle directly affects the
shape and position of the measurand in the image. In this 
case, a systematic effect shall be considered and compen-
sated for (due to the camera position), and the random
effects shall be also considered, related to fluctuations of
the camera position due to imperfections of the camera
bearing system, vibrations, etc.

◗ Camera equipment: different cameras have different lenses, 
hardware, and software components, all affecting the
resulting image taken with that camera. Hence, an appli-
cation that is not using a specific and predefined camera
can be affected by this parameter. Again, this may cause
systematic effects as well as random effects and both shall 
be carefully considered.

There are also other uncertainties introduced in the par-
ticular image processing or computational intelligence 
algorithms used in the VBM system which must also be taken 
into account. As an example, denoising algorithms are not 
100% efficient, and some noise is still present in the output im-
age. This noise represents a contribution to uncertainty, so it 
has to be evaluated and combined with other contributions 
to define the uncertainty associated with the final measure-
ment result.

When identifying and evaluating all individual contribu-
tions to uncertainty, it is also essential to compare different 
possible architectures (hardware and software) and under-
stand which one provides the best performance, from the 
metrological perspective, under the different possible mea-
surement conditions. This can be efficiently done only if 
well-established standards and techniques [31] are used. 

VBM Papers in TIM
The previous sections should have clarified what is needed to 
consider and characterize a VBM system as a measurement 
system. It is also very important for the VBM community to 
understand when a work in this field belongs mainly to pure 
image processing or pattern recognition fields and when it can 
be considered in the IM field. 

Let us consider TIM as a significant IM venue to which, 
as already stated above, VBM papers are submitted and pub-
lished regularly. TIM’s scope has been defined to encompass 
research papers 

that address innovative solutions to the development and use 
of electrical and electronic instruments and equipment to 
measure, monitor and/or record physical phenomena for the 
purpose of advancing measurement science, methods, func-
tionality, and applications. 

A paper submitted to TIM must therefore clearly show 
how it satisfies the above requirements and must cover the 
related recent literature in the field of IM and position its own 
contribution with respect to the literature and compare itself 
either analytically or experimentally with existing methods, 
techniques, and applications in the field of IM. While we cer-
tainly encourage submission of VBM papers to TIM, we do 
not consider papers whose core contribution is strictly in 
vision, image processing, pattern recognition, or machine 
learning without any clear IM and VBM context. For exam-
ple, a paper that proposes a more efficient image denoising 
technique or a faster edge detection algorithm without any 
direct IM context and without characterizing the proposed 
algorithm in terms of measurement uncertainty in a GUM 
compliant way, will not be considered at TIM. While both 
image denoising and edge detection could be of great use in 
VBM, they are too generic and can be applied to any other 
image processing and pattern recognition application as 
well, not just VBM. Hence, at TIM we redirect such papers 
to more appropriate journals such as IEEE Transactions on 
Image Processing or IEEE Transactions on Pattern Analysis and 
Machine Intelligence. Contrarily, a paper that proposes an im-
age denoising or edge detection algorithm and then shows 
experimentally that the proposed algorithm can be used to 
count the number of people in a room or detect fingerprints 
more accurately than existing algorithms will be considered 
at TIM. While there is a lot of work in the field of vision, from 
an IM perspective, the evaluation of uncertainty and not 
just the definition of new algorithms is important. Any new 
algorithm becomes useful if and only if it brings increased ac-
curacy or increased computational efficiency with the same 
accuracy.

Conclusion
In this article we gave an overview of vision-based measure-
ment (VBM), its various components, and uncertainty in the 
correct IM metrological perspective. VBM is a fast rising tech-
nology due to the increasing affordability and capability of 



camera and computing hardware/software. While originally 
a specialized application, VBM is expected to become more 
ubiquitous in our everyday lives as apparent from the applica-
tions described in this article. 
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