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1. Introduction

In this paper we study the problem of learning from data the set where the data probability distribution is concentrated.
Our study is more broadly motivated by questions in unsupervised learning, such as the problem of inferring geometric
properties of probability distributions from random samples.

In recent years, there has been great progress in the theory and algorithms for supervised learning, i.e. function approx-
imation problems from random noisy data [10,22,29,55,74]. On the other hand, while there are a number of methods and
studies in unsupervised learning, e.g. algorithms for clustering, dimensionality reduction, dictionary learning (see Chapter 14
of [38]), many interesting problems remain largely unexplored.

Our analysis starts with the observation that many studies in unsupervised learning hinge on at least one of the follow-
ing two assumptions. The first is that the data are distributed according to a probability distribution which is absolutely
continuous with respect to a reference measure, such as the Lebesgue measure. In this case it is possible to define a density
and the corresponding density level sets. Studies in this scenario include [8,30,44,69] to name a few. Such an assumption
prevents considering the case where the data are represented in a high-dimensional Euclidean space but are concentrated
on a Lebesgue negligible subset, as a lower-dimensional submanifold. This motivates the second assumption – sometimes
called manifold assumption – postulating that the data lie on a low-dimensional Riemannian manifold embedded in a Eu-
clidean space. This latter idea has triggered a large number of different algorithmic and theoretical studies (see for example
[4,6,20,21,27,59]). Though the manifold assumption has proved useful in some applications, there are many practical sce-
narios where it might not be satisfied. This observation has motivated considering more general situations such as manifold
plus noise models [18,52], and models where the data are described by combinations of more than one manifold [46,76].
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Here we consider a different point of view and work in a setting where the data are described by an abstract probability
space and a similarity function induced by a reproducing kernel [65]. In this framework, we consider the basic problem of
estimating the set where the data distribution is concentrated (see Section 1.2 for a detailed discussion of related works).
A special class of reproducing kernels, that we call separating kernels, plays a special role in our study. First, it allows to
define a suitable metric on the probability space and makes the support of the distribution well defined; second, it leads
to a new analytical characterization of the support in terms of the null space of the integral operator associated to the
reproducing kernel.

This last result is the key towards a new computational approach to learn the support from data, since the integral op-
erator can be approximated with high probability from random samples [58,65]. Estimation of the null space of the integral
operator can be unstable, and regularization techniques can be used to obtain stable estimators. In this paper we study a
class of regularization techniques proposed to solve ill-posed problems [34] and already studied in the context of supervised
learning [3,48]. Regularization is achieved by filtering out the small eigenvalues of the sample empirical matrix defined by
the kernel. Different algorithms are defined by different filter functions and have different computational properties. Con-
sistency and stability properties for a large class of spectral filters and of the corresponding algorithms are established in a
unified framework. Numerical experiments show that the proposed algorithms are competitive, and often better, than other
state of the art techniques.

The paper is divided into two parts. The first part includes Section 2, where we establish several mathematical results
relating reproducing kernel Hilbert spaces of functions on a set X and the geometry of the set X itself. In particular, in this
section we introduce the concept of separating kernel, which we further explore in Section 3. These results are of interest in
their own right, and are at the heart of our approach. In the second part of the paper we discuss the problem of learning the
support from data. More precisely, in Section 4 we illustrate some algorithms for learning the support of a distribution from
random samples. In Section 5 we establish universal consistency for the proposed methods and discuss stability to random
sampling. We conclude in Sections 6 and 7 with some further discussions and some numerical experiments, respectively.
A conference version of this paper appeared in [28]. We now start by describing in some more detail our results and
discussing some related works.

1.1. Summary of main results

In this section we briefly describe the main ideas and results in the paper.
The setting we consider is described by a probability space (X,ρ) and a measurable reproducing kernel K on the

set X [2]. The data are independent and identically distributed (i.i.d.) samples x1, . . . , xn , each one drawn from X with
probability ρ . The reproducing kernel K reflects some prior information on the problem and, as we discuss in the following,
will also define the geometry of X . The goal is to use the sample points x1, . . . , xn to estimate the region where the
probability measure ρ is concentrated.

To fix some ideas, the space X can be thought of as a high-dimensional Euclidean space and the distribution ρ as being
concentrated on a region Xρ , which is a smaller – and potentially lower dimensional – subset of X (e.g. a linear subspace
or a manifold). In this example, the goal is to build from data an estimator Xn which is, with high probability, close to Xρ

with respect to a suitable metric.
We first note that a precise definition of Xρ requires some care. If ρ is assumed to have a continuous density with

respect to some fixed reference measure (for example, the Lebesgue measure in the Euclidean space), then the region Xρ can
be easily defined to be the closure of the set of points where the density function is non-zero. Nevertheless, this assumption
would prevent considering the situation where the data are concentrated on a “small”, possibly lower dimensional, subset
of X . Note that, if the set X were endowed with a topological structure and ρ were defined on the corresponding Borel
σ -algebra, it would be natural to define Xρ as the support of the measure ρ , i.e. the smallest closed subset of X having
measure one. However, since the set X is only assumed to be a measurable space, no a priori given topology is available.
Here we also remark that the definition of Xρ is not the only point where some further structure on X would be useful.
Indeed, when defining a learning error, a notion of distance between the set Xρ and its estimator Xn is also needed and
hence some metric structure on X is required.

The idea is to use the properties of the reproducing kernel K to induce a metric structure – and consequently a topol-
ogy – on X . Indeed, under some mild technical assumptions on K , the function

dK (x, y) =√K (x, x) + K (y, y) − 2K (x, y) ∀x, y ∈ X

defines a metric on X , thus making X a topological space. Then, it is natural to define Xρ to be the support of ρ with
respect to such metric topology. Moreover, the Hausdorff distance dH induced by the metric dK provides a notion of distance
between closed sets.

The problem we consider can now be restated as follows: we want to learn from data an estimator Xn of Xρ , such that
limn→∞ dH (Xn, Xρ) = 0 almost surely. While Xρ is now well defined, it is not clear how to build an estimator from data.
A main result in the paper, given in Theorem 3, provides a new analytic characterization of Xρ , which immediately suggests
a new computational solution for the corresponding learning problem. To derive and state this result, we introduce a new
notion of reproducing kernels, called separating kernels, that, roughly speaking, captures the sense in which the reproducing



Fig. 1. The separating property is illustrated in a simple situation where X = R
2. In the top pictures, the support Xρ is a line passing through the origin

and is separated by the linear kernel K (x, y) = xT y: for all x /∈ Xρ , there exists a function f ∈ H (a linear function on X ) which is zero on Xρ and such
that f (x) �= 0. The pictures on the right are a plot of the plane y = f (x1, x2). In the bottom pictures, the support is a segment passing through the origin.
The linear kernel is too simple to separate this set: all planes are going to be zero also outside of the support (the dotted line in the picture).

kernel and the probability distribution need to be related. We say that a reproducing kernel Hilbert space H (or equivalently
its kernel) separates a subset C ⊂ X , if, for any x /∈ C , there exists f ∈H such that

f (x) �= 0 and f (y) = 0 ∀y ∈ C .

If K separates all possible closed subsets in X , we say that it is completely separating. Fig. 1 illustrates the notion of separat-
ing kernel in the simple example of the linear kernel in a Euclidean space.

Now, Theorem 3 states that, if either K is completely separating, or at least separates Xρ , then Xρ is the level set of
a suitable distribution dependent continuous function Fρ . More precisely, let H be the reproducing kernel Hilbert space
associated to K [2], T :H →H the integral operator with kernel K , and denote by T † its pseudo-inverse. If we consider the
function Fρ on X , defined by

Fρ(x) = 〈T †T Kx, Kx
〉 ∀x ∈ X,

and K separates Xρ , then we prove that

Xρ = {x ∈ X
∣∣ Fρ(x) = 1

}
,

(where for simplicity we are assuming K (x, x) = 1 for all x ∈ X).
The above result is crucial since the integral operator T can be approximated with high probability from data (see [58]

and references therein). However, since the definition of Fρ involves the pseudo-inverse of T , the support estimation prob-
lem can be unstable [71] and regularization techniques are needed to ensure stability. With this in mind, we propose and
study a family of spectral regularization techniques which are classical in inverse problems [34] and have been considered
in supervised learning in [3,48]. We define an estimator by

Xn = {x ∈ X
∣∣ Fn(x) � 1 − τn

}
,

where Fn(x) = (1/n)K	
x gλn (Kn/n)Kx , with (Kn)i, j = K (xi, x j), Kx is the column vector whose i-th entry is K (xi, x), and K	

x
is its transpose. Here gλn (Kn/n) is a matrix defined via spectral calculus by a spectral filter function gλn that suppresses the
contribution of the eigenvalues smaller than λn . Examples of spectral filters include Tikhonov regularization and truncated
singular values decomposition [48], to name a few.

This class of methods can be studied within a unified framework, and the error analysis in the paper establishes strong
universal consistency if Xρ is separated by K . More precisely, under the latter assumption, we show in Theorem 6 that,

lim
n→∞dH (Xn, Xρ) = 0 almost surely,

provided that X is compact and the sequences (τn)n�1, (λn)n�1 are chosen so that,

τn = 1 − min
1�i�n

Fn(xi), lim
n→∞λn = 0, sup(Lλn log n)/

√
n < +∞,
n�1



where Lλn is the Lipschitz constant of the function rλn (σ ) = σ gλn (σ ). The above result is universal in the sense that consis-
tency can be shown without assuming regularity condition on ρ or Xρ .

The proof of the above result crucially depends on estimating the deviation between Fn and Fρ . Indeed, for the above
choice of the sequence (λn)n�1 we show that

lim
n→∞ sup

x∈X

∣∣Fρ(x) − Fn(x)
∣∣= 0 almost surely.

Under suitable distribution dependent assumptions, the above result can be further developed to obtain finite sample
bounds quantifying stability to random sampling. Indeed, if the couple (ρ, K ) is such that supx∈X ‖T −s/2T †T Kx‖ < +∞,
with 0 < s � 1, and the eigenvalues of the (compact and positive) operator T satisfy σ j ∼ j−1/b for some 0 < b � 1, then we
prove in Theorem 7 that, for n � 1 and δ > 0, we have

sup
x∈X

∣∣Fn(x) − Fρ(x)
∣∣� Cs,b,δ

(
1

n

) s
2s+b+1

with probability at least 1 − 2e−δ , for λn = n−1/(2s+b+1) and a suitable constant Cs,b,δ which does not depend on n.
Finally, we remark that our construction relies on the assumption that the kernel K separates the support Xρ . The

question then arises whether there exist kernels that can separate a large number of, and perhaps all, closed subsets,
namely kernels that are completely separating. Indeed, a positive answer can be given and, for translation invariant kernels
on Rd , Theorem 4 actually gives a sufficient condition for a kernel to be completely separating in terms of its Fourier
transform. As a consequence, the Abel kernel K (x, y) = e−‖x−y‖/σ on the Euclidean space X = Rd is completely separating.
Interestingly, the Gaussian kernel K (x, y) = e−‖x−y‖2/σ 2

, which is very popular in machine learning, is not.

1.2. State of the art

The problem of building an estimator Xn of a subset Xρ ⊂ X which is consistent with respect to some kind of metric
among sets has been considered in seemingly diverse fields for different application purposes, from anomaly detection –
see [17] for a review – to surface estimation [60]. We give a summary of the main approaches, with basic references for
further details.

Support and level set estimation. Support estimation (also called set estimation) is a part of the theory of non-parametric
statistics. We refer to [24,25] for a detailed review on this topic. Usually, the space X is Rd with the Euclidean metric
d, and Xρ is the corresponding support of ρ . If Xρ is convex, a natural estimator is the convex hull of the data Xn =
conv{x1, . . . , xn}, for which convergence rates can be derived with respect to the Hausdorff distance [33,56]. If Xρ is not
convex, Devroye and Wise [30] propose the estimator

Xn =
n⋃

i=1

B(xi, εn),

where B(x, ε) is the ball of center x and radius ε , and εn slowly goes to zero when n tends to infinity. Consistency and
minimax converges rates are studied in [30,44] with respect to the distance

dμ(C1, C2) = μ(C1C2),

where C1C2 = (C1 \ C2) ∪ (C2 \ C1) and μ is a suitable known measure.
If ρ has a density f with respect to some known measure μ, a traditional approach is based on a non-parametric

estimator fn of f , a so-called plug-in estimator. A kernel based class of plug-in estimators is proposed in [23], namely

Xn = {x ∈ X
∣∣ fn(x) � cn

}
with fn(x) = 1

nhd
n

n∑
i=1

K

(
x − xi

hn

)
,

where hn is a regularization parameter and cn is a suitable threshold. Convergence rates with respect to dμ are provided in
[23].

A related problem is level set estimation, where the goal is to detect the high density regions {x ∈ X | f (x) � c}. Consis-
tency and optimal convergence rates for different plug-in estimators

Xn = {x ∈ X
∣∣ fn(x) � c

}
have been studied with respect to both dH and dμ , see for example [8,63,72] for a slightly different approach.

One class learning algorithm. In machine learning, set estimation has been viewed as a classification problem where we
have at our disposal only positive examples. An interesting discussion on the relation between density level set estimation,
binary classification and anomaly detection is given in [69]. In this context, some algorithms inspired by Support Vector



Machine (SVM) have been studied in [61,69,75]. A kernel method based on kernel principal component analysis is presented
in [39] and is essentially a special case of our framework.

Manifold learning. As we mentioned before, a setting which is of special interest is the one in which X is Rd and Xρ is
a low-dimensional Riemannian submanifold. In this case, the error of an estimator is studied in terms of the error functional

dρ(Xρ, Xn) =
∫
Xρ

d(x, Xn)dρ(x),

where d is the Euclidean metric. Some results in this framework are given in [1,49,51].
Computational geometry. A classic situation, considered for example in image reconstruction problems, is when the set

Xρ is a hyper-surface of Rd and the data x1, . . . , xn are either chosen deterministically or sampled uniformly. The goal in
this case is to find a smooth function f that gives the Cartesian equation of the hyper-surface, see for example [40,42,47].

2. Kernels, integral operators and geometry in probability spaces

In this section we establish the results that provide the foundations of our approach. The basic framework in this paper
is described by a triple (X,ρ, K ), where

– X is a set (endowed with a σ -algebra AX );
– ρ is a probability measure defined on X ;
– K is a (real) reproducing kernel on X , i.e. a real function on X × X of positive type.

We interpret X as the data space and ρ as the probability distribution generating the data. Roughly speaking, the kernel
K provides a natural similarity measure on X and it defines its geometry.

We denote by H the reproducing kernel Hilbert space associated with the reproducing kernel K (we refer to [2,68] for
an exhaustive review on the theory of reproducing kernel Hilbert spaces). The scalar product and norm in H are denoted
by 〈·, ·〉 and ‖·‖, respectively. We recall that the elements of H are real functions on X , and the reproducing property
f (x) = 〈 f , Kx〉 holds true for all x ∈ X and f ∈H, where Kx ∈H is defined by Kx(y) = K (y, x).

In order to prove our results, we need some technical conditions on K .

Assumption 1. The kernel K has the following properties:

a) for all x, y ∈ X with x �= y we have Kx �= K y;
b) the associated reproducing kernel Hilbert space H is separable;
c) the real function K is measurable with respect to the product σ -algebra AX ⊗AX ;
d) for all x ∈ X , K (x, x) = 1.

Assumptions 1.a), 1.b) and 1.c) are minimal requirements. In particular, Assumptions 1.a) and 1.b) are needed in order
to define a separable metric structure on X , while Assumption 1.c) ensures that such metric topology is compatible with
the σ -algebra AX (see Proposition 1 below). In Proposition 2, the combination of 1.a), 1.b) and 1.c) will allow us to define
the support Xρ of the probability measure ρ , as anticipated in Section 1.1. Assumption 1.d), instead, is a normalization
requirement, and could be replaced by a suitable boundedness condition (in fact, even weaker integrability conditions could
also be considered). We choose the normalization K (x, x) = 1 ∀x ∈ X since it makes equations more readable, and it is not
restrictive in view of Proposition 13 in Appendix A.1.

We now show how the above assumptions allow us to define a metric on X and to characterize the corresponding
support of ρ in terms of the integral operator with kernel K .

2.1. Metric induced by a kernel

Our first result makes X a separable metric space isometrically embedded in H. This point of view is developed in [65].
The relation between metric spaces isometrically embedded in Hilbert spaces and kernels of positive type was studied by
Schoenberg around 1940. A recent discussion on this topic can be found in Chapter 2 §3 of [7].

Proposition 1. Under Assumption 1.a), the map dK : X × X → [0,+∞[ defined by

dK (x, y) = ‖Kx − K y‖ =√K (x, x) + K (y, y) − 2K (x, y) (1)

is a metric on X. Furthermore

i) the map x �→ Kx is an isometry from X into H;
ii) the kernel K is a continuous function on X × X, and each f ∈H is a continuous function.



If also Assumption 1.b) is satisfied, then

iii) the metric space (X,dK ) is separable.

Finally, if also Assumption 1.c) holds true, then

iv) the closed subsets of X are measurable (with respect to AX );
v) if Y is a topological space endowed with its Borel σ -algebra and f : X → Y is continuous, then f is measurable; in particular, the

functions in H are measurable.

Proof. Many of these properties are known in the literature, see for example [15,68] and references therein. For the reader’s
convenience, we give a self-contained short proof.

Assumption 1.a) states that the map x �→ Kx is injective. Since dK (x, y) = ‖Kx − K y‖ by definition, dK is the metric on
X making x �→ Kx an isometry, as claimed in item i). About ii), the kernel K is continuous since K (x, y) = 〈K y, Kx〉 and
the map x �→ Kx is continuous by item i); furthermore, the elements of H are continuous by the reproducing property
f (x) = 〈 f , Kx〉.

If also Assumption 1.b) holds true, then the set {Kx | x ∈ X} is separable in H, and so is X as the map x �→ Kx is isometric
from X onto {Kx | x ∈ X}. Item iii) then follows.

Suppose now that also Assumption 1.c) holds true. Then the map dK is a measurable map, so that the open balls of X
are measurable. Since X is separable, any open set is a countable union of open balls, hence it is measurable. It follows that
the closed subsets are measurable, too, hence item iv).

Let Y and f be as in item v). If A ⊂ Y is closed, then f −1(A) is closed in X , hence measurable by item iv). It follows
that f −1(A) is measurable for all Borel sets A ⊂ Y , i.e. f is measurable. Since the elements of H are continuous by ii), they
are measurable, and item v) is proved. �

In the rest of the paper we will always consider X as a topological metric space with metric dK . Note that dK is the
metric induced on X by the norm of H through the embedding x �→ Kx . The next result shows that under our assumptions
we can define the set Xρ as the smallest closed subset of X having measure one.

Proposition 2. Under Assumptions 1.a), 1.b) and 1.c), there exists a unique closed subset Xρ ⊂ X with ρ(Xρ) = 1 satisfying the
following property: if C is a closed subset of X and ρ(C) = 1, then C ⊃ Xρ .

Proof. Define the measurable set Xρ as

Xρ =
⋂

C closed
ρ(C)=1

C .

Clearly, Xρ is closed and measurable by Proposition 1. Since X is separable, there exists a sequence of closed subsets (C j) j�1
such that every closed subset C =⋂C jk , for some suitable subsequence. Hence, Xρ =⋂ j|ρ(C j)=1 C j and, as a consequence,
ρ(Xρ) = 1. �

We add one remark. The set Xρ is called the support of the measure ρ and clearly depends both on the probability
distribution and on the topology induced by the kernel K through the metric dK on X .

2.2. Separating kernels

The following definition of separating kernel plays a central role in our approach.

Definition 1. We say that the reproducing kernel Hilbert space H separates a subset C ⊂ X , if, for all x /∈ C , there exists
f ∈H such that

f (x) �= 0 and f (y) = 0 ∀y ∈ C . (2)

In this case we also say that the corresponding reproducing kernel separates C .

We add some comments. First, in (2) the function f depends on x and C . Second, the reproducing property and (2)
imply that Kx �= 0 and Kx �= K y for all x /∈ C and y ∈ C (compare with Assumption 1.a)). Finally, we stress that a different
notion of separating property is given in [68].



Remark 1. Given an arbitrary reproducing kernel Hilbert space H, there exist sets that are not separated by H. For example,
if X = Rd and H is the reproducing kernel Hilbert space with linear kernel K (x, y) = xT y, the only sets separated by H
are the linear manifolds, that is, the set of points defined by homogeneous linear equations (see Fig. 1). A natural question
is then whether there exist kernels capable of separating large classes of subsets and in particular all the closed subsets.
Section 3 answers positively to this question, introducing the notion of completely separating kernels.

Next, we provide an equivalent characterization of the separating property, which will be the key to a computational
approach to support estimation. For any set C , let P C :H →H be the orthogonal projection onto the closed subspace

HC = span{Kx | x ∈ C},
i.e. the closure of the linear space generated by the family {Kx | x ∈ C}. Note that P 2

C = P C , P	
C = P C and

ker P C = {Kx | x ∈ C}⊥ = { f ∈ H
∣∣ f (x) = 0 ∀x ∈ C

}
.

Moreover, define the function

FC : X →R, FC (x) = 〈P C Kx, Kx〉. (3)

Remark 2. The Hilbert space HC is a closed subspace of the reproducing kernel Hilbert space H, and it is itself a reproducing
kernel Hilbert space of functions on X with reproducing kernel KC (x, y) = 〈P C K y, P C Kx〉 = 〈P C K y, Kx〉. Note that KC (x, y) =
K (x, y) for all x, y ∈ C by definition of P C . Clearly, the function FC corresponds to the value of KC on the diagonal.

Then, we have the following theorem.

Theorem 1. For any subset C ⊂ X, the following facts are equivalent:

i) H separates the set C ;
ii) for all x /∈ C , Kx /∈ ran P C ;

iii) C = {x ∈ X | FC (x) = K (x, x)};
iv) {Kx | x ∈ C} = {Kx | x ∈ X} ∩ ran P C .

Under Assumption 1.a), if C is separated by H, then C is closed with respect to the metric dK .

Proof. We first prove that i) ⇒ ii). Given x /∈ C , by assumption there is f ∈ H such that 〈 f , Kx〉 = f (x) �= 0, i.e. Kx /∈ { f }⊥ ,
and 〈 f , K y〉 = f (y) = 0 for all y ∈ C , i.e. f ∈ ker P C = ran P⊥

C . It follows that ran P C ⊂ { f }⊥ , and then Kx /∈ ran P C .
We prove ii) ⇒ iii). If x ∈ C , then Kx ∈ ran P C by definition of P C , so that FC (x) = K (x, x). Hence C ⊂ {x ∈ X | FC (x) =

K (x, x)}. If x /∈ C , then by assumption P C Kx �= Kx , i.e. (I − P C )Kx �= 0. By the equality∥∥(I − P C )Kx
∥∥2 = 〈Kx, Kx〉 − 〈P C Kx, Kx〉 − 〈Kx, P C Kx〉 + 〈P C Kx, P C Kx〉 = K (x, x) − FC (x),

this implies FC (x) �= K (x, x). Hence C ⊃ {x ∈ X | FC (x) = K (x, x)}.
We prove iii) ⇒ i). If x /∈ C , define f = (I − P C )Kx ∈ ker P C , so that f (y) = 0 for all y ∈ C . Furthermore, f (x) = K (x, x) −

FC (x) �= 0. Thus, f separates the set C .
Finally, iv) is a restatement of ii) taking into account that Kx ∈ ran P C for all x ∈ C by construction.
Under Assumption 1.a), the map x �→ FC (x) − K (x, x) = 〈P C Kx, Kx〉 − K (x, x) is continuous by Proposition 1. By item iii),

C is the 0-level set of this function, hence C is closed. �
Proposition 13 in Appendix A.1 shows that the reproducing kernel K can be normalized under the mild assumption that

K (x, x) �= 0 for all x ∈ X , so that Assumption 1.d) can be satisfied up to a rescaling of K .

2.2.1. A special case: metric spaces
It may be the case that the set X has its own metric dX , and the σ -algebra AX is the Borel σ -algebra associated with

the topology induced by dX . The following proposition shows that the metrics dK and dX induce the same topology on X ,
provided that H separates all the dX -closed subsets and the corresponding kernel is continuous.

Proposition 3. Let X be a separable metric space with respect to a metric dX , and AX the corresponding Borel σ -algebra. Let H be a
reproducing kernel Hilbert space on X with kernel K . Assume that the kernel K is a continuous function with respect to dX and that
the space H separates every subset of X which is closed with respect to dX . Then

i) Assumptions 1.a), 1.b) and 1.c) hold true, and K (x, x) > 0 for all x ∈ X ;
ii) a set is closed with respect to dK if and only if it is closed with respect to dX .



Proof. The kernel is measurable and the space H is separable by Proposition 5.1 and Corollary 5.2 in [15]. Since the points
are closed sets for dX and the dX -closed sets are separated by H, then Kx �= 0 (i.e. K (x, x) > 0) for all x ∈ X and Kx �= K y if
x �= y by the discussion following Definition 1.

We show that dX and dK are equivalent metrics. Take a sequence (x j) j�1 such that for some x ∈ X it holds that
lim j→∞ dX (x j, x) = 0. Since K is continuous with respect to dX , we have lim j→∞ dK (x j, x) = 0. Hence, the dK -closed
sets are dX -closed, too. Conversely, if the set C is dX -closed, since H separates C , Theorem 1 implies that C = {x ∈ X |
K (x, x) − FC (x) = 0}, which is a dK -closed set by dK -continuity of the map x �→ K (x, x) − FC (x). �

Item ii) of the above proposition states that the metrics dK and dX are equivalent and implies that the set Xρ defined in
Proposition 2 coincides with the support of ρ with respect to the topology induced by dX .

2.3. The integral operator defined by the kernel

We denote by S1 the Banach space of the trace class operators on H, with trace class norm

‖A‖S1 = tr
[(

A	 A
) 1

2
]=∑

i∈I

〈(
A	 A

) 1
2 ei, ei

〉
,

where {ei}i∈I is any orthonormal basis of H. Furthermore, we let S2 be the separable Hilbert space of the Hilbert–Schmidt
operators on H, with Hilbert–Schmidt norm

‖A‖2
S2

= tr
[

A	 A
]=∑

i∈I

‖Aei‖2.

Finally, if A is any bounded operator on H, we denote by ‖A‖∞ its uniform operator norm. It is standard that ‖A‖∞ �
‖A‖S2 � ‖A‖S1 . Moreover, for all functions f1, f2 ∈H, the rank-one operator f1 ⊗ f2 on H defined by

( f1 ⊗ f2)( f ) = 〈 f , f2〉 f1 ∀ f ∈ H

is trace class, and ‖ f1 ⊗ f2‖S1 = ‖ f1 ⊗ f2‖S2 = ‖ f1‖‖ f2‖.
We recall a few facts on integral operators with kernel K (see [15] for proofs and further discussions). Under Assump-

tion 1, the S1-valued map x �→ Kx ⊗ Kx is Bochner-integrable with respect to ρ , and its integral

T =
∫
X

Kx ⊗ Kx dρ(x) (4)

defines a positive trace class operator T with ‖T ‖S1 = tr[T ] = 1 (a short proof is given in Proposition 14 of Appendix A.2).
Using the reproducing property of H, it is straightforward to see that T is simply the integral operator with kernel K acting
on H, i.e.

(T f )(x) =
∫
X

K (x, y) f (y)dρ(y) ∀ f ∈ H.

The following is a key result in our approach.

Theorem 2. Under Assumption 1, the null space of T is

ker T = {Kx | x ∈ Xρ}⊥ = ker P Xρ , (5)

where Xρ is the support of ρ as defined in Proposition 2.

Proof. Note that, for all f ∈H, the set

C f = {x ∈ X
∣∣ f (x) = 0

}= {x ∈ X
∣∣ 〈 f , Kx〉 = 0

}
is closed since f is continuous. We now prove Eq. (5). Since T is a positive operator, spectral theorem implies that T f = 0
if and only if 〈T f , f 〉 = 0. The definition of T and the reproducing property give that

〈T f , f 〉 =
∫
X

〈
(Kx ⊗ Kx) f , f

〉
dρ(x) =

∫
X

∣∣〈Kx, f 〉∣∣2 dρ(x) =
∫
X

∣∣ f (x)
∣∣2 dρ(x),

hence the condition 〈T f , f 〉 = 0 is equivalent to the fact that f (x) = 0 for ρ-almost every x ∈ X . Hence f ∈ ker T if and only
if ρ(C f ) = 1, i.e. C f ⊃ Xρ , or equivalently 〈 f , Kx〉 = 0 ∀x ∈ Xρ . Eq. (5) then follows. �



In the following, we will use the abbreviated notation Pρ = P Xρ . Note that the space H splits into the direct sum
H =Hρ ⊕H⊥

ρ , where

Hρ = ran Pρ = ran T = span{Kx | x ∈ Xρ},
H⊥

ρ = ker Pρ = ker T = { f ∈ H
∣∣ f (x) = 0 ∀x ∈ Xρ

}
.

Remark 3. The reproducing kernel Hilbert space Hρ (see Remark 2) has been considered before [70], and in particular
in the context of semi-supervised manifold regularization [5], where Xρ is assumed to be an embedded manifold. The
corresponding reproducing kernel is Kρ(x, y) = 〈Pρ K y, Kx〉 and F Xρ (x) = Kρ(x, x). See also the discussion in Section 6.

Under Assumption 1, we also introduce the integral operator LK : L2(X,ρ) → L2(X,ρ),

(LK φ)(x) =
∫
X

K (x, y)φ(y)dρ(y) ∀φ ∈ L2(X,ρ),

which is a positive trace class operator, too. Note the difference between the operators T and LK : although their definitions
are formally the same, the respective domains and images change.

Since T and LK are positive trace class operators, by the Hilbert–Schmidt theorem each of them admits an orthonormal
family of eigenvectors in H and L2(X,ρ), respectively, with a corresponding family of positive eigenvalues. The two spectral
decompositions are strongly related, as we now briefly recall (see also Proposition 8 of [58] and Theorem 2.11 of [70]).

Denote by (σ j) j∈ J the (finite or countable) family of strictly positive eigenvalues of LK , where each eigenvalue is repeated
according to its (finite) multiplicity. For each j ∈ J select a corresponding eigenvector φ j ∈ L2(X,ρ) in such a way that the
sequence (φ j) j∈ J is orthonormal in L2(X,ρ). Hilbert–Schmidt theorem provides that

LK =
∑
j∈ J

σ jφ j ⊗ φ j, (6)

where the series converges in trace norm. In general, each element φ j is an equivalence class of functions defined ρ-almost
everywhere. In particular, the value of φ j is not defined outside Xρ . However, in each equivalence class we can choose a
unique continuous function, denoted again by φ j , which is defined at every point of X by means of the extension equation
[19,58]

φ j(x) = σ−1
j

∫
X

K (x, y)φ j(y)dρ(y) ∀x ∈ X . (7)

With this choice, which will be implicitly assumed in the following, the family (σ j) j∈ J coincides with the family of strictly
positive eigenvalues of T (with the same multiplicities), (

√
σ jφ j) j∈ J is an orthonormal family in H of eigenfunctions of T ,

and

T =
∑
j∈ J

σ j(
√

σ jφ j) ⊗ (
√

σ jφ j) =
∑
j∈ J

σ 2
j φ j ⊗ φ j, (8)

where the series converges in the Banach space S1 (hence in S2), see e.g. [15,58,70]. As ‖T ‖S1 = 1, the positive sequence
(σ j) j∈ J is summable and sums up to 1. It is clear that the family (

√
σ jφ j) j∈ J is an orthonormal basis of the Hilbert

space Hρ . Conversely, let ( f j) j∈ J be an orthonormal basis of Hρ of eigenvectors of T with corresponding eigenvalues
(σ j) j∈ J . Define

φ j(x) = σ
− 1

2
j f j(x) ∀x ∈ X .

Then, it is not difficult to show that (6), (7) and (8) hold true.

2.4. An analytic characterization of the support

Let Assumption 1 hold true. Collecting the previous results, if H separates Xρ , then Theorem 1 gives that

Xρ = {x ∈ X
∣∣ F Xρ (x) = 1

}
.

The function Fρ = F Xρ is defined by (3) in terms of the projection Pρ , which, in light of Theorem 2, can be characterized
using the operator T . Indeed, from the definition of Fρ and (5) we have

Fρ(x) = 〈Pρ Kx, Kx〉 = 〈T †T Kx, Kx
〉= 〈θ(T )Kx, Kx

〉=∑σ j
∣∣φ j(x)

∣∣2 (9)

j∈ J



where T † is the pseudo-inverse of T and θ is the Heaviside function θ(σ ) = 1]0,+∞[(σ ) (note that with our definition
θ(0) = 0). The above discussion is summarized in the following theorem.

Theorem 3. If H satisfies Assumption 1 and separates the support Xρ of the measure ρ , then

Xρ = {x ∈ X
∣∣ Fρ(x) = 1

}= {x ∈ X
∣∣ 〈T †T Kx, Kx

〉= 1
}
.

As we discussed before, a natural question is whether there exist kernels capable to separate all possible closed subsets
of X . In a learning scenario, this can be translated into a universality property, in the sense that it allows to describe
any probability distribution and learn consistently its support [29]. Note that in a supervised learning framework a similar
role is played by the so-called universal kernels [16,67]. The following section answers positively to the previous question,
introducing and studying the concept of completely separating kernels. Interestingly, there are universal kernels in the sense
of [16,67] which do not separate all closed subsets of X , as for example the Gaussian kernel.

3. Completely separating reproducing kernel Hilbert spaces

The property defining the class of kernels we are interested in is captured by the following definition.

Definition 2 (Completely separating kernel). A reproducing kernel Hilbert space H satisfying Assumption 1.a) is called com-
pletely separating if H separates all the subsets C ⊂ X which are closed with respect to the metric dK defined by (1). In this
case, we also say that the corresponding reproducing kernel is completely separating.

The definition of completely separating reproducing kernel Hilbert spaces should be compared with the analogous notion
of complete regularity for topological spaces. Indeed, we recall that a topological space is called completely regular if, for any
closed subset C and any point x /∈ C , there exists a continuous function f such that f (x) �= 0 and f (y) = 0 for all y ∈ C .
As we discuss below, completely separating reproducing kernels do exist. For example, for X = Rd both the Abel kernel
K (x, y) = e−‖x−y‖/σ and the 
1-exponential kernel K (x, y) = e−‖x−y‖1/σ are completely separating, where ‖x‖ is just the
Euclidean norm of x = (x1, . . . , xd) in Rd and ‖x‖1 =∑d

j=1 |x j | is the 
1-norm. Indeed this follows from Theorem 4 and

Proposition 6 below, which give sufficient conditions for a kernel to be completely separating in the case X = Rd . Note
that the Gaussian kernel K (x, y) = e−‖x−y‖2/σ 2

on Rd is not completely separating. This is a consequence of the following
fact. It is known that the elements of the corresponding reproducing kernel Hilbert space H are analytic functions, see
Corollary 4.44 in [68]. If C is a closed subset of Rd with non-empty interior and f ∈ H is equal to zero on C , then a
standard result in complex analysis implies that f (x) = 0 for all x ∈Rd , hence H does not separate C .

We end this section with Proposition 6, which gives a simple way to build completely separating kernels in high-
dimensional spaces from completely separating kernels in one dimension, the latter usually being easier to characterize.

3.1. Separating properties of translation invariant kernels

The first result studies translation invariant kernels on Rd , i.e. of the form K (x, y) = K (x− y). We show that if the Fourier
transform of the kernel satisfies a suitable growth condition, then the corresponding reproducing kernel Hilbert space is
completely separating. As usual, C(Rd) denotes the space of real continuous functions on Rd and, for any p ∈ [1,+∞[,
Lp(Rd) is the space of (equivalence classes of) real functions on Rd which are p-integrable with respect to the Lebesgue
measure dx. We will consider the real spaces Lp

h (Rd) of hermitian complex functions, i.e.

Lp
h

(
Rd)= {φ1 + iφ2

∣∣ φ1, φ2 ∈ Lp(Rd) and φ1(−x) = φ1(x), φ2(−x) = −φ2(x)
}
.

If φ ∈ L1(Rd), its Fourier transform is the complex hermitian bounded continuous function φ̂ on Rd given by

φ̂(z) =
∫
Rd

e−2π iz·xφ(x)dx.

If φ ∈ L2(Rd), we denote by φ̂ ∈ L2
h(Rd) its Fourier–Plancherel transform, obtained extending the above definition on func-

tions φ ∈ L1(Rd) ∩ L2(Rd) to a unitary map L2(Rd) � φ → φ̂ ∈ L2
h(Rd).

Throughout, we assume Rd to be a metric space with respect to the standard metric d
Rd induced by the Euclidean norm.

We need a preliminary result characterizing a reproducing kernel Hilbert space, whose reproducing kernel is continuous
and integrable, as a suitable non-closed subspace of L2(Rd). The first part is a converse of Bochner’s theorem (Theorem 4.18
in [35]).

Proposition 4. Let K be a continuous function in L1(Rd) such that its Fourier transform K̂ is strictly positive. Then the kernel K (x, y) =
K (x − y) is positive definite and its corresponding (real) reproducing kernel Hilbert space H is



H =
{
φ ∈ C

(
Rd)∩ L2(Rd) ∣∣∣∣ ∫

Rd

K̂ (z)−1
∣∣φ̂(z)

∣∣2 dz < +∞
}

(10)

with norm

‖φ‖2 =
∫
Rd

K̂ (z)−1
∣∣φ̂(z)

∣∣2 dz ∀φ ∈ H. (11)

Proof. The integral operator

(LK φ)(x) =
∫
Rd

K (x − y)φ(y)dy = (K ∗ φ)(x),

is well defined and bounded from L2(Rd) into L2(Rd) since K ∈ L1(Rd). Since LK is a convolution operator, Fourier transform
turns it into the operator of multiplication by the bounded function K̂ , that is L̂K φ = K̂ φ̂ for all φ ∈ L2(Rd). It follows that

〈LK φ,φ〉L2 = 〈K̂ φ̂, φ̂〉L2 > 0 ∀φ ∈ L2(Rd) \ {0}
since K̂ > 0 by assumption, hence LK is a strictly positive operator. In order to show that K is positive definite, pick a
Dirac sequence (ϕn)n�1 as in Chapter VIII.3 of [45], and, for each x ∈ X , define ϕx

n be equal to ϕx
n(y) = ϕn(y − x). Fixed

x1, x2, . . . , xN ∈ Rd and c1, c2, . . . , cN ∈ R, set φn =∑N
i=1 ciϕ

xi
n , then

0 � 〈LK φn, φn〉L2 =
N∑

i, j=1

cic j
〈
LK ϕ

xi
n ,ϕ

x j
n
〉
L2 −→

n→∞

N∑
i, j=1

cic j K (x j, xi),

where the last equality is due to continuity of K and the usual properties of Dirac sequences. It follows that∑N
i, j=1 cic j K (x j, xi)� 0, i.e. the kernel K is positive definite.

Let H be the (real) reproducing kernel Hilbert space associated to K . Since the support of the Lebesgue measure is Rd ,
Mercer theorem (as stated e.g. in Proposition 6.1 of [15] and the subsequent discussion, or Theorem 2.11 of [70]) shows
that LK

1/2 is a unitary isomorphism from L2(Rd) onto H. More precisely, for any ψ ∈ L2(Rd) there exists a unique function
φ ∈ C(Rd) such that its equivalence class belongs to LK

1/2ψ ∈ L2(Rd), and the correspondence ψ �→ φ is an isometry from

L2(Rd) onto H. By further applying the Fourier–Plancherel transform and taking into account that φ̂(z) =
√

K̂ (z)ψ̂(z) for

almost all z ∈ Rd , one has

‖φ‖2
H = ‖ψ‖2

L2(Rd)
= ‖ψ̂‖2

L2
h(Rd)

=
∫
Rd

K̂ (z)−1
∣∣φ̂(z)

∣∣2 dz < +∞,

so that (10) and (11) follow. �
We now state a sufficient condition on K ensuring that H is completely separating.

Theorem 4. Let K be a continuous function in L1(Rd) such that

K̂ (z)� a

(1 + b‖z‖γ1)γ2
∀z ∈Rd (12)

for some a,b, γ1, γ2 > 0. Then,

i) the translation invariant kernel K (x, y) = K (x − y) is positive definite and continuous;
ii) the topologies induced by the metric dK and the Euclidean metric d

Rd coincide on Rd;
iii) the kernel K is completely separating.

Proof. Condition (12) implies that K̂ is strictly positive, so item i) follows from Proposition 4. In particular, from (10) we
see that, if φ ∈ L2(Rd) and

∫
Rd (1 + b‖z‖γ1 )γ2 |φ̂(z)|2 dz is finite, then φ ∈ H. This implies that C∞

c (Rd) ⊂ H: indeed, if

φ ∈ C∞
c (Rd), then φ̂ is a Schwartz function on Rd (Theorem 3.2 in [66]), hence the last integral is convergent. Functions in

C∞
c (Rd) separate every set C which is closed with respect to the metric d

Rd (as it easily follows by suitably translating and
dilating the function ψ ∈ C∞

c (Rd) defined in item (b) p. 19 of [66]), hence H separates the d
Rd -closed subsets. Items ii) and

iii) then follow from Proposition 3. �
As an application, we show that the Abel kernel is completely separating.



Proposition 5. Let

K : Rd ×Rd →R, K (x, y) = e− ‖x−y‖
σ , (13)

with σ > 0. Then K is a positive definite kernel and the corresponding reproducing kernel Hilbert space H is completely separating for
all d � 1.

Proof. A standard Fourier transform computation gives

K̂ (z) = 1

2πσ
π− d+1

2 Γ

(
d + 1

2

)(
1

4π2σ 2
+ ‖z‖2

)− d+1
2

, (14)

where Γ is Euler gamma function (Theorem 1.14 in [66]). The claim then follows from Theorem 4. �
Eqs. (10), (11) and (14) show that (up to a rescaling of the norm) the reproducing kernel Hilbert space associated to the

Abel kernel (13) is just W (d+1)/2(Rd), the Sobolev space of order (d + 1)/2.

3.2. Building separating kernels

The following result gives a way to construct completely separating reproducing kernel Hilbert spaces on high-
dimensional spaces.

Proposition 6. If Xi , i = 1,2, . . . ,d, are sets and K (i) are completely separating reproducing kernels on Xi for all i = 1,2, . . . ,d, then
the product kernel

K
(
(x1, . . . , xd), (y1, . . . , yd)

)= K (1)(x1, y1) · · · K (d)(xd, yd)

is completely separating on the set X = X1 × X2 × · · · × Xd.

Proof. Each set Xi and X are endowed with the metric dK (i) and dK induced by the corresponding kernels, and Hi and
H denote the reproducing kernel Hilbert spaces with kernels K (i) and K , respectively. A standard result gives that H =
H1 ⊗ · · · ⊗Hd and Kx = K (1)

x1 ⊗ · · · ⊗ K (d)
xd

for all x = (x1, . . . , xd) ∈ X [2]. We claim that the dK -topology on X is contained
in the product topology of the dK (i) -topologies on Xi (actually, it is not difficult to show that the two topologies coincide).
Indeed, if (xi,k)k�1 are sequences in Xi such that limk→∞ dK (i) (xi,k, xi) = 0 for all i = 1, . . . ,d, then

lim
k→∞

dK
(
(x1,k, . . . , xd,k), (x1, . . . , xd)

)2 = lim
k→∞

‖K(x1,k,...,xd,k) − K(x1,...,xd)‖2

= lim
k→∞

[
K (1)(x1,k, x1,k) · · · K (d)(xd,k, xd,k) − 2 K (1)(x1,k, x1) · · · K (d)(xd,k, xd)

+ K (1)(x1, x1) · · · K (d)(xd, xd)
]

= 0,

since limk→∞ K (i)(xi,k, xi,k) = limk→∞ K (i)(xi,k, xi) = K (i)(xi, xi). We now prove that H is completely separating. If C ⊂ X is
dK -closed and x = (x1, . . . , xd) ∈ X \ C , since C is also closed in the product topology, for all i = 1, . . . ,d there exists an open
neighborhood Ui of xi in Xi such that U = U1 × · · · × Ud ⊂ X \ C . Since each Hi is completely separating, for all i = 1, . . . ,d
there exists f i ∈ Hi such that f i(xi) �= 0 and f i(yi) = 0 for all yi ∈ Xi \ Ui . Then the product function f = f1 ⊗ · · · ⊗ fd is
in H, and satisfies f (x) �= 0 and f (y) = 0 for all y ∈ C . �

As a consequence, the Abel kernel defined by the 
1-norm

K (x, y) = e− ‖x−y‖1
σ =

d∏
i=1

e− |xi−yi |
σ , x = (x1, . . . , xd), y = (y1, . . . , yd)

is completely separating since each kernel in the product is positive definite and completely separating by Proposition 5.

4. A spectral approach to learning the support

In this section we study the set estimation problem in the context of learning theory. We fix a triple (X,ρ, K ) as in
Section 2, and assume throughout that the reproducing kernel K satisfies Assumption 1. We regard X as a metric space
with respect to dK , and continue to denote by Xρ the support of ρ defined in Proposition 2.



If H separates Xρ , Theorem 3 shows that the support Xρ is the 1-level set of a suitable function Fρ defined by the
integral operator T , and therefore depending on K and ρ . However, the probability distribution ρ is unknown, as we only
have a set of i.i.d. points x1, . . . , xn sampled from ρ at our disposal. Our task is now to use our sample in order to estimate
the set Xρ .

The definition of T given by (4) suggests that it can be estimated by the data dependent operator

Tn = 1

n

n∑
i=1

Kxi ⊗ Kxi . (15)

The operator Tn is positive and with finite rank; in particular, Tn ∈ S1 and ‖Tn‖S1 = tr[Tn] = 1. We denote by (σ
(n)
j ) j∈ Jn the

strictly positive eigenvalues of Tn (each one repeated according to its multiplicity) and by (

√
σ

(n)
j φ

(n)
j ) j∈ Jn the corresponding

eigenvectors; note that in the present case the index set Jn is finite. However, though Tn converges to T in all relevant
topologies (see Lemma 1 and Remark 6 below), in general T †

n Tn does not converge to T †T since T † may be unbounded, or,
equivalently, since 0 may be an accumulation point of the spectrum of T when dimH = ∞. Hence, the problem of support
estimation is ill-posed, and regularization techniques are needed to restore well-posedness and ensure a stable solution. In
the following sections, we will show that spectral regularization [3,34,48] can be used to learn the support efficiently from
the data.

4.1. Regularized estimators via spectral filtering

An approach which is classical in inverse problems (see [34], and also [3,48] for applications to learning) consists in
replacing the pseudo-inverses T †

n and T † with some bounded approximations obtained by filtering out the components
corresponding to the eigenvalues of Tn and T which are smaller than a fixed regularization parameter λ. This is achieved by
introducing a suitable filter function gλ : [0,+∞[ → [0,+∞[ and replacing T †

n , T with the bounded operators gλ(Tn), gλ(T )

defined by spectral calculus. If the function gλ is sufficiently regular, then convergence of Tn to T implies convergence of
gλ(Tn) to gλ(T ) in the Hilbert–Schmidt norm. On the other hand, if the regularization parameter λ goes to zero, then gλ(T )

converges to T † in an appropriate sense. We are now going to apply the same idea to our setting. Since we are interested
in approximating the orthogonal projection Pρ = T †T = θ(T ) rather than the pseudo-inverse T †, we introduce a low-pass
filter rλ , in a way that the bounded operator rλ(T ) is an approximation of θ(T ). In terms of the previously defined function
gλ , this can be achieved by setting rλ(σ ) = gλ(σ )σ for all σ ∈R, so that rλ(T ) = gλ(T )T . Explicitly, in terms of the spectral
decompositions of Tn and T we have

rλ(Tn) =
∑
j∈ Jn

rλ

(
σ

(n)
j

)(√
σ

(n)
j φ

(n)
j

)
⊗
(√

σ
(n)
j φ

(n)
j

)
, rλ(T ) =

∑
j∈ J

rλ(σ j)(
√

σ jφ j) ⊗ (
√

σ jφ j).

Note that, since the spectra of Tn and T are both contained in the interval [0,1], we can assume that the functions gλ and
rλ are defined on [0,1]. Moreover, as the operators rλ(Tn) and rλ(T ) approximate orthogonal projections, it is useful to have
the bound 0 � rλ(Tn), rλ(T ) � I satisfied for all Tn and T ’s, and this can be achieved by choosing the function rλ such that
0 � rλ(σ ) � 1 for all σ .

As a consequence of the above discussion, the characterization of filter functions giving rise to stable algorithms is
captured by the following assumption.

Assumption 2. The family of functions (rλ)λ>0, with rλ : [0,1] → [0,1] for all λ > 0, has the following properties:

a) rλ(0) = 0 for all λ > 0;
b) for all σ > 0, we have limλ→0+ rλ(σ ) = 1;
c) for all λ > 0, there exists a positive constant Lλ such that∣∣rλ(σ ) − rλ(τ )

∣∣� Lλ|σ − τ | ∀σ ,τ ∈ [0,1].

By Assumption 2.a, there exists a function gλ : [0,1] → [0,+∞[ such that rλ(σ ) = gλ(σ )σ . On the other hand, by
Assumption 2.b) we have limλ→0+ rλ(σ ) = θ(σ ) for all σ ∈ [0,1]. Assumption 2.c) is of technical nature, and will become
clear in Section 5.2; here we note that in particular it implies that rλ is a continuous function for all λ > 0.

A few examples of filter functions rλ satisfying Assumption 2 and of corresponding functions gλ are given in Table 1. It
is easy to check that for each of them Lλ = 1/λ. See [34] for further examples.

For a chosen filter, the corresponding regularized empirical estimator of Fρ is defined by

Fn(x) = 〈rλn(Tn)Kx, Kx
〉= ∑

rλn

(
σ

(n)
j

)
σ

(n)
j

∣∣φ(n)
j (x)

∣∣2 (16)

j∈ Jn



Table 1
Examples of filter functions satisfying Assumption 2. For Landweber filter mλ is an integer such that limλ→0 mλ = ∞.

Tikhonov regularization rλ(σ ) = σ
σ+λ

gλ(σ ) = 1
σ+λ

Spectral cut-off rλ(σ ) = 1]λ,+∞[(σ ) + σ
λ
1[0,λ](σ ) gλ(σ ) = 1

σ 1]λ,+∞[(σ ) + 1
λ
1[0,λ](σ )

Landweber filter rλ(σ ) = σ
∑mλ

k=0(1 − σ)k gλ(σ ) =∑mλ

k=0(1 − σ)k

where we allow the regularization parameter λn to depend on the number of samples n. Note that the functions Fn and Fρ

are continuous on X by continuity of the mapping x �→ Kx (see i) of Proposition 1). In Section 5 we will show that, for an
appropriate choice of the sequence (λn)n�1, the estimator Fn converges almost surely to Fρ uniformly on compact subsets
of X . Unfortunately, this does not imply convergence of the 1-level sets of Fn to the 1-level set of Fρ in any sense (as, for
example, with respect to the Hausdorff distance). However, an estimator of Xρ can be obtained by setting

Xn = {x ∈ X
∣∣ Fn(x) � 1 − τn

}
, (17)

where τn > 0 is an off-set parameter that depends on the sample size n (recall that Fn takes values in [0,1]). In Section 5
we show that, for a suitable choice of the sequence (τn)n�1, the closed set Xn is indeed a consistent estimator of the
support with respect to the Hausdorff distance.

In the following section we discuss some remarks about the computation of Fn .

4.2. Algorithmic and computational aspects

We show that the computation of Fn (hence of Xn) reduces to a finite-dimensional problem involving the empirical
kernel matrix defined by the data. To this purpose, it is useful to introduce the sampling operator

Sn : H →Rn Sn f =
⎛⎝ f (x1)

...

f (xn)

⎞⎠ , (18)

which can be interpreted as the restriction operator which evaluates functions in H on the points of the training set. The
transpose of Sn is

S	
n :Rn → H S	

n

⎛⎜⎝ α1
...

αn

⎞⎟⎠=
n∑

i=1

αi Kxi ,

and S	
n can be interpreted as the out-of-sample extension operator [19,58]. A simple computation shows that

Tn = 1

n
S	

n Sn Sn S	
n = Kn (Kn)i j = K (xi, x j).

Hence, considering the filter given in the form rλ(Tn) = gλ(Tn)Tn , we have

rλ(Tn) = gλ

(
S	

n Sn

n

)
S	

n Sn

n
= 1

n
S	

n gλ

(
Sn S	

n

n

)
Sn = 1

n
S	

n gλ

(
Kn

n

)
Sn,

where the second equality follows from spectral calculus. Using the definition of the sampling operator, we can consider
the n-dimensional vector Kx defined by

Kx=Sn Kx =
⎛⎜⎝ K (x1, x)

...

K (xn, x)

⎞⎟⎠ ,

and (16) can be written as

Fn(x) = 〈rλn(Tn)Kx, Kx
〉= 〈1

n
gλ

(
Kn

n

)
Sn Kx, Sn Kx

〉
= 1

n
K∗

x gλn

(
Kn

n

)
Kx, (19)

where K∗
x is the conjugate transpose of Kx . More explicitly we have

Fn(x) =
n∑

αi(x)K (x, xi) αi(x) = 1

n

n∑(
gλn

(
Kn

n

))
i j

K (x j, x). (20)

i=1 j=1



The above equation shows that, while H could be infinite dimensional, the computation of the estimator reduces to a
finite-dimensional problem. Further, though the mathematical definition of the filter is done through spectral calculus, the
computations might not require performing an eigen-decomposition. As an example, for Tikhonov regularization gλn (σ ) =

1
σ+λn

, so that gλn (
Kn
n ) = ( Kn

n + λn)−1 and the coefficient vector α(x) in (20) is given by

α(x) = (Kn + nλn)
−1Kx.

In the case of the Landweber filter, it is possible to prove that the coefficient vector can be evaluated iteratively by setting
α0(x) = 0, and

αt(x) = αt−1(x) + 1

n

(
Kx − Knα

t−1(x)
)

for t = 1, . . . ,mλn . We refer to [48] for the corresponding algorithm in a supervised framework; see also the discussion in
Section 6.3.

We thus see that the estimator corresponding to Tikhonov regularization can be computed via Cholesky decomposition
and has complexity of order O (n3). For Landweber iteration the complexity is O (n2m), where m is the number of iterations.
Finally, the spectral cut-off, or truncated SVD, requires O (n3) operations to compute the eigen-decomposition of the kernel
matrix. Further discussions can be found in [48] and references therein. We end remarking that, in order to test whether
N points belong or not to the support, we simply have to repeat the above computation replacing Kx by an n × N matrix
Kx,N , in which each column is a vector Kx corresponding to a point x in the test set. Note that in this case the coefficients
α(x) will also form an n × N matrix.

5. Error analysis: convergence and stability

In this section we develop an error analysis for the proposed class of estimators. First, we discuss convergence (con-
sistency) and then stability with respect to random sampling in terms of finite sample bounds. We continue to suppose
throughout this section that Assumption 1 holds true, and consider X as a metric space with metric dK .

5.1. Empirical data

We recall that the empirical data are a set of i.i.d. points x1, . . . , xn , each one drawn from X with probability ρ . Since we
need to study asymptotic properties when the sample size n goes to infinity, we introduce the following probability space

Ω = {(xi)i�1
∣∣ xi ∈ X ∀i � 1

}
, (21)

endowed with the product σ -algebra AΩ =AX ⊗AX ⊗ · · · and the product probability measure P= ρ ⊗ ρ ⊗ · · ·. We recall
that, given an integer n and a topological space M endowed with the σ -algebra of its Borel subsets, an M-valued estimator
of size n is a measurable map Ξn : Ω → M depending only on the first n-variables, that is

Ξn(ω) = ξn(x1, . . . , xn) ω = (xi)i�1

for some measurable map ξn : Xn → M . The number n is the cardinality of the sampled data. We then have the following
facts.

Proposition 7. For all n � 1

i) Tn is a Sk-valued estimator for k = 1,2;
ii) if X is locally compact, then Fn is a C(X)-valued estimator, where C(X) is the space of continuous functions on X with the topology

of uniform convergence on compact subsets.

The proof of the above proposition is rather technical, and we defer the interested reader to Appendix A.2 for more
details.

Remark 4. In item ii) of Proposition 7, the assumption that X is locally compact is needed to ensure that the topology
of uniform convergence on compact subsets is a separable metric topology on C(X), which in turn is essential to prove
measurability of the random variable Fn (see the proof of Proposition 16 in Appendix A.2). In many examples, the set X
has its own locally compact separable metric dX . In this case, in order for X to be locally compact metric space also for the
metric dK , it is enough that the kernel K is a dX -continuous function separating every subset of X which is closed with
respect to dX , as the two topologies induced by dX and dK then coincide by item ii) of Proposition 3.

If X is not locally compact (which we will regard as a pathological case), then, in order to have measurability of Fn ,
one needs to replace the probability measure P with the outer measure (see the discussion in Section 2 of [43] and in
Section 1.7 of [73]).



Remark 5. Statisticians adopt a different notation: the data are described by a family Y1, Y2, . . . of random variables taking
value in X , each defined on the same probability space (Γ,AΓ ,Q), which are i.i.d. according to ρ . An M-valued estimator
of size n is then simply a random variable ξn(Y1, . . . , Yn), where ξn : Xn → M is a measurable map. The equivalence between
the two approaches is made clear by setting (Γ,AΓ ,Q) ≡ (Ω,AΩ,P) and Yi(ω) = xi for all ω = (x j) j�1 and i � 1.

Concentration of measure results for random variables in Hilbert spaces can be used to prove that Tn is an unbiased
estimator of T , as stated in the following lemma.

Lemma 1. For n � 1 and δ > 0,

‖T − Tn‖S2 �
2(δ ∨ √

2δ)√
n

(22)

with probability at least 1 − 2e−δ . Furthermore

lim
n→∞

√
n

log n
‖T − Tn‖S2 = 0 almost surely. (23)

Proof. The result is known, but we report its short proof. For all i � 1 define the random variables Zi : Ω → S2 as

Zi(ω) = Kxi ⊗ Kxi ω = (x j) j�1 ∈ Ω.

The fact that Zi is measurable follows from Lemma 5 in Appendix A.2. Then, for all i � 1, we have ‖Zi‖S2 � 1-almost surely,
E[Zi] = T , and clearly E[‖Zi‖2

S2
] � 1. The first result follows easily applying Lemma 8 in Appendix A.4 and simplifying the

right hand side of (A.4), and the second is a consequence of Lemma 9 in Appendix A.4. �
Remark 6. Note that (23) and Theorem 2.19 in [64] imply that

lim
n→∞‖T − Tn‖S1 = 0 almost surely.

5.2. Consistency

We now choose a family of filter functions (rλ)λ>0 and study the convergence of the associated estimators Fn and Xn
introduced in Section 4.

5.2.1. Consistency of Fn
We begin proving convergence of the functions Fn defined in (16) to the function Fρ in (9). We introduce the map

Gλ : X →R defined by

Gλ(x) = 〈rλ(T )Kx, Kx
〉 ∀x ∈ X,

which can be seen as the infinite sample analogue of Fn . Clearly, Gλ is a continuous function. For all sets C ⊂ X , we then
have the following splitting of the error into two parts, the sample error and the approximation error

sup
x∈C

∣∣Fn(x) − Fρ(x)
∣∣� sup

x∈C

∣∣Fn(x) − Gλn(x)
∣∣︸ ︷︷ ︸

sample error

+ sup
x∈C

∣∣Gλn(x) − Fρ(x)
∣∣︸ ︷︷ ︸

approximation error

. (24)

In order to prove consistency, we need to show that the left hand side goes to 0 as the sequence of regularization parameters
(λn)n�1 tends to 0. This will be done separately for the approximation and the sample errors in the next two propositions.

Proposition 8. Under Assumption 2.b), if the sequence (λn)n�1 is such that limn→∞ λn = 0, then, for any compact subset C ⊂ X,

lim
n→∞ sup

x∈C

∣∣Gλn(x) − Fρ(x)
∣∣= 0.

Proof. Assumption 2.b) and limn→∞ λn = 0 imply that the sequence of non-negative functions (rλn )n�1 is bounded by 1
and converges pointwisely to the Heaviside function θ on the interval [0,1]. Spectral theorem ensures that, for all x ∈ C ,

lim
n→∞ rλn(T )Kx = θ(T )Kx. (25)

Given ε > 0, by compactness of C there exists a finite covering of C by balls of radius ε , namely C ⊂⋃m
i=1 B(xi, ε). By (25)

there exists n0 such that



max
i∈{1,...,m}

∥∥rλn(T )Kxi − θ(T )Kxi

∥∥� ε ∀n � n0.

Hence, for all n � n0, we have

sup
x∈C

∣∣Gλn (x) − Fρ(x)
∣∣= sup

x∈C

∣∣〈(rλn(T ) − θ(T )
)

Kx, Kx
〉∣∣

� sup
x∈C

‖Kx‖ sup
x∈C

∥∥(rλn(T ) − θ(T )
)

Kx
∥∥

� max
i∈{1,...,m}

sup
x∈B(xi ,ε)

∥∥(rλn(T ) − θ(T )
)

Kxi + (rλn (T ) − θ(T )
)
(Kx − Kxi )

∥∥
� max

i∈{1,...,m}
sup

x∈B(xi ,ε)

(∥∥(rλn(T ) − θ(T )
)

Kxi

∥∥+ ∥∥rλn(T ) − θ(T )
∥∥∞‖Kx − Kxi ‖

)
� ε + ε sup

σ∈[0,1]
∣∣rλn(σ ) − θ(σ )

∣∣= 3ε,

where ‖Kx − Kxi ‖ < ε for all x ∈ B(xi, ε) since ‖Kx − Kxi ‖ = dK (x, xi), and, because |rλn (σ )| � 1, |θ(σ )| � 1,
supσ∈[0,1] |rλn (σ ) − θ(σ )|� 2. �

Convergence to zero of the sample error follows from (23) and the next proposition.

Proposition 9. For all sets C ⊂ X we have

sup
x∈C

∣∣Fn(x) − Gλn(x)
∣∣� ∥∥rλn(Tn) − rλn(T )

∥∥
S2

. (26)

In particular, if Assumption 2.c) holds, then

sup
x∈C

∣∣Fn(x) − Gλn(x)
∣∣� Lλn‖Tn − T ‖S2 . (27)

Proof. For all x ∈ X , we have the bound∣∣Fn(x) − Gλn(x)
∣∣= ∣∣〈(rλn(Tn) − rλn (T )

)
Kx, Kx

〉∣∣
�
∥∥rλn(Tn) − rλn (T )

∥∥∞‖Kx‖2

�
∥∥rλn(Tn) − rλn (T )

∥∥
S2

,

which proves (26). Assumption 2.c) and Theorem 8.1 in [9] (see also Lemma 7 in Appendix A.3 for a simple unpublished
proof due to A. Maurer) imply that∥∥rλn (Tn) − rλn(T )

∥∥
S2

� Lλn‖Tn − T ‖S2 .

Inequality (27) then follows. �
The above results can be combined in the following theorem, showing that, if the sequence λn is suitably chosen, then

Fn converges almost surely to Fρ with respect to the topology of uniform convergence on compact subsets of X .

Theorem 5. Under Assumption 2, if the sequence (λn)n�1 is such that

lim
n→∞λn = 0 and sup

n�1

Lλn logn√
n

< +∞, (28)

then, for every compact subset C ⊂ X,

lim
n→∞ sup

x∈C

∣∣Fn(x) − Fρ(x)
∣∣= 0 almost surely. (29)

Proof. We show convergence to zero of both the two terms in the right hand side of inequality (24), thus implying (29). By
(27), we have

sup
x∈C

∣∣Fn(x) − Gλn(x)
∣∣� Lλn‖Tn − T ‖S2 = Lλn log n√

n

√
n‖Tn − T ‖S2

log n
� M

√
n‖Tn − T ‖S2

log n
,

where M = supn�1(Lλn log n)/
√

n is finite by (28). Then (23) implies that the first term in the right hand side of inequality
(24) converges to zero almost surely. Since the second term goes to zero by Proposition 8, the claim follows. �



5.2.2. Consistency of Xn
As already remarked above, uniform convergence of Fn to Fρ on compact subsets does not imply convergence of the level

sets of Fn to the corresponding level sets of Fρ in any sense (as, for example, with respect to the Hausdorff distance among
compact subsets). For this reason, we introduce a family of threshold parameters (τn)n�1 and define the estimator Xn of
the set Xρ as in (17).

We define a data dependent parameter τn as the function on Ω

τn(ω) = 1 − min
1�i�n

[
Fn(ω)

]
(xi) ω = (xi)i�1, (30)

where we wrote explicitly the dependence of Fn on the training set ω ∈ Ω . Since Fn takes values in [0,1], clearly τn(ω) ∈
[0,1].

Proposition 10. Suppose the metric space X is compact. Then, under Assumption 2, the function τn is an R-valued estimator. Moreover,
if the sequence (λn)n�1 satisfies (28), we have

lim
n→∞τn = 0 almost surely.

Proof. The proof that τn is an R-valued estimator is of technical nature, and we postpone it to Proposition 17 in Ap-
pendix A.2.

Here we prove that limn→∞ τn = 0 with probability 1. By Theorem 5, we can find an event E1 ⊂ Ω with P(E1) = 1 such
that limn→∞ supx∈X |Fn(x)− Fρ(x)| = 0 on E1. Moreover, for the event E2 = {xi ∈ Xρ for all i � 1}, we clearly have P(E2) = 1
by definition of Xρ and P. If ω ∈ E1 ∩ E2 and ε > 0 is fixed, then there exists n0 � 1 (possibly depending on ω and ε) such
that for all n � n0 |[Fn(ω)](x) − Fρ(x)| � ε for all x ∈ X . Since Fρ(x) = 1 for all x ∈ Xρ by definition and x1, . . . , xn ∈ Xρ , it
follows that |[Fn(ω)](xi) − 1| � ε for all 1 � i � n, that is

0 � 1 − [Fn(ω)
]
(xi) � ε ∀i ∈ {1,2, . . . ,n},

so that 0 � τn(ω)� ε . Thus, limn→∞ τn(ω) = 0, and, since P(E1 ∩ E2) = 1, the sequence (τn)n�1 goes to zero with probabil-
ity 1. �

The following is the central result of this section. It shows that, assuming X is compact and for the above choice of
the sequence (τn)n�1, the Hausdorff distance between Xn and Xρ goes to zero with probability 1. Here we recall that the
Hausdorff distance between two subsets A, B ⊂ X is

dH (A, B) = max
{

sup
a∈A

dK (a, B), sup
b∈B

dK (b, A)
}
,

where dK (x, Y ) = infy∈Y dK (x, y).

Theorem 6. Suppose the metric space X is compact. Under Assumption 2, if H separates the set Xρ and the sequence (λn)n�1
satisfies (28), for the choice of the threshold parameters (τn)n�1 given in (30) we have

lim
n→∞dH (Xn, Xρ) = 0 almost surely.

We devote the rest of this section to proof of the above theorem. For simplicity, we split it into a few lemmas.

Lemma 2. Under the hypotheses of Theorem 6, we have

lim
n→∞ sup

x∈Xn

dK (x, Xρ) = 0 almost surely. (31)

Proof. Let E be the event E = {limn→∞ τn = 0}. Then, P(E) = 1 by Proposition 10. We fix ω ∈ E , and suppose by contradic-
tion that at such ω the limit (31) does not hold. Then (depending on ω) there exists ε > 0 such that for all k there is nk � k
satisfying the inequality supx∈Xnk

dK (x, Xρ) � 2ε . Hence there is zk ∈ Xnk such that

dK (zk, x) � ε for all x ∈ Xρ. (32)

Since X is compact, possibly passing to a subsequence we can assume that the sequence (zk)k�1 converges to a limit z ∈ X .
We claim that z ∈ Xρ . Indeed, if k is sufficiently large, then we have∣∣Fρ(z) − 1

∣∣� ∣∣Fρ(z) − Fρ(zk)
∣∣+ ∣∣Fρ(zk) − Fnk (zk)

∣∣+ ∣∣Fnk (zk) − 1
∣∣

�
∣∣Fρ(z) − Fρ(zk)

∣∣+ sup
∣∣Fρ(x) − Fnk (x)

∣∣+ τnk ,

x∈X



where |Fnk (zk) − 1| � τnk is due to the fact that zk ∈ Xnk , so that

1 + τnk � 1 � Fnk (zk) � 1 − τnk .

As nk goes to ∞, we have supx∈X |Fρ(x) − Fnk (x)| → 0 by Theorem 5; moreover, since Fρ is continuous in z and τnk goes to
zero, the above inequality for |Fρ(z) − 1| gives Fρ(z) = 1. Since H separates Xρ , this implies z ∈ Xρ . However, (32) implies
that dK (z, x) � ε for all x ∈ Xρ , which is the desired contradiction. �

The proof that supx∈Xn
dK (x, Xρ) goes to zero as n → ∞ requires a further technical lemma, see [36, Lemma 6.1]. In its

statement, for all n � 1 and x ∈ X , we denote by ξ1,n(x) the nearest neighbor of x in the training set {x1, . . . , xn}, i.e.

ξ1,n(x) = arg minx1,x2,...xn dK (xi, x).

Lemma 3. For all x ∈ Xρ ,

lim
n→∞dK

(
ξ1,n(x), x

)= 0 almost surely.

Proof. Given x ∈ Xρ , fix ε > 0 and, denoted by B(x, ε) the closed ball with center x and radius ε , set p = ρ(B(x, ε)). By
definition of the support and the fact that ρ is a probability measure, 0 < p � 1. Furthermore

P
(
dK
(
ξ1,n(x), x

)
> ε
)= P

(
xi /∈ B(x, ε)∀i = 1, . . . ,n

)
(
by independence of the xi ’s

)= n∏
i=1

P
(
xi /∈ B(x, ε)

)
(
since the xi ’s are identically distributed

)= n∏
i=1

(
1 − ρ

(
B(x, ε)

))
= (1 − p)n.

Since 0 � 1 − p < 1, the series
∑

n(1 − p)n converges, so that Borel–Cantelli lemma yields

P

( ∞⋃
n=1

∞⋂
m=n

{
dK
(
ξ1,m(x), x

)
� ε
})= 1.

Since this holds for all ε > 0, we have

P

( ∞⋂
k=1

∞⋃
n=1

∞⋂
m=n

{
dK
(
ξ1,m(x), x

)
� 1

k

})
= 1,

and the lemma follows. �
Lemma 4. Under the hypotheses of Theorem 5, if the metric space X is compact, then

lim
n→∞ sup

x∈Xρ

dK (x, Xn) = 0 almost surely. (33)

Proof. Choose a denumerable dense family {z j} j∈ J in Xρ . By Lemma 3 there exists an event E with probability 1 such that

lim
n→+∞dK

(
ξ1,n(z j), z j

)= 0 ∀ j ∈ J (34)

on E . We claim that the limit (33) holds on E . Observe that, by definition of τn , xi ∈ Xn for all 1 � i � n, and

sup
x∈Xρ

dK (x, Xn) � sup
x∈Xρ

min
1�i�n

dK (x, xi) = sup
x∈Xρ

dK
(
ξ1,n(x), x

)
,

so that it is enough to show that limn→+∞ supx∈Xρ
dK (ξ1,n(x), x) = 0.

Fix ε > 0. Since Xρ is compact, there is a finite subset Jε ⊂ J such that {B(z j, ε)} j∈ Jε is a finite covering of Xρ . We
claim that

sup
x∈X

dK
(
ξ1,n(x), x

)
� max

j∈ Jε
dK
(
ξ1,n(z j), z j

)+ ε. (35)

ρ



Indeed, fixed x ∈ Xρ , there exists an index j ∈ Jε such that x ∈ B(z j, ε). By definition of ξ1,n , clearly

dK
(
ξ1,n(x), x

)
� dK

(
ξ1,n(z j), x

)
,

so that by the triangular inequality we get

dK
(
ξ1,n(x), x

)
� dK

(
ξ1,n(z j), x

)
� dK

(
ξ1,n(z j), z j

)+ dK (z j, x)

� dK
(
ξ1,n(z j), z j

)+ ε

� max
j∈ Jε

dK
(
ξ1,n(z j), z j

)+ ε.

Taking the sup over Xρ we get the claim.
Since Jε is finite, by (34)

lim
n→+∞ max

j∈ Jε
dK
(
ξ1,n(z j), z j

)= 0,

hence (35) yields

lim sup
n→∞

sup
x∈Xρ

dK
(
ξ1,n(x), x

)
� ε.

Since ε is arbitrary, we get limn→+∞ supx∈Xρ
dK (ξ1,n(x), x) = 0, and this concludes the proof �

The proof of Theorem 6 follows easily combining the previous lemmas.

Proof of Theorem 6. As dH (Xn, Xρ) = max{supx∈Xn
dK (x, Xρ), supx∈Xρ

dK (x, Xn)}, the theorem follows combining Lemmas 2
and 4. �

We conclude this section with some comments. First, if H does not separate Xρ , then the statement of Theorem 6
continues to be true provided that the support Xρ is replaced by the level set {x ∈ X | Fρ(x) = 1}. Note that, the Hausdorff
distance dH has been defined with respect to the metric dK induced by the kernel, however, if the set X has its own metric
dX making it compact and the hypotheses of Proposition 3 are satisfied, then Theorem 6 implies convergence of Xn to Xρ

also with respect to the Hausdorff distance associated to dX . Finally, we remark that in Theorem 6 convergence of Xn to Xρ

does not depend on any a priori assumption on the probability ρ .

5.3. Finite sample bounds and stability of random sampling

In order to prove stability of our algorithms under random sampling and determine their convergence rates, we need to
specify suitable a priori assumptions on the class of problems to be considered. In the present section, a detailed analysis of
the convergence rates of Fn to Fρ will be carried out for the case of the Tikhonov filter rλ(σ ) = σ/(σ + λ). The techniques
in [14] should allow to derive similar results for filters other than Tikhonov.

For all λ > 0 we define

N (λ) = tr
[
(T + λ)−1T

]=∑
j∈ J

σ j

σ j + λ
,

which is finite since T is a trace class operator. The above quantity is related to the degrees of freedom of the estimator
[38]. Here, we recall that N is a decreasing function of λ and limλ→0+ N (λ) = N , where N is the dimension of the range
of T .

The a priori conditions we consider in the present paper are given by the following two assumptions, which involve both
the reproducing kernel K and the probability measure ρ (compare with [12,13]).

Assumption 3. We assume that

a) there exist b ∈ [0,1] and Db � 1 such that

sup
λ>0

N (λ)λb � D2
b; (36)

b) there exist 0 < s � 1 and a constant Cs > 0 such that Pρ Kx ∈ ran T s/2 for all x ∈ X , and

sup
x∈X

∥∥T − s
2 Pρ Kx

∥∥2 � Cs. (37)



The above conditions are classical in the theory of inverse problems and have been recently considered in supervised
learning. Before showing how they allow to derive a finite sample bound on the error supx∈X |Fn(x) − Fρ(x)|, we add some
comments. First, Assumption 3.a) is related to the level of ill-posedness of the problem [34] and can be interpreted as a
condition specifying the aspect ratio of the range of T . Since 0 < λN (λ) < tr[T ] = 1, inequality (36) is always satisfied with
the choice b = 1 and D1 = 1, so that in this case we are not imposing any a priori assumption. If dim ran T = N < ∞,
the best choice is b = 0 and D0 = √

N; otherwise, if dim ran T = ∞, then necessarily b > 0. In the latter case, a sufficient
condition to have b < 1 is to assume a decay rate σ j ∼ j−1/b on the eigenvalues of T (see Proposition 3 of [13]).

Coming to Assumption 3.b), first of all we remark that it is always satisfied when dim ran T is finite with the choice
s = 1 and C1 = max j∈ J 1/σ j . In the general case, Assumption 3.b) can be expressed by the following equivalent condition∑

j∈ J

σ 1−s
j

∣∣φ j(x)
∣∣2 � Cs ∀x ∈ X, (38)

where (φ j, σ j) j∈ J are the eigenvectors and eigenvalues of LK , which were defined in Section 2.3 (see in particular (7) for
the definition of the functions φ j outside the set Xρ ). Clearly, the higher is s, the stronger is the assumption.

Note that in particular inequality (38) holds true if there exists a constant1 κ > 0 such that supx∈X |φ j(x)| � κ for all
j ∈ J , and s ∈ ]0,1] is chosen to make the series

∑
j∈ J σ

1−s
j finite. In this case, it is quite easy to give conditions on the

eigenvalues (σ j) j∈ J assuring that both Assumptions 3.a) and 3.b) are satisfied. For example, if σ j ∼ j−1/b for some 0 < b < 1,
then (36) holds true with this choice of b, and (37) is satisfied for any 0 < s < 1 − b.

Remark 7. Setting β = 1 − s ∈ [0,1[, condition (38) is equivalent to the fact that for all x, y ∈ X the series

K β
ρ (x, y) =

∑
j∈ J

σ
β

j φ j(y)φ j(x) (39)

converges absolutely to a bounded reproducing kernel K β
ρ . Convergence of the series (39) was studied e.g. in [70], where

it is proved that, if the sequence of powers (σ
β

j ) j∈ J is summable, there exists a ρ-null set N such that (39) converges
absolutely on (X \ N) × (X \ N) (see [70, Proposition 4.4]). We remark that this weaker fact is not sufficient in our setting:
indeed, on the one hand it does not imply that the series (39) (or, equivalently, (38)) converges on all of X , and on the other
it does not guarantee that such series is uniformly bounded, two conditions which however are both needed in the proof of
Theorem 7 below to get uniform estimates on the whole set X . A direction of future work is to study the geometric nature
of the above conditions when X is a metric space or a Euclidean space and Xρ a Riemannian submanifold.

The following theorem provides the finite sample bound on the error supx∈X |Fn(x) − Fρ(x)|.

Theorem 7. Suppose rλ(σ ) = σ/(σ + λ). If Assumption 3 holds and we choose

λn =
(

1

n

) 1
2s+b+1

,

then, for n � 1 and δ > 0, we have

sup
x∈X

∣∣Fn(x) − Fρ(x)
∣∣� (Cs ∨ (Db(2δ ∨ √

2δ)
))(1

n

) s
2s+b+1

(40)

with probability at least 1 − 2e−δ .

We postpone the proof to the end of the current section and add here some comments. The above finite sample bound
quantifies the stability of the estimator with respect to random sampling. Equivalently, if we set the right hand term of
the inequality to ε and solve for n = n(ε, δ), we obtain the sample complexity of the problem, i.e. how many samples are
needed in order to achieve the maximum error ε with confidence 1 − 2e−δ . As remarked before, Assumption 3.a) is verified
for b = 1 by any reproducing kernel. In this limit case our result gives a rate n−s/(2s+2) , comparable with the one that can
be obtained inserting (27) and (41) below into inequality (24), with ‖Tn − T ‖ bounded by (22).

Note that, if dim ran T = N < ∞, choosing b = 0, D0 = √
N , s = 1 and C1 = max j∈ J 1/σ j , the rate in (40) becomes n−1/3.

The proof of Theorem 7 follows the ideas in [13] and is based on refined estimates of the sample and approximation
errors. The techniques in [14] should allow to derive similar results for filters beyond the Tikhonov one.

1 As it happens for example for reproducing kernels on X = [0,2π ]d which are invariant under translations, when ρ is the Lebesgue measure on [0,2π ]d .



Proposition 11. If Assumption 3.a) holds true, then, for n � 1 and δ > 0, we have

sup
x∈X

∣∣Fn(x) − Gλn (x)
∣∣� ( δ

nλn
+
√

2δN (λn)

nλn

)
with probability at least 1 − 2e−δ .

Proof. Consider the following decomposition

rλn(T ) − rλn (Tn) = (T + λn)
−1T − (Tn + λn)

−1Tn

= (T + λn)
−1T − (T + λn)

−1Tn + (T + λn)
−1Tn − (Tn + λn)

−1Tn

= (T + λn)
−1(T − Tn) + (T + λn)

−1[(Tn + λn) − (T + λn)
]
(Tn + λn)

−1Tn

= (T + λn)
−1(T − Tn) + (T + λn)

−1(Tn − T )(Tn + λn)
−1Tn

= (T + λn)
−1(T − Tn)

[
I − (Tn + λn)

−1Tn
]

= λn(T + λn)
−1(T − Tn)(Tn + λn)

−1.

It is easy to see that ‖(Tn + λn)−1‖∞ � λ−1
n , hence∥∥rλn (T ) − rλn(Tn)

∥∥
S2

� λn
∥∥(T + λn)

−1(T − Tn)
∥∥
S2

∥∥(Tn + λn)
−1
∥∥∞ �

∥∥(T + λn)
−1(T − Tn)

∥∥
S2

.

Then, from Lemma 10 in Appendix A.4 we have that

∥∥(T + λn I)−1(T − Tn)
∥∥
S2

�
(

δ

nλn
+
√

2δN (λn)

nλn

)
,

with probability at least 1 − 2e−δ , so that the result follows by (26). �
Proposition 12. If Assumption 3.b) holds true, then

sup
x∈X

∣∣Gλ(x) − Fρ(x)
∣∣� λsCs. (41)

Proof. Since θ(σ ) − rλ(σ ) = λ/(σ + λ) for all σ > 0, we have∣∣Gλ(x) − Fρ(x)
∣∣= ∣∣〈(rλ(T ) − θ(T )

)
Kx, Kx

〉∣∣= ∣∣〈(rλ(T ) − θ(T )
)

Pρ Kx, Pρ Kx
〉∣∣

= λ
∥∥(T + λ)−

1
2 Pρ Kx

∥∥2
,

as Pρ Kx ∈ ker T ⊥ . Since by assumption Pρ Kx ∈ ran T s/2 for some 0 < s � 1, spectral calculus and the bound σ s/(σ + λ) �
λs−1 give the inequality∥∥(T + λ)−

1
2 Pρ Kx

∥∥2 = ∥∥[(T + λ)−1T s] 1
2 T − s

2 Pρ Kx
∥∥2 � λs−1

∥∥T − s
2 Pρ Kx

∥∥2
,

so that∣∣Gλ(x) − Fρ(x)
∣∣� λs

∥∥T − s
2 Pρ Kx

∥∥2 � λsCs

for all x ∈ X . �
We are now ready to prove the main result.

Proof of Theorem 7. The choice λn = n−1/(2s+b+1) is the one that set the contributions of the sample and approximation
errors in (24) to be equal. Indeed, we begin by simplifying the bound on the sample error. If λ � n−1, then nλ �

√
nλb+1

for all 0 < b � 1, so that

δ

nλ
+
√

2δN (λ)

nλ
= δ

nλ
+
√

2δN (λ)λb

nλb+1
� Db(δ ∨ √

2δ)

(
1

nλ
+ 1√

nλb+1

)
� 2Db(δ ∨ √

2δ)√
nλb+1

,

where we used the definition of Db (and the fact that Db � 1). Then, by the above inequality and Propositions 11 and 12,
inequality (24) gives



sup
x∈X

∣∣Fn(x) − Fρ(x)
∣∣� Csλ

s + 2Db(δ ∨ √
2δ)√

nλb+1
. (42)

If we set the contributions of the sample and approximation errors to be equal, the choice for λ is

λ =
(

1

n

) 1
2s+b+1

.

It is easy to see that λ� n−1 for all values of s,b, so that from (42) we have

sup
x∈X

∣∣Fn(x) − Fρ(x)
∣∣� (Cs ∨ (2Db(δ ∨ √

2δ)
))(1

n

) s
2s+b+1

. �
5.4. The kernel PCA filter

A natural choice for the spectral filter rλ would be the regularization defined by kernel PCA [62], that corresponds to
truncating the generalized inverse of the kernel matrix at some cut-off parameter λ. The corresponding filter function is

rλ(σ ) =
{

1 σ � λ,

0 σ < λ.

The above filter does not satisfy the Lipschitz condition 2.c) in Assumption 2, so that the bound (27) for the sample error
supx∈X |Fn(x) − Gλn (x)| does not hold in this case.2 However, we can still achieve an estimate by employing inequality (A.1)
in Appendix A.3. To this aim, with a slight abuse of the notation, here we count the eigenvalues of T and Tn without
their multiplicities and we list them in decreasing order. Furthermore, for any λ > 0 we set σ j(λ) and σ

(n)

k(λ)
as the smallest

eigenvalues of T and Tn which are greater or equal to λ, i.e.

σ1 > σ2 > · · · > σ j(λ) � λ > σ j(λ)+1 σ
(n)
1 > σ

(n)
2 > · · · > σ

(n)

k(λ)
� λ > σ

(n)

k(λ)+1.

Inequality (A.1) implies that∥∥rλ(Tn) − rλ(T )
∥∥
S2

� ‖Tn − T ‖S2

min{σ j(λ) − σ
(n)

k(λ)+1,σ
(n)

k(λ)
− σ j(λ)+1}

� ‖Tn − T ‖S2

min{σ j(λ) − λ,λ − σ j(λ)+1} ,

and inequality (26) for the sample error then reads

sup
x∈C

∣∣Fn(x) − Gλn(x)
∣∣� ‖Tn − T ‖S2

min{σ j(λn) − λn, λn − σ j(λn)+1} .

By Lemma 1, in order to have convergence to 0 of the right hand side of this expression we need to choose the sequence
(λn)n�1 such that

sup
n�1

log n√
n min{σ j(λn) − λn, λn − σ j(λn)+1} < ∞.

Since the gap σ j(λ) −σ j(λ)+1 can have any arbitrary rate of convergence to zero as λ → 0+ , we thus see that there exists no
distribution independent choice of (λn)n�1 ensuring the convergence to zero of the above bound.

Note that rλ(T ) is the projection P j(λ) onto the sum of the eigenspaces of the first j(λ) eigenvalues of T and rλ(Tn) is

the projection P (n)

k(λ)
onto the sum of the eigenspaces of the first k(λ) eigenvalues of T . If (Mn)n�1 is any strictly increasing

sequence with Mn ∈ N for all n, we can consider the following distribution dependent choice λn = (σMn + σMn+1)/2. Then
we have∥∥P (n)

Mn
− P Mn

∥∥
S2

= ∥∥rλn(Tn) − rλn (T )
∥∥
S2

� 2‖Tn − T ‖S2

σMn − σMn+1
,

which recovers a known result about kernel PCA (see for example [77]). Furthermore, if we have that ‖Tn − T ‖S2 < (σMn −
σMn+1)/2, then we obtain ‖P (n)

Mn
− P Mn ‖S2 < 1, hence dim ran P (n)

Mn
= dim ran P Mn .

The following result extends Theorem 5 to the case of kernel PCA, at the price of having a distribution dependent choice
of the cut-off sequence (Mn)n�1.

2 Note that, by Proposition 16 in Appendix A.2, if X is locally compact, then Fn defined in (16) still is a C(X)-valued estimator.



Theorem 8. If the sequence of natural numbers (Mn)n�1 is strictly increasing and such that

sup
n�1

log n√
n(σMn − σMn+1)

< +∞

and we define the sequence (λn)n�1 as

λn = σMn + σMn+1

2
,

then, for every compact subset C ⊂ X,

lim
n→∞ sup

x∈C

∣∣Fn(x) − Fρ(x)
∣∣= 0 almost surely.

Proof. By the above discussion and inequality (26),

sup
x∈C

∣∣Fn(x) − Gλn (x)
∣∣� 2‖Tn − T ‖S2

σMn − σMn+1
�

√
n‖Tn − T ‖S2

log n
sup
n�1

2 log n√
n(σMn − σMn+1)

.

Convergence to 0 of the sample error then follows from (23). Combining this fact and Proposition 8 into inequality (24), the
claim then follows. �
6. Some perspectives

In this section we discuss some different perspectives to our approach and suggest some possible extensions.

6.1. Connection to Mercer theorem

We start discussing some connections between our analytical characterization of the support of ρ and Mercer theorem
[50]. With the notations of Section 2.3, the fact that the family (

√
σ jφ j) j∈ J is an orthonormal basis of PρH and the

reproducing property give the relation

〈Pρ K y, Kx〉 =
∑
j∈ J

σ jφ j(x)φ j(y) ∀x, y ∈ X, (43)

where the series converges absolutely. Note that in this expression the eigenfunctions φ j of LK are defined outside Xρ

through the extension equation (7). Restricting (43) to x, y ∈ Xρ , we obtain

K (x, y) =
∑
j∈ J

σ jφ j(x)φ j(y) ∀x, y ∈ Xρ,

which is nothing else than Mercer theorem [68]. In particular, taking x = y, this formula implies that
∑

j∈ J σ j |φ j(x)|2 =
K (x, x) for all x ∈ Xρ . On the other hand, the assumption that the reproducing kernel separates Xρ precisely ensures that∑

j∈ J

σ j
∣∣φ j(x)

∣∣2 �= K (x, x) ∀x /∈ Xρ.

(Recall that, if K separates Xρ , then Xρ is the 1-level set of the function Fρ =∑ j∈ J σ j |φ j|2.)

6.2. A feature space point of view

In machine learning, kernel methods are often described in terms of a corresponding feature map [74]. This point of
view highlights the linear structure of the Hilbert space and often provides a more geometric interpretation.

We recall that a feature map associated to a reproducing kernel is a map Ψ : X → F , where F is a Hilbert space with
inner product 〈·, ·〉F , satisfying K (x, y) = 〈Ψ (y),Ψ (x)〉F . While every map Ψ from X into a Hilbert space F defines a
reproducing kernel, it is also possible to prove that each kernel has an associated feature map (and in fact many). Indeed,
given K , the natural assignment is F ≡ H and Ψ (x) ≡ Kx . Such a choice is also minimal, in the sense that, if we make a
different choice of F and Ψ , then there exists an isometry W : H → F such that Ψ (x) = W Kx ∀x ∈ X – see for example
Proposition 2.4 of [15] or Theorem 4.21 of [68], noticing that both papers deal with the transpose W 	 :F →H.

We next review some of the concepts introduced in Section 2 in terms of feature maps. For the sake of comparison we
assume that ‖Ψ (x)‖F = 1 for all x ∈ X (this corresponds to the normalization Assumption 1.d)), we let FC be the closure
of the linear span of the set {Ψ (x) | x ∈ C}, and define



Fig. 2. The sets X and the support Xρ are mapped into the feature space F , by the feature map Ψ . Here we take Fρ = FXρ to be a linear space passing
through the origin. The image of the support with respect to the feature map is given by the intersection of the image of X with Fρ . By the separating
property, a point x belongs to the support if and only the distance between Ψ (x) and Fρ is zero.

dF
(
Ψ (x),FC

)= inf
f ∈FC

∥∥Ψ (x) − f
∥∥
F .

It is easy to see that the definition of separating kernel has the following equivalent and natural analogue in the context of
feature maps.

Definition 3. We say that a feature map Ψ separates a subset C ⊂ X if

dF
(
Ψ (x),FC

)= 0 ⇐⇒ x ∈ C .

The above definition is equivalent to Definition 1 since dF (Ψ (x),FC ) = ‖Ψ (x) − Q C Ψ (x)‖F , where Q C is the orthogonal
projection onto FC . Then, according to Definition 3, a point x ∈ C if and only if ‖Ψ (x) − Q C Ψ (x)‖2

F = 0. Since Ψ (x) = W Kx

∀x ∈ X and Q C W = W P C , this is equivalent to

0 = ∥∥Ψ (x) − Q C Ψ (x)
∥∥2
F = ‖Kx − P C Kx‖2 = K (x, x) − FC (x).

Theorem 1 then implies that Definitions 1 and 3 are equivalent. We thus see that the separating property has a clear
geometric interpretation in the feature space: the set Ψ (C) is the intersection of the closed subspace FC , i.e. a linear
manifold in F , and Ψ (X) – see Fig. 2.

In the above interpretation, the estimator we propose for the support then stems from the following observation: given
a training set x1, . . . , xn , we classify a new point x as belonging to the estimator Xn of Xρ if the distance of Ψ (x) to the
linear span of {Ψ (x1), . . . ,Ψ (xn)} is sufficiently small.

6.3. Inverse problems and empirical risk minimization

Here we suggest a simple interpretation of the estimator Fn and stress the connection with the supervised setting. We
regard the sampled data x1, . . . , xn as a training set of positive examples, so that each point xi ∈ Xρ -almost surely; the new
datum is the point x ∈ X , and we evaluate the estimator Fn at x. We label the examples according to the similarity function
K by setting

yi(x) = K (xi, x) ≡ (Kx)i i = 1, . . . ,n.

If K satisfies Assumption 1, then, since K (x, x) = 1 and K is dK -continuous, the function yi is close to 1 whenever xi is
close to x. The interpolation problem

find f ∈ H such that f (xi) = yi(x) ∀i ∈ {1, . . . ,n} ⇐⇒ Sn f = Kx

(where Sn is defined in (18)) is ill-posed. To restore well-posedness we can consider the corresponding least square problem
(empirical risk minimization problem)

min
f ∈H

1

n

n∑
i=1

∣∣ f (xi) − yi(x)
∣∣2 ⇐⇒ min

f ∈H
1

n
‖Sn f − Kx‖2

Rn ,

or in fact its regularized version

min
f ∈H

(
1

n

n∑∣∣ f (xi) − yi(x)
∣∣2 + λ‖ f ‖2

)
⇐⇒ min

f ∈H

(
1

n
‖Sn f − Kx‖2

Rn + λ‖ f ‖2
)

,

i=1



where λ > 0 is the regularization parameter (Tikhonov regularization). It is known [34] that the minimum of the above
expression is achieved by f ≡ f λ

n , with

f λ
n = 1

n
gλ

(
S	

n Sn

n

)
S	

n y,

where gλ is the function gλ(σ ) = 1/(σ + λ).
More generally, Tikhonov regularization can be replaced by spectral regularization induced by a different choice of the

filter gλ; the corresponding regularized solution f λ
n is still given by the previous equation, but the function gλ appearing in

it is now completely arbitrary. Comparing with (19), we see that f λn
n (x) = Fn(x). Eq. (17) has then the following interpreta-

tion: a new point x is estimated to be a positive example (that is, to belong to the support Xρ ) if and only if f λn
n (x) � 1 − τ ,

where τ is a threshold parameter.
The above discussion suggests several extensions and variations of our method, obtained considering more general pe-

nalized empirical risk minimization functionals of the form

min
f ∈H

(
1

n

n∑
i=1

V
(

yi(x), f (xi)
)+ λR( f )

)
,

where:

• V is a (regression) loss function measuring the approximation property of f , for example the logistic loss or a robust
loss such as the one used in support vector machine regression. Our theoretical analysis does not carry on to other loss
functions and different mathematical concepts from empirical process theory are probably needed;

• R is a regularizer measuring the complexity of a function f ∈ H. For example, one can consider the case where the
kernel is given by a dictionary of atoms fγ : X → R, with γ ∈ Γ , such that

∑
γ ∈Γ | fγ (x)|2 = 1, so that we have

K (x, y) =∑γ ∈Γ fγ (x) fγ (y) and, hence, f =∑γ ∈Γ wγ fγ , with w = (wγ )γ ∈Γ ∈ 
2(Γ ). In this setting, Tikhonov regu-

larization corresponds to the choice R( f ) =∑γ ∈Γ |wγ |2, but other norms, such as the 
1 norm
∑

γ ∈Γ |wγ |, can also
be considered.

7. Empirical analysis

In this section we describe some preliminary experiments aimed at testing the properties and the performances of the
proposed methods both on simulated and real data. We only discuss spectral algorithms induced by Tikhonov regularization
to contrast the general method to some current state of the art algorithms. Note that while computations can be made
more efficient in several ways, we consider a simple algorithmic protocol and leave a more refined computational study for
future work. Recall that Tikhonov regularization defines an estimator Fn(x) = K∗

x(Kn + nλ)−1Kx , and a point x is labeled as
belonging to the support Xρ if Fn(x) � 1 − τ . The computational cost for the algorithm is, in the worst case, of order n3

– like standard regularized least squares – for training, and order Nn2 if we have to predict the value of Fn at N test
points. In practice, one has to choose a good value for the regularization parameter λ and this requires computing multiple
solutions, a so-called regularization path. As noted in [57], if we form the inverse using the eigen-decomposition of the
kernel matrix the price of computing the full regularization path is essentially the same as that of computing a single
solution (note that the cost of the eigen-decomposition of Kn is also of order n3, though the constant is worse). This is the
strategy that we consider in the following. In our experiments we considered two datasets: the MNIST3 dataset and the
CBCL4 face database. For the digits we considered a reduced set consisting of a training set of 5000 images and a test set of
1000 images. In the first experiment we trained on 500 images for the digit 3 and tested on 200 images of digits 3 and 8.
Each experiment consists of training on one class and testing on two different classes and was repeated for 20 trials over
different training set choices. For all our experiments we considered the Abel kernel. Note that in this case the algorithm
requires to choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In supervised
learning cross validation is typically used for parameter tuning, but cannot be used in our setting since support estimation
is an unsupervised problem. Then, we considered the following heuristics. The kernel width is chosen as the median of
the distribution of distances of the k-th nearest neighbor of each training set point for k = 10. Fixed the kernel width, we
choose the regularization parameter in correspondence of the maximum curvature in the eigenvalue behavior – see Fig. 3 –
the rationale being that after this value the eigenvalues are relatively small.

For comparison we considered a Parzen window density estimator and one-class SVM (1CSVM) as implemented by [11].
For the Parzen window estimator we used the same kernel of the spectral algorithm, that is the Laplacian kernel, and also
the same width. Given a kernel width, an estimate of the probability distribution is computed and can be used to estimate
the support by fixing a threshold τ ′ . For the one-class SVM we considered the Gaussian kernel, so that we have to fix the

3 http://yann.lecun.com/exdb/mnist/.
4 http://cbcl.mit.edu/.

http://yann.lecun.com/exdb/mnist/
http://cbcl.mit.edu/


Fig. 3. Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corresponding regularization parameter in logarithmic scale.

Fig. 4. ROC curves for the different estimator in three different tasks: digit 9 vs 4 (left), digit 1 vs 7 (center), CBCL (right).

Table 2
Average and standard deviation of the AUC for the different estimators on the considered tasks.

3 vs 8 8 vs 3 1 vs 7 9 vs 4 CBCL

Spectral 0.837 ± 0.006 0.783 ± 0.003 0.9921 ± 0.0005 0.865 ± 0.002 0.868 ± 0.002
Parzen 0.784 ± 0.007 0.766 ± 0.003 0.9811 ± 0.0003 0.724 ± 0.003 0.878 ± 0.002
1CSVM 0.790 ± 0.006 0.764 ± 0.003 0.9889 ± 0.0002 0.753 ± 0.004 0.882 ± 0.002

kernel width and a regularization parameter ν . We fixed the kernel width to be the same used by our estimator and set
ν = 0.9. For the sake of comparison, also for one-class SVM we considered a varying offset τ ′′ . The performance is evaluated
computing ROC curve (and the corresponding AUC value) for varying values of the thresholds τ , τ ′, τ ′′ . The ROC curves on
the different tasks are reported (for one of the trials) in Fig. 4. The mean and standard deviation of the AUC for the three
methods is reported in Table 2. Similar experiments were repeated considering other pairs of digits, see Table 2. Also in
the case of the CBCL datasets we considered a reduced dataset consisting of 472 images for training and other 472 for test.
On the different test performed on the MNIST data the spectral algorithm always achieves results which are better – and
often substantially better – than those of the other methods. On the CBCL dataset SVM provides the best result, but spectral
algorithm still provides a competitive performance.

Remark 8. We remark that, although binary classification data sets are used in the experiments, the considered set-up
is that of a one-class classification problem. Indeed, the training and tuning of the algorithms are performed using only
examples of one class and the other class is only considered for testing. Accordingly, the proposed methods are compared
to state of the art algorithms for one-class classification.
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Appendix A. Auxiliary proofs

In this section we give the proofs of a few technical results needed in the paper.

A.1. Normalizing a kernel

The next result shows that, if K is a reproducing kernel which is non-zero on the diagonal, then it can be normalized,
and its normalized version separates the same sets. When K (x, x) = 0 for some x ∈ X , then clearly this result still holds
replacing the set X with X \ X0 and considering the restriction of K to (X \ X0)× (X \ X0), where X0 = {x ∈ X | K (x, x) = 0}.

Proposition 13. Assume that K (x, x) > 0 for all x ∈ X. Then, the reproducing kernel K ′ on X, given by

K ′(x, y) = K (x, y)√
K (x, x)K (y, y)

∀x, y ∈ X,

is normalized and separates the same sets as K .

Proof. Clearly K is a kernel of positive type. Denote by H′ the reproducing kernel Hilbert space with kernel K ′ , and define
the feature map Ψ : X → H, Ψ (x) = Kx/‖Kx‖. It is simple to check that 〈Ψ (y),Ψ (x)〉 = K ′(x, y) and Ψ (X)⊥ = {0}, so that
the map Ψ∗ :H →H′

(Ψ∗ f )(x) = 〈 f ,Ψ (x)
〉

is a unitary operator with K ′
x = Ψ∗(Ψ (x)) [15]. Clearly, for any f ∈H and x ∈ X〈

Ψ∗ f , K ′
x

〉= 〈Ψ∗ f ,Ψ∗Ψ (x)
〉= 〈 f , Kx〉

‖Kx‖ .

The above equality shows that H and H′ separate the same sets. �
A.2. Analytic results

In this section, we suppose that the kernel K satisfies Assumption 1, and endow the set X with the metric dK induced
by K . Measurability of a map taking values in a topological space will be always understood with respect to the Borel
σ -algebra of such space. The next simple lemma will be used frequently.

Lemma 5. For all k = 1,2, the map

ξ : X → Sk, ξ(x) = Kx ⊗ Kx

is continuous and measurable. Moreover, if Zi : Ω → Sk is given by

Zi(ω) = Kxi ⊗ Kxi ω = (x j) j�1,

then Zi is measurable for all i � 1.

Proof. The map x �→ Kx , is continuous from X into H by item i) in Proposition 1. Since ξ(x) = Kx ⊗ Kx , continuity of ξ

follows at once. By item v) in Proposition 1, ξ is then a measurable map, hence Zi is such. �
We recall some basic properties of the operator T defined by the kernel. The next result is known (see for example [26]),

but we report a short proof for completeness.

Proposition 14. The S1-valued map ξ defined in Lemma 5 is Bochner-integrable with respect to ρ , and its integral

T =
∫
X

Kx ⊗ Kx dρ(x)

is a positive trace class operator on H, with ‖T ‖S = tr[T ] = 1.
1



Proof. The map ξ is bounded because ‖Kx ⊗ Kx‖S1 = tr[Kx ⊗ Kx] = K (x, x) = 1 and measurable by Lemma 5. Therefore, ξ is
a Bochner-integrable S1-valued map, and its integral T is a trace class operator. As ξ(x) is a positive operator for all x, so
is T . In particular, ‖T ‖S1 = tr[T ], and tr[T ] = ∫X tr[Kx ⊗ Kx]dρ(x) = 1. �

Now, we come to the proof of Proposition 7. We will split it into the proofs of Propositions 15 and 16 below.

Lemma 6. For all k = 1,2, the map

Ťn : Xn → Sk, Ťn(x1, . . . , xn) = 1

n

n∑
i=1

Kxi ⊗ Kxi

is continuous and measurable.

Proof. Evident by Lemma 5. �
Proposition 15. For all n � 1, the map Tn defined in (15) is a Sk-valued estimator for k = 1,2.

Proof. We have

Tn(ω) = Ťn(x1, . . . , xn) ω = (xi)i�1,

hence Tn is measurable by Lemma 6. �
For the next proposition we recall that the topology of uniform convergence on compact subsets of X is generated by

the following basis of open sets U f ,ε,C ⊂ C(X)

U f ,ε,C =
{

g ∈ C(X)

∣∣∣ sup
x∈C

∣∣ f (x) − g(x)
∣∣< ε

}
f ∈ C(X), ε > 0, C ⊂ X compact.

Proposition 16. Suppose X is locally compact. Let (rλ)λ>0 be a family of functions rλ : [0,1] → [0,1] such that each rλ is upper
semicontinuous. Then, for any sequence of positive numbers (λn)n�1 and all n � 1, the map Fn defined in (16) is a C(X)-valued
estimator, where C(X) is the space of continuous functions on X with the topology of uniform convergence on compact subsets.

Proof. Throughout the proof, n � 1 will be fixed. Let (ϕk)k�1 be a decreasing sequence of continuous functions ϕk : [0,1] →
[0,1] such that ϕk(σ ) ↓ rλn (σ ) for all σ ∈ [0,1] (such sequence exists by (12.7.8) of [31]). Then, by Lemma 6 and continuity
of the functional calculus (see e.g. Problem 126 in [37]), for all k � 1 the map

ϕk(Ťn) : Xn → S0,
[
ϕk(Ťn)

]
(x1, . . . , xn) = ϕk

(
Ťn(x1, . . . , xn)

)
is continuous from Xn into the Banach space S0 of the bounded operators on H with the uniform operator norm. Thus, for
all x ∈ X , the real function (x1, . . . , xn) �→ 〈[ϕk(Ťn)](x1, . . . , xn) Kx, Kx〉 is continuous on Xn , hence is measurable by item v)
of Proposition 1. By spectral calculus and dominated convergence theorem, for all ω = (xi)i�1〈

rλn

(
Tn(ω)

)
Kx, Kx

〉= 〈rλn

(
Ťn(x1, . . . , xn)

)
Kx, Kx

〉= lim
k→∞

〈[
ϕk(Ťn)

]
(x1, . . . , xn) Kx, Kx

〉
.

It then follows that, for each x ∈ X , the real function ω �→ 〈rλn (Tn(ω))Kx, Kx〉 is measurable on Ω , being the pointwise limit
of measurable functions.

We now prove that the map Fn : ω �→ (x �→ 〈rλn (Tn(ω))Kx, Kx〉) is measurable from Ω into the space C(X). By M2, p. 115
in [45], this is equivalent to the measurability of the subsets F −1

n (U ) ⊂ Ω for all open sets U ⊂ C(X). Since X is a locally
compact separable metric space, the topology of uniform convergence on compact subsets is a separable metric topology on
C(X) by (12.14.6.2) in [31]. By separability of C(X), each open set U ⊂ C(X) then is the denumerable union of sets of the
neighborhood basis {U f ,ε,C | f ∈ C(X), ε > 0, C ⊂ X compact}. Hence, it is enough to show that F −1

n (U f ,ε,C ) is measurable
for all f , ε and C . We have

F −1
n (U f ,ε,C ) =

{
ω ∈ Ω

∣∣∣ sup
x∈C

∣∣ f (x) − 〈rλn

(
Tn(ω)

)
Kx, Kx

〉∣∣< ε
}
.

By separability of X , there exists a countable set C0 ⊂ C such that C0 = C . A continuity argument then shows that

F −1
n (U f ,ε,C ) =

⋂
k�1

{
ω ∈ Ω

∣∣∣ sup
x∈C

∣∣ f (x) − 〈rλn

(
Tn(ω)

)
Kx, Kx

〉∣∣� ε − 1

k

}

=
⋂ ⋂

x∈C

{
ω ∈ Ω

∣∣∣ ∣∣ f (x) − 〈rλn

(
Tn(ω)

)
Kx, Kx

〉∣∣� ε − 1

k

}
.

k�1 0



Since each set {ω ∈ Ω | | f (x) − 〈rλn (Tn(ω)) Kx, Kx〉| � ε − 1/k} is measurable in Ω , measurability of the countable intersec-
tion F −1

n (U f ,ε,C ) then follows. �
We conclude this section with the proof of measurability of the threshold parameters (τn)n�1 defined in (30).

Proposition 17. Suppose X is locally compact. Let (rλ)λ>0 be a family of functions rλ : [0,1] → [0,1] such that each rλ is upper
semicontinuous. Then, for any sequence of positive numbers (λn)n�1 and all n � 1, the map τn defined in (30) is an R-valued estimator.

Proof. As Fn depends only on (x1, . . . , xn), it is clear that so does τn . It remains to show measurability of τn .
Given i � 1, the map ω �→ xi is measurable by definition of the product σ -algebra AΩ on Ω . Moreover, for any n � 1,

the map Fn is measurable from Ω into C(X) by Proposition 16. Therefore, the map Θ1 : Ω → C(X) × X , with Θ1(ω) =
(Fn(ω), xi), is measurable when C(X) × X is endowed with the product σ -algebra of the Borel σ -algebras of C(X) and X ,
respectively.

Since X is locally compact, the map Θ2 : C(X) × X → R, with Θ2( f , x) = f (x), is jointly continuous by [41, Theorem 5,
p. 223] and the discussion following it. Thus, Θ2 is measurable with respect to the Borel σ -algebras of C(X) × X and R.

The metric spaces X and C(X) are both separable (for C(X), this is (12.14.6.2) in [31]). By [32, Proposition 4.1.7], the
product σ -algebra of the Borel σ -algebras of C(X) and X then coincides with the Borel σ -algebra of C(X) × X . Thus, the
composition map Φi = Θ2Θ1, which is Φi(ω) = [Fn(ω)](xi), is measurable.

Finally, the map m(t1, . . . , tn) �→ min1�i�n ti is continuous from Rn into R, so that τn = 1 − m(Φ1,Φ2, . . . ,Φn) is mea-
surable. �
A.3. A useful inequality

The following proof of inequality (A.2) below is due to A. Maurer.5

Lemma 7. Suppose S and T are two symmetric Hilbert–Schmidt operators on H with spectrum contained in the interval [a,b], and let
(σ j) j∈ J and (τk)k∈K be the eigenvalues of S and T , respectively. Given a function r : [a,b] → R, if the constant

L = sup
j∈ J ,k∈K

∣∣∣∣ r(σ j) − r(τk)

σ j − τk

∣∣∣∣ (with 0/0 ≡ 0)

is finite, then∥∥r(S) − r(T )
∥∥
S2

� L‖S − T ‖S2 . (A.1)

In particular, if r is a Lipshitz function with Lipshitz constant Lr , then∥∥r(S) − r(T )
∥∥
S2

� Lr‖S − T ‖S2 . (A.2)

Proof. Let ( f j) j∈ J and (gk)k∈K be the orthonormal bases of eigenvectors of S and T corresponding to the eigenvalues
(σ j) j∈ J and (τk)k∈K , respectively, which here we list repeated accordingly to their multiplicity. We have∥∥r(S) − r(T )

∥∥2
S2

=
∑

j,k

∣∣〈(r(S) − r(T )
)

f j, gk
〉∣∣2 =

∑
j,k

(
r(σ j) − r(τk)

)2∣∣〈 f j, gk〉
∣∣2

� L2
∑

j,k

(σ j − τk)
2
∣∣〈 f j, gk〉

∣∣2 = L2
∑

j,k

∣∣〈(S − T ) f j, gk
〉∣∣2

= L2‖S − T ‖2
S2

,

which is (A.1). �
A.4. Concentration of measure results

We will use the following standard concentration inequality for Hilbert space random variables (see Theorem 8.6 in [53],
and [54]). Let V be a separable Hilbert space and (Ω,AΩ,P) a probability space. Suppose that Y1, Y2, . . . is a sequence of
independent V-valued random variables Yi : Ω → V . If E[‖Yi‖m

V ]� (1/2)m!B2Lm−2 ∀m � 2, then, for all n � 1 and ε > 0,

5 http://www.andreas-maurer.eu.

http://www.andreas-maurer.eu


P

(∥∥∥∥∥1

n

n∑
i=1

Yi

∥∥∥∥∥
V

> ε

)
� 2e

− nε2

B2+Lε+B
√

B2+2Lε . (A.3)

We will need in particular the next two straightforward consequences of this inequality.

Lemma 8. If Z1, Z2, . . . is a sequence of i.i.d. V-valued random variables, such that ‖Zi‖V � M-almost surely, E[Zi] = μ and
E[‖Zi‖2

V ]� σ 2 for all i, then, for all n � 1 and δ > 0,∥∥∥∥∥1

n

n∑
i=1

Zi − μ

∥∥∥∥∥
V
� Mδ

n
+
√

2σ 2δ

n
(A.4)

with probability at least 1 − 2e−δ .

Proof. Let Yi = Zi − μ. Then ‖Yi‖V � 2M and E[‖Yi‖2
V ] � E[‖Zi‖2

V ] = σ 2. Moreover, for all i and m � 2 E[‖Yi‖m
V ] �

σ 2(2M)m−2 � (1/2)m!σ 2Mm−2, where the last inequality follows since 2m−2 � m!/2. Then,

P

(∥∥∥∥∥1

n

n∑
i=1

Zi − μ

∥∥∥∥∥
V

> ε

)
= P

(∥∥∥∥∥1

n

n∑
i=1

Yi

∥∥∥∥∥
V

> ε

)
� 2e

− nε2

σ2+Mε+σ
√

σ2+2Mε = 2e
− σ2n

M2 g( Mε

σ2 ) = 2e−δ,

where g(t) = t2/(1 + t + √
1 + 2t).

Since g−1(t) = t + √
2t , by solving the equation (σ 2n/M2)g(Mε/σ 2) = δ we have

ε = σ 2

M

(
M2δ

nσ 2
+
√

2M2δ

nσ 2

)
= Mδ

n
+
√

2σ 2δ

n
. �

The above result and Borel–Cantelli lemma imply that

lim
n→∞

∥∥∥∥∥1

n

n∑
i=1

Zi − μ

∥∥∥∥∥
V

= 0

almost surely. In the paper we actually need a slightly stronger result which is given in the following lemma.

Lemma 9. If Z1, Z2, . . . is a sequence of i.i.d. V-valued random variables, such that ‖Zi‖V � M-almost surely, then we have

lim
n→∞

√
n

log n

∥∥∥∥∥1

n

n∑
i=1

Zi − μ

∥∥∥∥∥
V

= 0

almost surely.

Proof. We continue with the notations in the proof of Lemma 8. By (A.3), for all ε > 0 we have

P

( √
n

log n

∥∥∥∥∥1

n

n∑
i=1

Zi − μ

∥∥∥∥∥
V

> ε

)
= P

(∥∥∥∥∥1

n

n∑
i=1

Yi

∥∥∥∥∥
V

> ε
log n√

n

)
� 2e−A(n,ε) = 2

(
1

n

) A(n,ε)
log n

,

with

A(n, ε)= ε2 log2 n

σ 2 + Mε log n√
n

+ σ
√

σ 2 + 2Mε log n√
n

.

It follows that

∑
n�1

P

( √
n

log n

∥∥∥∥∥1

n

n∑
i=1

Zi − μ

∥∥∥∥∥
V

> ε

)
� 2

∑
n�1

(
1

n

) A(n,ε)
log n

.

For all ε > 0, limn→∞ A(n, ε)/ log n = +∞, so that the series
∑

n�1 n−A(n,ε)/ log n is convergent, and Borel–Cantelli lemma
gives the result. �

The following inequality is given in [13] and we report its proof for completeness.



Lemma 10. If Assumption 1 holds true, then for all δ > 0 we have∥∥(T + λ)−1(T − Tn)
∥∥
S2

�
(

δ

nλ
+
√

2δN (λ)

nλ

)
with probability at least 1 − 2e−δ .

Proof. Let (Ω,AΩ,P) be the probability space defined at the beginning of Section 5.1. For all i � 1 we define the random
variable Yi : Ω → S2 as

Yi(ω) = (T + λ)−1(Kxi ⊗ Kxi ) ω = (x j) j�1,

which is measurable by Lemma 5. Then, we have ‖Yi‖S2 � 1/λ-almost surely, E[Yi] = (T + λ)−1T , (1/n)
∑n

i=1 Yi = (T +
λ)−1Tn and

E
[‖Yi‖2

S2

]= ∫
Ω

tr
[
Yi(ω)∗Yi(ω)

]
dP(ω) =

∫
X

tr
[
(T + λ)−2(Kx ⊗ Kx)

]
dρ(x)

= tr
[
(T + λ)−2T

]
�
∥∥(T + λ)−1

∥∥∞ tr
[
(T + λ)−1T

]
� N (λ)

λ
,

where we have bounded the operator norm ‖(T + λ)−1‖∞ by 1/λ. The result follows applying Lemma 8. �
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