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I n a previous paper [1], it was proved how total ignorance 
can be effectively represented, in Shafer’s theory of ev-
idence [2], by a rectangular possibility distribution. In 

addition, it was shown how this concept can be usefully em-
ployed to mathematically represent situations that are often 
met in the measurement practice, especially in the industrial 
world [3]. The aim of this new paper is to show how possibil-
ity distributions can be effectively used to represent any kind 
of knowledge, from total ignorance to total evidence, and com-
bine different contributions, if necessary.

Possibility Distributions, Fuzzy 
Variables, and Measurement 
Uncertainty 
Possibility Distributions
Possibility distributions (PDs) r have been already defined in 
[1]. The rectangular PD, which associates a possibility equal to 
1 to every value xi of the universal set X, has been also defined.

This PD represents Shafer’s total ignorance [1] that is, “the 
situation where we have no evidence about X at all.” In measure-
ment applications, when X is generally an interval, this means 
that we have evidence that the measurand value lies in this in-
terval, but we have no evidence at all about how the possible 
measured values distribute in this interval.

The opposite case of total ignorance is called total evidence. 
In this case, there is total knowledge about which event will 
occur, so that a possibility equal to 1 is associated to only one 
value of the universal set, while a possibility equal to 0 is asso-
ciated to all other values [4].

While the rectangular PD is the greatest and less informa-
tive PD associated to X, this last PD is the smallest and the 
most informative one. In between total ignorance and total evi-
dence, there are all possible kinds of partial knowledge. Partial 
knowledge can be represented as well by a PD, whose shape 
will be different, of course, than the rectangular one, and will 
depend on the available evidence. 

If there is evidence that the value that can be attributed to 
an event (a measurand, for example) lies within a given inter-
val and that the effects that make it lie in different positions in 

the interval are of systematic nature then, it can be proved [4] 
that the possible values assumed by the considered event can 
be well (and directly) represented by a PD in the given inter-
val, and the PD shape depends on the available information, 
as shown in [7].

If, on the contrary, there is evidence that the above-consid-
ered effects are of random nature, then it can be proved that 
the possible values assumed by the considered event can be 
represented, in the given interval, by a probability distribu-
tion (pdf) p, whose shape does still depend on the available 
evidence. According to the relationship between probability 
and possibility functions briefly recalled in [1], it is possible, 
and sometimes useful, to convert the obtained probability dis-
tribution p into a possibility distribution r that preserves the 
confidence levels associated with equal intervals subtended 
by the two distributions [4]. This conversion can be done by 
applying a suitable probability-possibility transformation 
[4]–[6] and allows one to represent an effect of random na-
ture with a PD. 

As an example, it can be proved that in case the avail-
able knowledge shows that an event distributes according to 
a uniform pdf, then, the corresponding PD is triangular, as 
shown in Fig. 1a; in case the available knowledge shows that 
an event distributes according to a Gaussian pdf, then, the 
corresponding PD is the one reported in Fig. 1b. It is impor-
tant to underline that the opposite is not possible, from the 
mathematical point of view. That is, once a probability dis-
tribution has been converted into a possibility distribution, 
it is not possible to convert it back into a single probability 
distribution. The reason for this is that, as briefly recalled in 
[1], a possibility distribution represents a family of proba-
bility distributions and a single probability distribution of 
this family cannot be retrieved unless additional informa-
tion is available to select it. Therefore, it can be stated that 
both the effects due to random phenomena and the effects 
due to systematic phenomena can be represented with a sin-
gle mathematical tool: the possibility distributions. As we 
will see later, this can be particularly useful to express mea-
surement uncertainty. 



Fuzzy Variables
Let us now refer to a new variable: the fuzzy variable (FV). The 
fuzzy variables have been originally introduced by Zadeh in 
1975, when he defined a strict mathematical framework for lin-
guistic variables and human reasoning [8]. In this framework, 
a fuzzy variable X can be defined both in terms of its member-
ship function X(x) and in terms of its -cuts. The membership 
function of a fuzzy variable is defined as a convex function 
over the universal set, taking all values in [0,1]. The -cuts of a 
fuzzy variable are defined as the cuts of the FV itself at levels  
in [0,1] from [4] and [8].

The -cuts of a fuzzy variable can be hence obtained in 
a quite immediate way. Fig. 2 shows a fuzzy variable A and 
some of its -cuts. It can be easily perceived that each -cut 
is an interval, and can be hence represented by its extremes: 

. As an example, the -cut at level  = 0 is in-
terval A=0 = [2,6]; the -cut at level  = 0.1 is interval A=0.1 = 
[2.2,5.8]; the -cut at level  = 0.5 is interval A=0.5 = [3,5]; and 
so on. Moreover, from the above definitions and the given ex-
ample, it can be readily seen that the -cuts of a fuzzy variable 
are nested intervals. In fact, for every pair of values  ' and  " 
such that;  ' >  ", it is X ' ⊂ X ". This relationship recalls the 
one among the focal elements in the possibility theory [1], [2], 
[4], and [9] and suggests that the membership function of a 
fuzzy variable is, from a strict mathematical point of view, a 
possibility distribution, that is, X(x) = r(x), as strictly proved 
by Zadeh in [10]. This conclusion represents a very interesting 
bridge between Zadeh’s and Shafer’s theories, and allows one 
to employ the fuzzy variables as the natural variables in the 
possibility theory [4].

It follows that it is possible to associate a degree of belief 
Bel(X) to every -cut X [1], [4]. As also recalled in [1], within 
the possibility theory, the belief functions are called necessity 
functions (Nec). It can be proved that [4]:

Bel(X) = Nec(X) = 1 -  (1)

It follows that all -cuts associated to a fuzzy variable are 
nested intervals at the different degrees of belief 1 - . Hence, 
the -cuts X at the different levels  of a fuzzy variable can be 
considered to extend the probabilistic concept of confidence 
intervals at the different confidence levels 1 -  [4]. If the ex-
ample in Fig. 2 is considered again, it can be stated that interval 
[2,6] is the confidence interval at confidence level 1; interval 
[2.2,5.8] is the confidence interval at confidence level 0.9; and 
so on.

Measurement Uncertainty
It has been shown that all kinds of knowledge (both of ran-
dom and systematic nature) can be represented in terms of 
possibility distributions, whose shape depend on the avail-
able knowledge. It has been also shown that the membership 
functions of the fuzzy variables are possibility distributions. 
Hence, it can been stated that the fuzzy variables can be em-
ployed to represent all kinds of different knowledge (both of 
random and systematic nature), and the shape of the fuzzy 
variable is chosen in order to correctly model the available 
evidence. 

How can these concepts be useful in the measurement sci-
ence? Let us first consider the situation where a measurement 
procedure is affected by only one kind of uncertainty contribu-
tions: many contributions can affect the procedure, but all of 
them are either random or systematic. The reasons for this sim-
plified assumption will be understood later, when the more 
general situation where both random and systematic contri-
butions to uncertainty affect the measurement procedure and 
the final measurement result will be considered. For now, let’s 
stay with this simplified assumption, under which the above 
considerations lead to state that a measurement result with its 
associated measurement uncertainty can be represented by a 
fuzzy variable. 

Further on, the above definition of -cuts allows us to state 
that, if a measurement result is represented in terms of a fuzzy 
variable, then the fuzzy variable contains all available, useful 
metrological information about the measurement result itself, 
since all confidence intervals and associated levels of confi-
dence are provided.

Fig. 1. Example of PDs. The triangular PD (red line) is obtained when 
the probability-possibility transformation is applied to a uniform pdf. The 
from-Gaussian PD (green line) is obtained when the probability-possibility 
transformation is applied to a Gaussian pdf.

Fig. 2. Example of a fuzzy variable A (blue line) and some of its -cuts (red 
lines) at levels [0, 0.1, 0.2, ..., 1]. Each -cut is an interval, and can be hence 
represented by its extremes: .



Let us now remember what the Guide to the Expression 
of Uncertainty in Measurement (GUM) [11] states: “the ideal 
method for evaluating and expressing measurement uncertainty 
should be capable of readily providing such an interval, in particular, 
one with a coverage probability or level of confidence that corre-
sponds in a realistic way to that required.” Is the representation of 
the measurement results in terms of fuzzy variables compliant 
with the GUM? As a matter of fact, a fuzzy variable is “capable of 
providing such an interval,” that is, it is capable of providing the 
interval associated to the required level of confidence. In fact, 
the -cuts of the FVs are the confidence intervals associated to 
the measurement result. Moreover, a fuzzy variable is “capable 
of readily providing such an interval.” In fact, the confidence in-
terval associated to the level of confidence  is simply the -cut 
at level  = 1 – , and the -cut at level  = 1 –  is simply the cut 
of the FV at the vertical level  = 1 –  . Hence, it is possible to 
answer to the above question as follows: the representation of 
the measurement results in terms of FVs is perfectly compliant 
with the GUM and, to use the GUM words, it really appears to 
be “the ideal method for evaluating and expressing measurement un-
certainty” or, if not actually the ideal method, something much 
closer to the ideal one than the purely probabilistic one fol-
lowed by the GUM, as also highlighted in [9].

In this new approach, hence, a different mathematical the-
ory and a different mathematical variable are employed to 
express uncertainty in measurements. It is important to under-
line, however, that, according to the theoretical considerations 
given in [1], this approach represents a generalization of the 
standard approach based on probabilities. 

Once the contributions to measurement uncertainty have 
been evaluated and expressed (in terms of fuzzy variables), they 
must be combined in order to find how they affect the final mea-
surement result. The aim of the following section is to show how 
to combine FVs, or, in other words, how to combine PDs.

The Combination of the Possibility 
Distributions 
Independent PDs
Since the standard approach for expressing and evaluating 
measurement uncertainty is based on probabilities, let us 
first briefly start from the combination of the probability dis-
tributions and see whether and how this combination can be 
generalized for possibilities.

Let us consider two random variables X and Y, which dis-
tribute according to the probability distributions pX(x) and 
pY(y). It is known that the combination of the two random vari-
ables X and Y according to a given relationship f(X,Y) goes 
through the construction of their joint probability distribution 
pX,Y(x,y); the result of the combination is then obtained  through 
the marginalization of pX,Y(x,y) along a given path, that de-
pends on f(X,Y). (In the probability theory, marginalization is 
the evaluation of a line integral, that is, an integral evaluated 
along a given path.) If the random variables X and Y are ini-
tially supposed to be independent (the more general case of 
dependent variables will be considered later), their joint prob-
ability distribution is given by the product of pX(x) and pY(y):

pX,Y(x,y) = pX(x) ⋅ pY(y) (2)

If, for instance, their sum is considered, that is f(X,Y) = X + Y, 
then the probability distribution pZ(z) associated to the sum Z 
= X + Y is given by marginalizing the joint probability distribu-
tion in (2) along the path y = z – x, thus obtaining:

(3)

which corresponds to the convolution product pX(x) * pY(y), as 
expected.

Let us now consider two FVs X and Y, whose associated 
possibility distributions are rX(x) and rY(y). Let us recall, 
for now, the assumption considered above: the nature of 
the uncertainty contributions affecting the two variables 
is the same. In other words, if the fuzzy variables X and Y 
represent two measurement results, the two measurement 
results are affected by either only systematic contributions 
to uncertainty or only random contributions to uncertainty. 
Similarly to probabilities, the combination of the fuzzy vari-
ables X and Y according to a certain relationship f (X,Y) goes 
through the construction of their joint possibility distribu-
tion rX,Y(x,y); the result of the combination is then obtained 
through the marginalization of rX,Y(x,y) along a given path, 
that depends on f (X,Y). (In the possibility theory, margin-
alization is the evaluation of the sup operator along a given 
path.) Under the same assumption of independent fuzzy 
variables, if (2) was simply rewritten by substituting p with 
r, we would get:

rX,Y(x,y) = rX (x) ⋅ rY(y)   .	 (4)

On the other hand, the marginalization of rX,Y(x,y) is defined by 
Zadeh’s extension principle as [10]:

(5)

which allows one to retrieve, from the joint PD, the PD associ-
ated to the fuzzy variable Z = f(X,Y), through the sup operator.

Equation (4) does indeed define a joint possibility distribu-
tion. However, it does not represent the unique joint PD that 
can be associated to the independent fuzzy variables X and Y, 
but only one of the possible joint PDs. In other words, given 
two fuzzy variables X and Y, their joint possibility distribution 
is not univocally defined, and (4) only gives one of the possi-
ble solutions [12], [13]. This again suggests that the approach 
based on PDs represents a generalization of the one based on 
probabilities [1], [4].

Always under the assumption of independent fuzzy vari-
ables, the general definition of joint possibility distribution is 
given by:

rX,Y(x,y) = T(rX(x), rY(y)) for every x, y ∈ℜ   	 (6)

where T is a class of functions called t-norms. 



A t-norm T is an operator that, starting from two values in 
[0,1], provides a third value again in [0,1] and satisfies the fol-
lowing mathematical properties [4], [14]:

commutativity:	 T(a, b) = T(b, a) (7)

monotonicity:	 T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d (8)

associativity:	 T(a, T(b,c)) = T(T(a, b), c) 	 (9)

number 1 is the identity element:	 T(a,1) = a (10)

It can be readily proven that the product satisfies properties 
(7) – (10) and hence belongs to the class of t-norm functions.
This proves, from a strict mathematical point of view, that (4)
represents a particular solution of (6) and hence provides a
joint possibility distribution. Of course, many different func-
tions satisfy properties (7) – (10) and, for any particular choice 
of t-norm in (6), a joint PD with a particular shape is obtained. 
This is consistent with the fact that, as discussed in the previ-
ous section, a PD may be used to represent different kinds of
incomplete information. In other words, given that a PD may
represent the available knowledge associated to contributions 
to measurement uncertainty of different nature, two PDs may 
be jointed in different ways, according to the nature of the
contributions by which they are affected. This means, for ex-
ample, that the joint PD associated to two PDs representing
two measurement results affected by systematic contributions 
to uncertainty has to be different from the joint PD associated
to the same two PDs when they represent two measurement
results affected by random contributions to uncertainty. In
the mathematical framework of the theory of evidence, this is
possible thanks to (6), which leaves a degree of freedom in the 
choice of the t-norm.

It is not the aim of this paper to present and enter the details 
of all t-norms available in the literature, for which the read-
ers are addressed to [4], [14]. The aim of this paper is instead 
to show which are the suitable operators to match the spe-
cific needs that can be met in the measurement applications. 
For this reason, only two t-norms are here reported; the min t-
norm, defined as [14]:

Tmin(rX(x),rY(y)) = min(rX(x),rY(y)) (11)

and the family of Frank t-norms, defined as [14]:

(12)

where a = rX(x) and b = rY(y) for the sake of clarity, and  is a pa-
rameter satisfying  ≥ 0. Eq. (12) provides a family of t-norms 
since different t-norms are obtained with different  values. 
Only to give an example, the Frank t-norm with  = 0 is the min 

t-norm, while the Frank t-norm with  = 1 is the product t-norm.
From (12) it follows that, when 0 ≤  ≤ 1, the Frank t-norm pro-
vides a result that is in between the ones obtained by applying 
the min and the product t-norms [12]. 

It is not the aim of this paper to enter the mathematical 
details, let us only state here that the min t-norm is the most 
suitable t-norm to combine systematic effects, and the Frank 
t-norm with  = 0.1 is the most suitable t-norm to combine ran-
dom effects, as strictly proven in [12], [13] and also intuitively 
shown by the following examples.

Let us consider the two fuzzy variables X and Y shown in 
Fig. 3. Then, the joint PD obtained by applying (6) and con-
sidering the min t-norm is given in Fig. 4a; while the joint PD 
obtained by applying (6) and considering the Frank t-norm 
with  = 0.1 is given in Fig. 5a. The two figures show the dif-
ferent shape of the two joint PDs, as expected from the above 
considerations.

Fig. 3. Triangular fuzzy variables X and Y that must be combined according 
to the relationship f (X,Y).

Fig. 4. (a) Joint PD between the fuzzy variables in Fig. 3 under the assumption 
of independence, obtained by applying the min t-norm. (b) Some 2D -cuts of 
the joint PD. 



A joint PD is, as a matter of fact, a fuzzy variable of two 
dimensions (2D-FV). Similarly to a fuzzy variable, a fuzzy 
variable of two dimensions can be defined both in terms of its 
membership function X,Y(x,y) and in terms of its -cuts. The 
membership function of a 2D-FV is a convex function X,Y(x,y) 
over the universal set UxV (where U and V are the univer-
sal sets associated to X and Y respectively), taking all values 
in [0,1]. Extending the result obtained in the one-dimensional 
case, it can be stated that X,Y(x,y) = rX,Y(x,y) and that the -cuts 
of a 2D-FV, called 2D -cuts, are the cuts of the 2D-FV itself at 
levels  in [0,1] from [12] and [13].

While for an FV the -cut is an interval, for a 2D-FV the 
-cut is a region in the bidimensional xy-plane. Hence, a 2D 
-cut is defined by both its shape and its position in the xy-
plane. Similarly to the one-dimensional case, it can be proved 
that the 2D -cuts associated to a 2D-FV are all nested and that 
the degree of belief associated to the 2D -cut at level  is 1 - . 
Extending the result obtained in the one-dimensional case, it 
can be also stated that the -cuts associated to a 2D-FV are con-
fidence regions at the confidence levels 1 -  [12], [13].

Figs. 4b and 5b show some of the 2D -cuts of the corre-
sponding joint PDs in Figs 4a and 5a respectively. It can be 
noted how different are the shapes of these -cuts, thought 
their position in the xy-plane is the same and depends only on 
the mean values of the two initial triangular PDs. (The mean 
value of a fuzzy variable is defined as the mean value of its  
cut at level  = 1.) In particular, the 2D -cuts obtained by ap-
plying the min t-norm are always rectangular. These means 
that, for every level , the -cuts of the two initial triangu-
lar PDs are combined to form a rectangle in the xy-plane. For 
every level  this kind of combination allows any point be-
longing to the -cut X to combine with any point belonging to 
the -cut Y. On the other hand, the 2D -cuts obtained by ap-
plying the Frank t-norm are more or less ellipsoidal, except for 
the -cut at level  = 0 which is rectangular. These means that, 
for every level  (but  = 0), some combinations between the 

points close to the edges of the -cut X and the points close 
to the edges of the -cut Y are considered not possible and, 
consequently, are not included in the corresponding 2D -cut, 
that cannot be rectangular any longer. A different behavior is 
given by the 2D -cut at level  = 0, and this is coherent with 
the fact that, if a confidence level equal to 1 must be provided, 
it is not possible to discard any possible combination between 
the points belonging to the -cut X = 0 and the points belong-
ing to the -cut Y = 0. 

Once the joint PD is built, it is possible to apply Zadeh’s 
extension principle and obtain the PD associated to fuzzy vari-
able Z = f (X,Y). As an example, Fig. 6 shows the result of the 
sum Z = X + Y, when the min t-norm (Fig. 6a) and the Frank t-
norm with  = 0.1 (Fig. 6b) are applied. This figure shows, once 
again, which is the impact of the application of the different 
t-norms on the final result: the min t-norm gives, as the final
result, a triangular PD; the Frank t-norm gives, as the final re-
sult, a smaller PD, where the effects of the compensation can be 
well perceived. This figure also clearly give confirmation of the 
above considerations, that is, the behavior of the min t-norm
well reflects how the systematic contributions to uncertainty
combine with each other and, on the other hand, the behavior 
of the Frank t-norm well reflects how the random contribu-
tions to uncertainty combine with each other, with their typical 
probabilistic compensation. 

Dependent PDs
Let us now consider the case where fuzzy variables X and Y 
show some dependence, while the assumption that the na-
ture of the uncertainty contributions affecting the two variables 
is the same still holds. Similarly to the previous situation, the 
combination of the fuzzy variables X and Y according to a given 
relationship f (X,Y) goes through the construction of their joint 
possibility distribution rX,Y(x,y). The result of the combination 
is then obtained by marginalizing rX,Y(x,y) along a given path 
that depends on f (X,Y). In this case, however, the joint possibil-
ity distribution rX,Y(x,y) must take into account the dependence 

Fig. 6. (a) Fuzzy variable X + Y (where X and Y are the fuzzy variables in 
Fig. 3) obtained by applying the min t-norm. (b) Fuzzy variable X + Y obtained by 
applying the Frank t-norm.Fig. 5. (a) Joint PD between the fuzzy variables in Fig. 3 under the assumption 

of independence, obtained by applying the Frank t-norm. (b) Some 2D -cuts of 
the joint PD.



between X and Y and (6) has to be slightly modified. The basic 
concepts are not modified, though the new concept of con-
ditional possibility distributions (not dissimilar from that of 
conditional probability distribution) has to be considered. 

It is not the case, here, to enter the mathematical details, 
since they are not relevant to perceive the potential of this 
method. The interested readers are addressed to [12], [13]. 
However, it is worth while showing, in an intuitive way, how 
dependence influences the joint PD of two given PDs. Fig. 7a 
shows the joint PD of the same triangular PDs X and Y in Fig. 3, 
when they are supposed to represent the effects of two system-
atic phenomena and have a degree of dependence 0.6, while 
Fig. 7b shows some of its 2D -cuts. 

As far as the random phenomena, let us consider two 
random phenomena which distribute according to the two 
Gaussian pdfs (10, 1/3) and (5, 2/3) and let us also sup-
pose they are dependent, with a correlation coefficient 0.6. 
Fig. 8 shows the corresponding PDs (called from-Gaussian), 
while Fig. 9a shows their joint PD under the given assump-
tion. Fig. 9b shows some of the 2D -cuts of the joint PD in 
Fig. 9a. With respect to Fig. 4 and 5, it can be perceived how 
the effect of dependence is to discard some of the possible 
pairs of points belonging to the initial -cuts. This is per-
fectly consistent with the concept of dependence, for which, 
if one variable behaves in one way, it forces the second one 
to behave in the same way. Of course, the greater is the de-
pendence, the greater is the number of discarded pairs. In 
particular, in case of total dependence, the joint PD degen-
erates into a 2D surface and the 2D -cuts degenerate into 
straight lines.

The Practical Implementation
The above theoretical considerations are very useful to fully 
perceive the meaning of the choice of a particular t-norm and 
its impact on the final measurement result. However, from the 

practical point of view, the construction of a joint PD and the 
marginalization along a certain path is not immediate and can 
be quite cumbersome. Moreover, when the above equations 
are applied in practice, the PDs, which are, from the mathe-
matical point of view, continuous functions, must be sampled. 
This sampling operation, of course, cannot be a priori set, since 
it depends on the possibility distribution function itself. Fur-
thermore, if the sampling operation is not correctly done, 
numerical problems may arise. 

The above method for combining FVs is fully based on their 
PDs. However, it has been shown that a fuzzy variable can be 
represented, in a completely equivalent way, both in terms of 
its PD and in terms of its -cuts. Hence, it is quite instinctive to 
wonder whether an equivalent method for combining FVs ex-
ists, based on the -cuts. If this method existed, it would yield 
a simpler representation and storage of the fuzzy variable, 
based on the -cuts. In fact, the -cuts of a fuzzy variable are 
intervals, and intervals can be simply represented by their left 

Fig. 7. (a) Joint PD between the fuzzy variables X and Y, obtained by applying 
the min t-norm, under the assumption of a degree of dependence 0.6. (b) Some 
2D -cuts of the joint PD.

Fig. 8. Fuzzy variables obtained by applying the probability-possibility 
transformations to the normal pdfs (10, 1/3) and (5, 2/3).

Fig. 9. (a) Joint PD between the fuzzy variables in Fig. 8, obtained by applying 
the Frank t-norm, under the assumption of a correlation coefficient 0.6. (b) 
Some 2D -cuts of the joint PD. 



and right extremes. If we denote A the fuzzy variable, A the 
generic -cut and A = , then, it is possible to represent 
the fuzzy variable as a matrix with two columns and a pre-
fixed number of rows. If, for instance, 101 rows are considered, 
which represents a good compromise between a good resolu-
tion and a good execution time, fuzzy variable A is represented 
by the [101 × 2] matrix:

(13)

where the i-th raw contains the extremes of the -cut at level 
(i − 1) ⋅ 0.01.

It is immediate to perceive the advantages of this represen-
tation, which is not affected by the sampling problems above 
mentioned, and allows all fuzzy variables to be represented in 
the same way (a [101 × 2] matrix), so that the corresponding 
rows in the matrixes always correspond to the same -level.

Nguyen has proved, in a rigorous mathematical way, that 
the results obtained by (5) and (6), which are based on the PDs, 
can be also obtained by considering the -cuts [15]. This is a 
very important conclusion, since it yields to consider only al-
gebraic operations among intervals, instead of building the 
joint PD and marginalizing [12], [13]. 

Let us consider again fuzzy variables X and Y and relation-
ship Z = f (X,Y); and let us denote X , Y , and Z their -cuts. 
Then, an alternative way to combine X and Y is through

Z = 0 = f (X = 0 , Y = 0) (14)

and the Nguyen theorem [15, 16]:

Z = T(,)≥ f (X , Y)    for  ∈ (0,1] (15)

Equation (14) applies the interval mathematics between the 
two -cuts of X and Y at the same level  = 0. On the contrary, 
(15) is more complicated, since, for every level , different
-cuts of X and Y at different levels are selected, according to
the considered t-norm; different intervals are hence obtained
applying the interval mathematics between each pair of se-
lected -cuts; and finally, the union operator is applied among 
these intervals to obtain the -cut of Z at the considered level .

Equation (15) is surely less intuitive then the image of a joint PD 
and its 2D -cuts, but can be implemented in a very fast way and 
without numerical problems. Moreover, it has been proven in [12], 
[13] that it always leads to algebraic operations among intervals. 

In the particular case when T is the min t-norm and no de-
pendence is present between X and Y, (14)-(15) simplifies to:

Z = f (X ,Y)    for  ∈ [0,1] (19)

which is the classical mathematics of the intervals. When T is 
the Frank t-norm and when dependence is considered, the final 

formulation is not as simple, though it is always based on alge-
braic operations among intervals [12, 13], which can be easily 
and quickly performed by a PC. 

The Random-Fuzzy Variables
In the previous section, it has been shown that, thanks to 
Zadeh’s extension principle and, alternatively, to Nguyen the-
orem, it is always possible to obtain the combination of two 
PDs. Moreover, by simply choosing the suitable t-norm, it is 
possible to model the typical combination of both the effects of 
two systematic phenomena and the effects of two random phe-
nomena. However, in general, a measurement result is affected 
by both random and systematic contributions to uncertainty. 
If an FV is used to model both these kinds of contributions 
together, then, the combination of FVs would not be able to 
propagate both these contributions correctly, thus leading 
to an incorrect propagation of the measurement uncertainty. 
Therefore, a different solution must be found.

Let us consider an uncompensated systematic contribu-
tion. The effect of this contribution on the measured values 
is that they may lie in any point of a given interval (red line 
in Fig. 10). Let us now add a random contribution. The addi-
tional effect of this contribution on the measured values is that 
the position of the above given interval is not fixed and can 
move both on the right and on the left (green lines in Fig. 10). 
This concept brings to the definition of intervals of confidence 
of type 2, that is, intervals whose upper and lower bounds are 
uncertain (blue line in Fig. 10) [4], [14], [17].

Intervals of confidence of type 2 allow us to define fuzzy 
variables of type 2 [4], [14], [17], which allow us to represent 
two different concepts of uncertainty together. The definition 
of the fuzzy variables of type 2 [17] is very general. Therefore, 
in order to define a variable that perfectly fits with the aim to 
represent the measurement results and the measurement un-
certainty due to both random and systematic contributions, 
a subclass of the fuzzy variables of type 2 has been defined, 
called the class of Random-Fuzzy variables (RFVs) [4], [17]. 
Without entering the mathematical details, Fig. 11 shows an 
example of RFV. Two possibility distributions define a Ran-
dom-Fuzzy variable: rint (x) (pink line in Fig. 11b) and rext (x) 
(red line in Fig 11b). rint (x) coincides with rsys (x) (pink line in 
Fig. 11a), that is the possibility distribution representing the 
effects of the systematic contributions to uncertainty; rext (x) is 
obtained by composing linearly rsys (x) with rran (x) (green line 
in Fig. 11a), that is, the possibility distribution representing the 
effects of the random contribution to uncertainty. Hence, rext (x) 
shows the global effect of all contributions to uncertainty. As 
already stated, rsys (x) and rran (x) are built according to the avail-
able metrological information [7]. 

Similarly to the FVs, it is possible to define the -cuts of 
the RFVs, that is, the cuts of PD rext(x) at levels  in [0,1]. These 
-cuts are again nested intervals; however, if also rint (x) is 
taken into account, intervals of confidence of type 2 are ob-
tained. Extending the definition of the -cuts given for the FVs, 
it can be stated that the -cut at level  of an RFV is the confi-
dence interval to which the confidence level Nec(X) = 1 −  is 
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associated. Moreover, being the -cut a confidence interval of 
type 2, it is possible to know, for every level , which part is due 
to the systematic effects and which part is due to the random 
ones. Each -cut can be represented by a vector 
(Fig. 10) so that, extending the concepts given in the previous 
section for a fuzzy variable, an RFV A can be simply repre-
sented by a [101 × 4] matrix [4]: 

(16)

where the i-th raw contains the four points defining the -cut 
at level (i − 1) ⋅ 0.01.

When two measurement results represented in terms of 
RFVs must be combined, the combination of the PDs rsys (x) and 
rran (x) must be performed according to the methods reported 
in the previous section. In particular, if A and B are the two 
variables, rsys, A(x) and rsys, B(x) must be combined taking into ac-
count their dependence (if present) and considering the min 
t-norm. On the other hand, rsys, A(x) and rsys, B(x) must be com-
bined taking into account their dependence (if present) and
considering the Frank t-norm . The two obtained possi-
bility distributions represent, respectively, rsys (x) and rran (x) of
the final result and the RFV associated to the final result can be 
then obtained in a simple way by linearly combining these two 
PDs (Fig. 11). 

Discussion and On-Line Example 
The advantages of the proposed approach, based on the possi-
bility distributions for the representation and combination of 
the measurement results and related uncertainty, can be sum-
marized as follows.

◗ It provides a unique and flexible mathematical tool to
represent and combine the uncertainty contributions of
different nature.

◗ It provides a straightforward representation of the final
measurement result in terms of an RFV, that is, in terms
of a set of confidence intervals of type 2 at the different
levels of confidence. Each confidence interval of type

2 shows the effects, on the final measurement result, of 
both the systematic contributions to uncertainty (internal 
interval ) and the random contributions to uncer-
tainty (external intervals  and ), as well as 
the global effect of all contributions to uncertainty (inter-
val ). The confidence level associated to the -cut 
at level  is 1 −  .

◗ The approach provides the same results provided by the
probability theory in the case only random contributions 
are present [12].

◗ The theoretical complexity of the approach is not reflected 
into the practical implementation that, thanks to Nguyen 
theorem [12], [13], yields to combine measurement results 
through simple algebraic operations, whose implementa-
tion is immediate.

The validity of the above statements can be readily checked 
by the readers by opening this web page, which has been opti-
mized for view in Internet Explorer: http://131.175.120.11:8000/
RFVcalculator.html. The front panel of a remotely controlled ap-
plication is shown, which allows the readers to create two RFVs 
and combine them according to the four arithmetic operations. 
This simple example shows that, despite the complex theo-
retical definitions, the implementation of this new approach 
is immediate and the results are readily obtained. Even when 
only random contributions are considered, and the same re-
sults as those provided by probability are obtained, much faster 
computations, than Monte Carlo simulations or complicated 
convolutions products, are required, as the reader can readily 
check.

Conclusions
This paper has shown how measurement results can be 
expressed and combined by means of the Random-Fuzzy vari-
ables. In the next paper, the comparison between RFVs will be 
presented, thus allowing one to perform the final, most im-
portant step of each measurement procedure that is, making a 
decision on the basis of the comparison result.

Fig. 11. (a) Green line: PD representing the effects of the random 
contributions. Magenta line: PD representing the effects of the systematic 
contributions. (b) RFV obtained by the above random and systematic PDs.

Fig. 10. Red line: interval representing the possible measured values, due to 
systematic effects. Green lines: possible displacement of the above interval, 
due to the presence of random contributions. Blue line: interval of confidence 
of type 2.
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