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I. INTRODUCTION AND PRELIMINARIES

THE control of mechanical vibrations is a challenging
problem of great interest in many applications [1]–[3].

In recent years, solutions based on decentralized velocity feed-
back were adopted, which are unconditionally stable [4], [5]. 
Optimal tuning techniques of decentralized velocity feedback
control loops with constant gain are suggested [6], [7]. Adapt-
ing gain [8] and extremum seeking control [9] techniques are
also investigated. A survey of these approaches was provided
in [10].

Many practical applications such as, for example, seismic
vibration isolation of delicate equipment [2], [8], running
machinery [2], [11] and civil constructions [12], vehicle sus-
pensions [13], and vibration control of distributed flexible
structures [1], [14], [15] can be efficiently tackled with semiac-

tive control systems. In particular, among other techniques, the 
well known H∞ approach [16]–[20] and the model predictive

control [21] are successfully applied.
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The idea of implementing active damping with switching
systems is established in the literature [22]. Semiactive vehicle
suspension systems are developed where the damping of the
suspension is switched from low to high values in such a way
as to synthesize a sky-hook damping effect, which more effi-
ciently dissipates energy and thus reduces vibration transmis-
sion [23], [24]. In particular, the use of magneto-rheological
fluid dampers is extensively investigated [25]. Switching tech-
niques are developed, which provide good damping perfor-
mance over wide frequency bands, good robustness, and very
low power requirements [26], [27]. From a technological point
of view, switching strategies are suitable for on-line retuning
and can be easily implemented at a reasonable cost.

The ideas presented are in line with recent literature
[28], [29]. In particular the concept of consistency proposed
in [28] plays a fundamental role. A state feedback switching
control strategy is strictly consistent whenever it improves
performance of all isolated subsystems. In contrast with our
previous paper [29], where consistency is pursued by means
of a single quadratic function, we exploit a theory recently
reported in [30]– [32]. This fact supports recent switching con-
trol schemes based on composite functions [30] and Lyapunov-
Metzler (LM) inequalities [33]. The main results of this brief
are detailed below.

1) We provide a user friendly tutorial concise explanation
of the basic properties of the min–of–quadratic functions
and their generalized Lyapunov derivative.

2) We propose schemes based on functions that are easy to
implement as they are based on standard tools such as
Lyapunov and Riccati equations.

3) We show that the switching semiactive damping scheme
outperforms the optimal constant switching approach
under the L2 and L2 induced performance criteria.

4) We provide a robust version of the scheme by just
replacing equalities by inequalities hence good perfor-
mance of the overall system can be guaranteed even
under parameter changes.

5) We consider the case in which the stiffness coefficient
may also be switched. In this case, the overall stability
is not assured under any switching rule, as in the case
of switched dampers. Still the adopted function scheme
assures robust stability.

6) We provide two realistic examples to show how the
considered strategy in general is highly preferable to
the constant optimal one. In particular, one of them
considers a realistic building structure under seismic
action, with base acceleration from recorded data of the
El centro earthquake, which are available on–line [34].
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Fig. 1. Graphical representation of a level set of (1) when i ∈ {1, 2} and V1
and V2 are quadratic functions.

II. PRELIMINARIES ABOUT NONCONVEX MIN–TYPE

FUNCTIONS

This section presents a short overview about nonconvex
min-type functions, which are extensively discussed, for exam-
ple, in [31] and [30]. Given a set of smooth positively definite
radially unbounded functions Vi (x), i = 1, 2, . . . , M , consider
the function

V (x)
.= min

i
Vi (x). (1)

The resulting function V is positive definite, radially
unbounded and locally Lipschitz, but nonsmooth in general.
In addition, even if the original functions Vi are convex, the
compounded Lyapunov function may not be convex. In the
sequel, we consider the case in which the compounding func-
tions are positively homogeneous hence also the compounded
function has this property. From (1), it is clear that each level
set of the resulting function is the union of the corresponding
level sets of the components. As an example, in Fig. 1 the
case of quadratic functions is considered; the level sets of the
components are ellipses while the level set of the compound
function is the region enclosed by the bold line.

Consider a dynamical system of the form

ẋ(t) = f (x(t), u(t)) (2)

where u(t) is a function taking values in an assigned compact
set U . Assume that 0 is an equilibrium state, namely that, for
all u ∈ U , f (0, u) = 0 and assume that the set

F(x) = { f (x, u)| u ∈ U}
is convex. As the function defined by (1) is nondifferentiable,
to apply the Lyapunov theory, we must resort to the Dini
derivative in direction v which is defined as follows:1

DV (x, v) = lim inf
h→0+

V (x + hv) − V (x)

h
.

It is known that, for any input u(t), the solution x(t) of the
differential equation (2) satisfies the condition

d

dt
V (x(t)) = DV (x(t), f (x(t), u(t)))

almost everywhere. To simplify the notation, we define

V̇ (x, u)
.= DV (x, f (x, u)) .

1If the functions Vi are quadratic, as assumed in the following, the limit
and the inferior limit coincide.

For a given feedback u(x), the condition on V̇ (x, u) to
be negative definite implies asymptotic stability of x = 0.
To derive an expression for the derivative DV (x, f (x, u))
consider the set

I(x) = {i : V (x) = Vi (x)} (3)

namely the set of indexes that minimize (1), for a given x . It is
reasonable to assume that in a real case this set is a singleton
in all the state–space apart from a subset (of the state–space)
of zero measure. In the case of the two quadratic functions of
Fig. 1, I includes two indexes only in the points where the
two components are equal. In the figure all these points are
supposed to lie on the straight dashed line. In the points where
I is not a singleton, smoothness of the compound function is
not guaranteed. However, (see for instance [30])

V̇ (x, u) = min
i∈I(x)

∇Vi (x)T f (x, u(x)) . (4)

Once a function of the min–type (1) is assigned, the problem of
choosing, among all possible values of u ∈ U , the value that
minimizes the derivative is of great interest. A fundamental
preliminary observation is that in the case in which U is a
polytope and f is affine in u the minimum is achieved on the
vertices of U [30].

Lemma 2.1: Assume that U is a polytope identified by the
set of vertices vert{U} = {η1, . . . , ηnv } and that f is affine in
u. Then

min
u∈U

DV (x, f (x, u)) = min
u∈vert{U}

DV (x, f (x, u)).

We anticipate that the above lemma has the quite important
consequence that, no matter how the functions Vi (x) are
found, the best convergence and performance is achieved by
switching between the dynamics associated with the vertices
u ∈ vert{U} even if, as it will be explained, some of the
Vi (x) are Lyapunov functions associated with constant internal
values of U .

Example: Assume V (x) = mini x T Pi x , where Pi are a
family of positive-definite matrices and assume f (x, u) =
A(u)x = [∑

h uh Ah
]

x , with
∑

h uh = 1 and uh ≥ 0. Then
to compute and minimize DV (x, u), given x , one needs to:

1) evaluate I(x), namely the set of the indexes k for which

xT Pk x = V (x) = min
i

x T Pi x;
2) compute

V̇ (x, u) = min
k∈I(x)

2x T Pk A(u)x;

3) find the minimizer u(x) by computing

ḡ = arg min
h

min
k∈I(x)

2x T Pk Ah x .

Then the minimizing control law is

u(x) = [0 . . . 1︸︷︷︸
ḡ

. . . 0]

which is associated with Aḡ .
Another preliminary lemma (whose proof is straightfor-

ward), important in the sequel, establishes that stability may
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Fig. 2. Oscillating system with two devices with variable damping value
and one device with variable stiffness value.

be easily proven as long as each of the component functions
Vi = x T Pi x is itself a Lyapunov function.

Lemma 2.2: Assume that for all i ∈ {1, . . . , M} there exist
a constant value ûi ∈ U and a constant αi ∈ R

+ such that for
all x

V̇i (x, ûi ) = 2x T Pi A(ûi )x ≤ −αi‖x‖2.

In this case the switching strategy

u(x) = arg min
u∈U

V̇ (x, u) (5)

assures stability. More precisely, if α = mini αi then
V̇ (x, u(x)) ≤ −α‖x‖2.

III. PROBLEM SETUP

Consider a mechanical vibrating system modeled by
{

Mq̈(t) = −K̄ (u)q(t) − D̄(u)q̇(t) + Ē2w(t)
z(t) = H1q(t) + H2q̇(t)

(6)

where q is the state, w is the primary excitation, M and K̄
are the mass and stiffness positive definite matrices, D̄ is the
damping matrix, Ē2 is the primary excitation matrix, z is the
performance output, and H1 and H2 are constant matrices. We
assume that

1) u ∈ IRp is a vector parameter that belongs to a polytope
U ;

2) matrices K̄ (u) and D̄(u) are affine in the parameter u.

For instance in Fig. 2, the set U is a box

U = [u−
1 , u+

1 ] × [u−
2 , u+

2 ] × [u−
3 , u+

3 ]
where u−

i and u+
i are the minimum and maximum values,

respectively, of the damper coefficients and of the stiffness.
By introducing the vector variables x1 = q and x2 = q̇ , we

obtain the state space representation
[

ẋ1
ẋ2

]
=

[
0 I

−K (u) −D(u)

] [
x1
x2

]
+

[
0

E2

]
w (7)

z = [
H1 H2

] [
x1
x2

]
(8)

where K = M−1 K̄ , E2 = M−1 Ē2, and D = M−1 D̄. The
closed-loop system, written in a compact form, becomes

ẋ(t) = A(u)x(t) + Ew(t)

z(t) = H x(t) (9)

with obvious meaning of the terms x , A, E , and H .

As previously mentioned, we are interested in performance
so we introduce the following assumption that is well known
to be satisfied in the context of vibrating systems.

Assumption 1: For any fixed value u ∈ U the system (6) is
asymptotically stable.

Remark 3.1: If only the matrix D is a function of u, the
system is dissipative and stability is guaranteed under arbitrary
switching. Conversely, switching could destabilize the system
if K depends on u.

The problem considered in this brief is how to minimize
the effect of the single input w on the output z by switching
u. The resulting performance can be measured by using any
of the following performance indexes, defined for x(0) = 0.

1) Impulse response energy:

J2 =
∫ ∞

0
‖zD(t)‖2

2dt (10)

where zD(t) is the impulse response of system (9).
2) Energy-to-energy gain

J∞ = sup
w∈L2,w 	=0

∫ ∞
0 ‖z(t)‖2

2dt
∫ ∞

0 ‖w(t)‖2
2dt

(11)

where ‖w‖2 = √
wT w is the Euclidean norm of

w and L2 is the set of all signals w(t) such that∫ ∞
0 ‖w(t)‖2

2 dt < +∞. As we will explain later the
basic goal is to choose γ > 0 as small as possible to
assure the condition J∞ < γ 2.

A. Switching Versus Constant Control

In the sequel, given the polytope U we denote by

1) g ∈ U , when g is a constant value;
2) u ∈ U , when u is controlled as u = u(x);

and we compare the two cases.
According to Lemma 2.1, we will derive strategies of the

form

u(x) ∈ V

where V is the set of vertices of U . The following fundamental
points are worth mentioning.

1) It is reasonable-and almost obvious-that a control u(x) ∈
U can perform better than a constant control g ∈ U . It
is not so obvious, but, in view of Lemma 2.1 still true,
that on the vertices u(x) ∈ V can perform as well as
u(x) ∈ U .

2) Although the adopted control assumes values on the
vertices, the internal values g that provide optimal
constant gains are of fundamental importance, because
their cost function contributes to the overall performance
even if the condition u = g never holds.

3) From the practical standpoint, assuming u = g is purely
theoretical because in general tuning the damping coef-
ficient is a difficult task. Conversely, switching among
the vertices can be done efficiently at a very low cost.



IV. IMPULSE RESPONSE ENERGY

To simplify the reasoning, assume for a moment that the
disturbance w is a scalar. For a fixed value of the parameter
g ∈ U , the impulse response energy is given by

J2 = ET P(g)E

where P(g) solves the equation

AT (g)P(g) + P(g)A(g) = −H T H. (12)

Hence we may define the minimum value of the energy, for
all possible constant values of the input, as

J̄2 = min
g∈U

{ET P(g)E : (12) holds}.

The optimal constant value ḡ, namely the value such that J̄2 =
ET P(ḡ)E can be found by standard optimization procedures
(see for instance [29] and the references therein).

On the other hand, the switching technique consists in
computing the solution P(gi ) on a certain number of values
gi ∈ U

gi ∈ G = {g1, g2, . . . , gM}.
To prove the benefit of this approach the following assumption
is needed.

Assumption 2: The set G includes the optimal value ḡ.
The candidate control Lyapunov function is

V (x) = min
gi

{xT P(gi )x} (13)

while the associated switching strategy, of the type (5), is

u(x) = arg min
u∈U

V̇ (x, u). (14)

The advantage of the switching is justified by the following
proposition.

Proposition 4.1: If Assumption 2 holds and each P(gi ) is
positive definite then

i) the minimum of (14) is achieved on the vertices of U ;
ii) the control (14) assures asymptotic stability if H has

full column rank;
iii) the control (14) outperforms the optimal constant one in

the sense that

J̃2 =
∫ ∞

0
z(t)T z(t)dt ≤ V (E) ≤ ET P(ḡ)E = J̄2. (15)

Proof: The first two claims follow from Lemma 2.1 and
Lemma 2.2, respectively. Only the third claim has to be proven
(using again Lemma 2.1). To this purpose, note that

V̇ (x, u(x)) = min
u∈U

min
i∈I(x)

∇Vi (x)T A(u)x

≤ min
i∈I(x)

∇Vi (x)T A(gi)x .

Since

min
i∈I(x)

∇Vi (x)T A(gi)x

= 2 min
i∈I(x)

x T P(gi )A(gi )x

= min
i∈I(x)

x T [A(gi)
T P(gi ) + P(gi )A(gi)]x

= −xT H T H x

we obtain

J̃2 =
∫ ∞

0
zT (t)z(t) dt

=
∫ ∞

0
x T (t)H T H x(t) dt

≤
∫ ∞

0
−V̇ (x, u(x))dt .

Hence, by integrating and assuming x(0) as initial condition,
we have

J̃2 ≤ V (x(0)) ≤ x(0)T P(ḡ)x(0).

Since the impulse response is the free response with initial
condition x(0) = E , (15) is proven.

Remark 4.1: The previous proof requires H to have full
column rank, hence −x T H T H x is negative definite and
Lemma 2.2 can be applied. In the opposite case, V̇ (x, u) would
be negative semidefinite only. In practice, the assumption is not
a restriction since, in place of the performance signal z = H z,
the modified output

ẑ =
[

z
z̃

]
=

[
H
ε I

]
x = Ĥ x

can be used, with ε small such that there is no change in the
problem.

Let us now consider the multi–input case, in which an
impulse can excite the system from any of several input
channels E j . To solve this case, we define the set G as the
set of all the optimal values ḡi corresponding to impulses on
the existing input channels. The cost function associated with
the j th input is

J̄ (i)
2 = min

g∈U
{ET

j P(g)E j : (12) holds} = ET
j P(ḡi )E j .

Then, by construction (assuming V defined as above), we
obtain

V (E j ) ≤ ET
j P(ḡi )E j .

Thus, yet again, the switching strategy outperforms the con-
stant one no matter from which input channel the impulse
affects the system.

Along the lines suggested in [33], it is possible to improve
the results by determining the generating functions by adding
degrees of freedom (DFs) as follows. Let N be the number
of points considered in the polytope; for all i = 1, . . . , N and
gi ∈ G, let Ai = A(gi) and find the unique solutions Pi of
the cross linear equation

AT
i Pi + Pi Ai +

N∑

j=1

λi j Pj + H T H = 0 (16)

where the parameters λi j are such that λi j ≥ 0 for all i 	= j
and, for all i

N∑

j=1

λi j = 0.

The resulting switching strategy, in view of the results in [33],
is such that (15) is satisfied.



Remark 4.2: The solutions can be computed with Kro-
necker calculus, via the vec operator2 and the Kronecker sum 
of matrices.3 Letting

p �

⎡

⎢
⎢
⎢
⎣

vec(P1)
vec(P2)

...
vec(PN )

⎤

⎥
⎥
⎥
⎦

h �

⎡

⎢
⎢
⎢
⎣

vec(H T H )

vec(H T H )
...

vec(H T H )

⎤

⎥
⎥
⎥
⎦

� �

⎡

⎢
⎣

λ11 I · · · λ1N I
...

. . .
...

λN1 I · · · λN N I

⎤

⎥
⎦

and A = diag{AT
i ⊕ AT

i } + �, the cross linear equation can
be equivalently rewritten as follows:

Ap + h = 0. (17)

A solution p such that Pi > 0, for all i = 1, . . . , N exists if
and only if A is Hurwitz which happens, when λi j = 0 for
all i and all j . When A is a Hurwitz matrix, p = −A−1h
and Pi > 0 can be recovered from p by reshaping. Note that
(17) is nonlinear in the parameters p and � and finding the
solution might be difficult. However, for a small number of
modes (subsystems) it can be easily solved numerically.

A. Parametric Uncertainty

In the case of an uncertain representation of the form

ẋ(t) = A(�, u)x(t).

Equation (12) cannot be used and must be replaced by the
inequality [35]

AT (�, g)P(g) + P(g)A(�, g) + H T H ≤ 0. (18)

This inequality assures that for fixed g

V̇g(x) = xT [AT (�, g)P(g) + P(g)A(�, g)]x
≤ −xT H T H x

where Vg(x) = xT P(g)x . Note that Vg(x) is the guaranteed
performance for fixed g. If the inequalities (18) are satisfied,
the nonconvex function (13) along with the switching strategy
is such that V (x) ≤ Vg(x) and V̇ (x) ≤ −xT H T H x . Then by
integration we obtain

∫ ∞

0
zT (t)z(t)dt ≤ V (x(0)) ≤ Vg(x(0))

which shows that the switching strategy yields a better perfor-
mance.

Remark 4.3: It is well know that if A(�, g) has a polytopic
structure, conditions (18) are equivalent to a set of LMIs
[see [35] subsection 6.2.1)].

2For a matrix with columns a1, . . . , an the vec operator is defined by

vec ([a1 · · · an ]) =
[
aT

1 . . . aT
n

]T
.

3The Kronecker sum of two matrices B and C is defined by B ⊕ C =
B ⊗ I + I ⊗ C , where ⊗ is the Kronecker product.

B. Energy to Energy Amplification

We start this section by recalling some well–known facts.
Let g be fixed and assume that P(g) is a positive definite and
stabilizing solution of the Riccati equation

AT (g)P(g)+ P(g)A(g)+ P(g)
E ET

γ 2 P(g)+ H T H = 0 (19)

for some γ > 0. Let Vg(x) = x T P(g)x ; it is known that, for
all w ∈ L2

V̇g(x) = 2xT P(g)(A(g)x + Ew) < −‖z‖2
2 + γ 2‖w‖2

2.

Given the initial condition x0, after integration and recalling
that z = H x , one obtains that, for all w ∈ L2

∫ ∞

t0

(
‖z(t)‖2

2 − γ 2‖w(t)‖2
2

)
dt ≤ xT

0 P(g)x0. (20)

In the worst case, w = ET P(g)
γ 2 x ∈ L2 and (20) is indeed an

equality.
Once we have taken the parameter γ as small as possible

with the constraint that (20) admits a positive definite solution,
we get the tightest upper bound for the output energy

∫ ∞

t0
‖z(t)‖2

2dt ≤ γ 2
∫ ∞

t0
‖w(t)‖2

2dt + x T
0 P(g)x0.

Therefore the quantity (20) can be taken as an index for the
transient performance, starting from x0 and after t0 time units.
The goal is to render it as small as possible. Notice that the
input output performance J∞ < γ 2 is achieved [see (11)] for
x0 = 0.

Assume now that values γg are evaluated for each g ∈ G.
Also assume that u(t0) = g0 for some initial time t0. This
value is efficient until the time in which switching to another
value allows for a better worst–case transient for the future.
If at time t1 a new mode g1 is selected on the basis of the
functions x T P(g)x , for g ∈ G, the transient is improved.
To formalize this reasoning along the line suggested in [33],
consider the control Lyapunov function

V (x) = min
g∈G

Vg(x) = min
g∈G

x T P(g)x

and, correspondingly, the control law

u = arg min
g∈G

x T P(g)x . (21)

Note that stability under (21) is not an issue, as long as the
solutions P(g) > 0 exist. As a matter of fact, P(g) also
satisfies (assuming H full column rank for simplicity) the
inequality AT (g)P(g) + P(g)A(g) < 0 hence stability under
the switching law is ensured [see Proposition 4.1, point ii)].
In addition, note that each time there is a commutation from
the current value, say u = g0, to a new value u = g1 such that
x(t1)T P(g1)x(t1) < x(t1)T P(g0)x(t1), the worst–case future
transient after t1 is necessarily improved. In particular

sup
w∈L2

∫ ∞

t1

(
‖z(t)‖2

2 − γ 2
1 ‖w(t)‖2

2

)
dt

= x(t1)
T P(g1)x(t1) < x(t1)

T P(g0)x(t1).



Hence the switching strategy in general provides a better
performance, in terms of the criterion (20), if compared with
the (possibly optimal) gain ĝ.

All the reasoning above is summarized in the following
statement:

Proposition 4.2: Assume that (19) admits a positive stabi-
lizing solution P(g), for all g ∈ G, and assume that H is full
column rank. Then, the control law (21) assures stability and
J∞ < γ 2.

Proof: We have already discussed the issue of stability
where the positive definite function V (x) acts as a Lyapunov
function for the unforced system (w = 0). In addition, for all
w ∈ L2

V̇ (x, u) = min
g∈G

∇Vg(x)T A(u) + Ew

= 2x T P(g)(A(u)x + Ew)

< −‖z‖2
2 + γ 2‖w‖2

2.

Integrating both sides from 0 to ∞, and recalling that x0 = 0
we obtain that with the given switching law J∞ < γ 2.

Remark 4.4: As done for the Lyapunov equations in (16),
also the Riccati equations can be extended by adding more
design parameters, thus obtaining the matrix inequalities

⎡

⎢
⎣

AT
i Pi + Pi Ai +

N∑

j=1
λi j Pj + H T H Pi E

ET Pi −γ 2 I

⎤

⎥
⎦ < 0

with, again,
∑N

j=1 λi j = 0, for all i , and λi j ≥ 0, for all i 	= j .
If Pi > 0 exist, then the control law σ = arg mini∈I(x) x ′ Pi x
is stabilizing and such that J∞ < γ 2 [36].

V. IMPLEMENTATION AND EXAMPLES

The implementation of our strategy has several advantages

1) Simple theoretical tools are required such as Lyapunov
equation, Riccati equations, or LMI solvers are needed.

2) The strategy requires only the evaluation of (1) and (4),
given a certain number of functions.

3) The scheme is robust under bounds variations, provided
that gk ∈ U . In practice, this requirement means that,
if the parameters have nominal upper and lower bounds
that are stricter than the actual one.

4) The scheme is amenable for on–line adaptation. Any
parameter change, can be compensated by the fast re–
computation of the function.

We provide two examples to support the proposed control.

A. Example A: Four DF System

Consider the case of the four DF system shown in Fig. 3
that is equipped with a single tunable damper with value g ∈
[0.5, 10] in parallel with the spring k3. The input is a force
on the fourth mass and the output is the displacement of the
third mass. With reference to (7) and (8), the matrices H and
E are

H = [0 0 1 0 0 0 0 0], E = [0 0 0 0 1 0 0 0]T

kk k k1 2 3 4 5
k

z w
g

Fig. 3. Mechanical system with four DFs and one damper.

while the matrices K and D are

K =

⎡

⎢
⎢
⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1.2

⎤

⎥
⎥
⎦ , D =

⎡

⎢
⎢
⎣

0 0 0 0
0 g −g 0
0 −g g 0
0 0 0 0

⎤

⎥
⎥
⎦ .

The optimal value of the damping coefficient, computed
numerically, is ḡ = 2.8 The corresponding (minimum) value
of the energy is, approximately, J̄2 = 16.8.

We have computed the positive definite solutions Pi of
the Lyapunov equations (12) for g = g−, g = g+, and
g = ḡ, hence V (x) = mini=1,2,3 x T Pi x according to (1).
Then we have implemented the Lyapunov switching
(L-switching) strategy and compared it with the constant gain
strategy. The ratio of the L-switching cost over the constant
gain cost is

Jsw/ J̄2 = 0.6067.

In addition, we solved the LM equations (16) with N = 3,
corresponding to the three dynamics associated with g = g−,
g = g+, and g = ḡ, respectively. The solution is optimized
with respect to six free positive parameters λ12, λ13, λ21,
λ23, λ31, and λ32. Then we implemented the LM-switching
strategy and compared it with the constant gain strategy and
the previous L-switching strategy. Simulations show that LM-
switching strategy can potentially outperform the L-switching
strategy. Indeed, the ratio of the LM-switching cost over the
constant gain cost is

Jsw/ J̄2 = 0.5455.

When adopting the state-feedback switching strategy, the tran-
sient is clearly shorter than that achieved with the optimal
constant gain (see again Fig. 4).

We have also assumed a change in the extreme value by
taking g− = 0.5 and g+ = 20 (while keeping the same
function). The scheme works properly, actually slightly better,
since Jsw/ J̄2 = 0.5647 for the L-strategy and Jsw/ J̄2 =
0.5207 for the LM-strategy. This is not surprising since,
according to Lemma 2.1, the new interval includes the old
one.

B. Example B: A Four Floor Building

Consider the four–storeys building in Fig. 5. Each floor
is equipped with a dynamic absorber that is formed by an
additional floating mass suspended on a spring and a damper
in parallel [2]. The floor masses are Mi = 2 × 104 kg, for
i = 1, . . . , 4, while the absorber masses are mi = 600 kg,
for i = 5, . . . , 8. The stiffness coefficients of the floor pillars
are Ki = 727 kN/m, for i = 1, . . . , 4, while the absorber
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Fig. 4. (Green line) impulse response with constant, (blue line) L-switching,
and (red line) LM-switching strategies with g− = 0.5 and g+ = 10.
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Fig. 5. Model of a building with four floors and vibration absorbers with
switching dampers.

spring stiffnesses are ki = 2900 kN/m, for i = 5, . . . , 8. These
values are chosen in such a way that the natural frequencies
of the four absorbers are tuned to the fundamental natural
frequency relative to the transverse oscillations of the building.
Finally, we assume the damping factor at the pillars to be
gi = 12 kN/(ms−1), for i = 1, . . . , 4, so that the damping
ratio of the two lower natural frequencies, wn

1 = 2.09 rad/s
and wn

2 = 6.03 rad/s, are ξ1 = 0.017 and ξ2 = 0.049,
respectively. The damping parameters gi , for i = 5, . . . , 8,
can vary in the interval [52.7, 5276] N/(ms−1).

We simulated a lateral excitation at the base of the building
according to the acceleration data retrieved from the record
of an earthquake occurred in 1940 (El Centro [34], Fig. 6).
In Fig. 7 we reported the displacement4 of the fourth floor for
the constant gain strategy and for the L switching strategy. It is
apparent that after an initial stage of about three period (8 s),
in which the constant and switched strategy perform almost

4The code that generated these data, with the displacements of all floors is
available on–line http://www.diegm.uniud.it/smiani/Ongoing/Ongoing.html.
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Fig. 6. Recorded acceleration data of the El Centro earthquake.
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Fig. 7. (Blue-plain line) fourth floor displacement with constant damping
and (red-dashed line) with switched damping.

identically, there is a consistent reduction in the amplitude of
oscillations because of a faster damping action produced by
the proposed switching approach.

This graph confirms that for such a realistic problem, the
proposed switching control approach improves the vibration
control effects both in terms of peak response reduction and
in terms of reduction of transient response.

Fig. 8 shows the switching pattern. Note that since there are
four variable parameters and each of them may assume value
in an interval [g−

i , g+
i ], for i = 1, . . . , 4, the total number

of vertices of the set of admissible input signals is 42 = 16.
In Fig. 8, the binary convention is adopted, assigning 0 with
the value g− and 1 with the value g+. Hence, each vertex is
associated with a binary number k = g5g6g7g8 in which g5 is
the most significant digit (e.g. g−

5 g+
6 g−

7 g+
8 corresponds to

k = [0 1 0 1] = 5). The integer k + 1 is shown in Fig. 8. It
can be noted that there are preferred vertices although all of
them are involved in the strategy at some point.

VI. CONCLUSION

We gave constructive techniques for active damping based
on nonconvex Lyapunov functions generated by simple tools
such as Lyapunov and Riccati equations and inequalities or
LM inequalities. We showed by realistic simulations that a
strong performance improvement was in general assured. The
proposed technique required full state feedback that was quite
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Fig. 8. Active damper configuration time evolution: index g versus time.

reasonable for simple systems but a challenge for high dimen-
sional ones. Therefore, future work along this line includes
developing control strategies that require only partial state
feedback or, even better, distributed or decentralized feedback
laws. We also believe that the strategy can be extended to
nonlinear oscillatory and systems with dwell time.
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