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1. Introduction

The continuous progress in knowledge and technology has let
engineers design suspension bridges with increasingly longer
spans. A major concern for such slender structures is that they
suffer from aeroelastic instabilities caused by the self-excited
aerodynamic forces acting on the deck. While the risk of torsional
divergence can be avoided by a careful aerodynamic design of the
deck section, flutter instability still remains a critical aspect that
involves both the structural and the aerodynamic characteristic of
the bridge: evaluating and predicting the aeroelastic performances
of the bridge during construction and in service states is therefore

a crucial point of its design (e.g. Diana et al., 1995, 2013b; Argentini
et al., 2013, 2011; Ge, 2011).

Since the first aeroelastic studies of civil structures, the pro-
blem of stability has been studied from a deterministic point of
view; nowadays, this approach is the starting point of probabilistic
analyses that take into account the uncertainties of the parameters
involved. Such an approach is a more powerful design tool, since it
supports deterministic results with confidence intervals (e.g.
Jakobsen and Tanaka, 2003).

Within this framework, researchers have dealt with the relia-
bility of deterministic flutter prediction for several years (e.g.
Bucher and Lin, 1988; Prenninger et al., 1990; Ostenfeld-
Rosenthal et al., 1992; Pourzeynail, 2002). The most used and
developed approaches are the First and the Second Order Reliability
method (as proposed by Cheng et al., 2005; Ge et al., 2000; Cheng
and Li, 2009; Baldomir et al., 2011; Kiureghian, 2005), and the
Monte-Carlo method (Bartoli and Mannini, 2005; Mannini and
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Bartoli, 2010). The former methods manage the reliability problem
considering a linearized objective function, while the latter allows
one to numerically obtain the statistical distribution of the target
parameter.

All the cited works consider the critical flutter speed as the key
parameter of the reliability analysis, however the critical flutter
speed is not a unique index for the assessment of the safety of the
structure against wind loads. Besides the flutter speed, the trend of
the total damping of the structure (ζtot) as a function of the mean
wind velocity is a complementary safety index that allows one to
assess the aeroelastic behavior of a bridge over a wide range of
operating conditions.

As a matter of fact, the critical wind speed (Vflutter) is in general
larger than the maximum wind speed the structure is expected to
withstand in its life period, that is called design velocity (Vdesign).
This wind speed has a large return period (or a low probability of
occurrence): usually, the structure faces wind speeds that are
lower than the design speed and with a shorter return period.
Thus it is important to assess the safety of a bridge also for wind
velocities that are more probable than the design velocity.

To this end, the total damping of the structure (intended as the
sum of the structural and aerodynamic damping, ζtot¼ζaeroþζstr) is
a relevant safety index. Therefore, the uncertainties on the aero-
elastic stability of the structure should be investigated not only at
extreme conditions, but also in the operating ones. In order to do
this, in this paper, the probabilistic study of the flutter speed is
complemented with a probabilistic analysis of the total damping of
the bridge for several operating wind velocities.

To better explain why the trend of total damping is an
important safety index, we propose the following example in
which we compare two different design solutions having the same
critical flutter speed, but very different performance at typical in-
service conditions, as qualitatively sketched in Fig. 1.

For the considered example, two solutions (named A and B)
show the typical trends of the total damping parameter that,
starting from the structural value (ζstr) in still air, initially increase
their value up to a maximum, and then they reverse their slope
until the total damping becomes negative (at V=Vflutter ¼ 1).

If the aerodynamic design is correctly performed, the total
damping (ζtot) should be sufficiently large in all the wind speed
range. With reference to Fig. 1, the total damping ζtot for Solution B
is large only in the lower range of wind velocity (around

V
Vflutter

¼ 0:2), and then it decreases up to instability. It is important
to have larger values of ζtot also at high wind speed, as shown by
Solution A, in order to have a sufficient safety margin also in the
presence of uncertainties on design parameters to prevent unde-
sired instability problem.

The way the Messina Project Technical Specifications deals with
the problem is to prescribe minimum threshold for the ζtot
parameters in the range of wind speed from 0 to Vdesign, shown
by the rectangular boundaries in Fig. 1. The higher minimum value
in the first range is representative of the requirements for a limited
buffeting bridge response due to the unsteady turbulent wind
conditions. The second limit asks that aerodynamic effects keep on
adding dissipation to the structure up to the design speed.

All these considerations make the total damping ζtot a relevant
design index for the safety of the bridge, when aeroelastic effects
are present. That is why the propagation of uncertainties and its
statistical analysis have to be extended to the total damping
instead of referring only to the critical flutter speed, as
traditionally done.

With this purpose, the objective of this research paper is to
present a methodology to assess the uncertainty of ζtot in order to
evaluate whether possible mismatches between design para-
meters and actual ones do impact in a critical way on the evolution
of the aeroelastic behavior of the structure.

The Messina suspension bridge (3300 m of main span) is taken
as a test case, since for very long span bridges the aeroelastic
effects are dominant in the design. Due to the peculiar role played
by the aeroelastic coupling of the wind-structure problem in the
proposed methodology, even if the analysis procedure is suitable
to evaluate the uncertainty effects on fluid–structure interaction of
different bridges, the results that will be presented cannot be
extended to all suspended bridges because they depend on
aerodynamic characteristics and structural properties of the con-
sidered structure.

The paper is organized as follows. Section 2 introduces the
analysis background: the fluid–structure interaction model; the
algorithm used to assess the aeroelastic stability; the Monte-Carlo
method; the uncertainties considered in the analysis.

In Section 3 numerical results are presented following these
strategies:

� initially, a deterministic approach is used to perform a pre-
liminary investigation to select the most relevant structural and
aerodynamic parameters, on the total damping and critical
wind speed estimation, by varying each parameter individually.

� Then Monte-Carlo Simulations (MCS) with Hypercube Latin
Sampling are run to perform a multivariate analysis consider-
ing a simultaneous variation of all the most relevant para-
meters, previously selected through the deterministic analysis.
This procedure allows to have a statistical distribution of the
results, as suggested in other works (Matsumoto et al., 1996;
Cheng and Li, 2009).

� Specific considerations about the considered test-case are
reported.

Finally, conclusions are discussed in Section 4.

2. Analysis background

2.1. Self-excited wind loads

The aeroelastic stability analysis is performed using an iterative
multi-modal eigenvalue approach in laminar flow on a complete
scheme of the bridge. The aerodynamic forces are modeled using a
sectional approach considering their interaction with deck, towers
and cable system. To define the aerodynamic forces each bridge
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Fig. 1. Total damping as a function of the wind speed (in non-dimensional form).



element (tower, deck, and cables) is divided into several rigid
sections subjected to a bi-dimensional fluid–structure interaction,
that is a widely accepted hypothesis for slender structures.

The mode shapes, the natural frequencies and the modal
parameters of the bridge (modal mass and stiffness) in still
air are computed through a finite elements scheme of the
structure.

Adopting the modal approach, the dynamics of the structure
can be written as

½Mn

s � €qþ½Cn

s � _qþ½Kn

s �q ¼ ½Φ�TF aero ¼Q
aero

ð1Þ

where q is the vector of the modal coordinates; ½Mn

s �, ½Cn

s � and ½Kn

s �
are the structural inertial, damping, and stiffness modal matrices
of the system, respectively; Q

aero
is the vector of the Lagrangian

components of the external aerodynamic forces (F aero). Each term
of the F aero vector is calculated as the virtual work done by the
aerodynamic forces acting on the structure due to a unit variation
of the corresponding modal coordinate. The evaluation of that
virtual work, performed in terms of summation of the contribution
of all the considered sections (and all elements), gives rise to
generalized forces dependent on the displacement, on the velocity
and on the acceleration of each section considered, so that
determining state-dependent forces and coupling among the
different modes.

As an example, the self-excited unsteady aerodynamic terms of
drag, lift and moment acting on the j-th deck section (Dj, Lj, and Mj

in Fig. 2) are modeled using the Flutter Derivatives coefficients
that were measured with dedicated forced motion tests at the
wind tunnel of Politecnico di Milano (Diana et al., 2004, 2013a).

The self-excited forces acting on the generic j-th section are
defined, according to the Politecnico di Milano convention (see
Zasso, 1996), as
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where yj, zj and θj are respectively the lateral, vertical and torsional
displacements of the j-th section, ½mn

aero;j�, ½cnaero;j� and ½knaero;j� are the
aerodynamic matrices related to the j-th section, expressed, per
unit length, as
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Vj being the mean wind speed for the j-th section, B the bridge
deck chord (used as a reference length), and an

i , h
n

i and pn

i with
i¼ f1–6g being the flutter derivative coefficients. an

i , h
n

i and pn

i are
functions of both the reduced velocity (Vn

j ¼ Vj=ðfBÞ, f being the
motion frequency), and the angle of attack ηj, that is the function of
the mean wind speed itself, being related to the deflected position
reached under the mean wind speed stationary load. The mean
wind speed Vj is different for each section depending on the
elevation of the section itself above the sea level (hj) in the
boundary layer wind profile defined at the considered reference
wind speed V. Examples of flutter derivatives of the deck of the
Messina Straits Bridge are shown in Fig. 3 for three different angles
of attack.

Fig. 2. Sign convention and nomenclature for deck section displacements and
aerodynamic forces.

2 4 6 8 10 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V*

a 2*

2 4 6 8 10 20 25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

V*

h 3*

η = −2°

η = 0°

η = +2°

η = −2°

η = 0°

η = +2°

Fig. 3. Example of an

2 and hn

3 flutter derivatives of the Messina deck section as a function of reduced velocity Vn for different angles of attack.



The definition of the aeroelastic forces (Eqs. (2) and (3)) implies
the validity of two hypotheses, considering that the unsteady force
coefficients are measured with steady-state forced motion tests:

1. The flutter derivative coefficients, that are measured in steady-
state conditions, are assumed to be valid not only for the steady
state response of the bridge, but also for the transient response
(such as the instability onset).

2. During steady-state forced motion tests, it is not possible to
separate the contributions of displacements and relative accel-
erations to the aeroelastic forces, since they are in-phase (e.g. if
θðtÞ ¼ A sin ðωtÞ, then €θðtÞ ¼ �ω2A sin ðωtÞÞ. Therefore the dis-
tinction in aerodynamic mass and stiffness terms reported in
Eqs. (3) is done arbitrarily, supported by
(a) the idea that the vertical or horizontal variation of position

of the deck section does not have any effect in terms of
aerodynamic forces (rigorously verified at high Vn, i.e. in
the quasi-steady aerodynamics region);

(b) the experimental evidence obtained by mutual numerical
vs. experimental validation of the implemented code on
simple sectional model tests (Diana et al., 2013a).

The motion of the j-th section, which appears in Eq. (2), can be
represented using the modal coordinates as
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½Φj� being the structural eigenvectors matrix limited to the j-th
section: ½ϕ

1j
… ϕ

Nj
� with N being equal to the total number of

modes considered in the model.
The self-excited aeroelastic forces should be calculated assem-

bling the aerodynamic matrices (Eqs. (3)) of the j-th section
considering the contribution of each mode, using the flutter
derivatives evaluated at the reduced velocity of each i-th mode
defined as

Vn

ij ¼
Vj

f iB
ð5Þ

where fi is the frequency of the i-th mode (being ωi ¼ 2πf i). The
frequency fi is itself the function of the velocity, and so the
problem must be iteratively solved, as it is explained in the next
paragraph. Thus, the self-excited aerodynamic drag, lift and
moment on the j-th section can be computed as the sum of the
considered N modes in the model:

Dj

Lj
Mj

2
64

3
75
aero

¼ ∑
N

i ¼ 1
½mn

aero;ij�
€yij

€zij
€θ ij

8>><
>>:

9>>=
>>;þ½cnaero;ij�

_yij

_zij
_θ ij

8><
>:

9>=
>;þ½knaero;ij�

yij
zij
θij

8><
>:

9>=
>;

0
BB@

1
CCA
ð6Þ

where each aerodynamic matrix is a function of Vn

ij.

2.2. Iterative non-linear multi-modal eigenvalue algorithm

Using this formulation, combining Eqs. (1) and (6) and sum-
ming up the contribution of each section, the modal equations of
the coupled aeroelastic system become

½Mn

s � €qþ½Cn

s � _qþ½Kn

s �q ¼ �½Mn

aero� €q�½Cn

aero� _q�½Kn

aero�q ð7Þ

½Mn
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sþaero� _qþ½Kn

sþaero�q ¼ 0 ð8Þ

To evaluate the stability of the aeroelastic coupled system
defined in Eq. (8), a generalized eigenvalue analysis is performed.

Setting the free response of the system as

q ¼ ½Ξ�eλt ð9Þ

the generalized eigenvalue-eigenvector problem becomes

Mn

sþaeroðωÞ
� �

λ2þ Cn

sþaeroðωÞ
� �

λþ Kn

sþaeroðωÞ
� �� �½Ξ� ¼ 0 ð10Þ

The solution of the problem gives the complete set of complex
eigenvalues λ ¼ αþ jω and eigenvectors ½Ξ� of the modal aeroelas-
tic system defined in Eq. (8) as a function of the reference mean
wind speed V (j¼

ffiffiffiffiffiffiffiffi
�1

p
). Therefore for each V it is possible to

compute 2N of eigensolutions (complex conjugates in pairs):

λiðV Þ ¼ αiþ jωi3Ξ iðVÞ; i¼ 1; :::;2N ð11Þ
The eigenvectors Ξ i, which are in general complex, express the

free motion of the system as a complex linear combination of the
structural modes Φi, as follows by combining Eqs. (4) and (9) for a
given wind speed. In still air, ½Ξ� is the identity matrix, because the
structural modes are completely uncoupled. Increasing the mean
wind speed, this matrix changes, describing the progressive
aeroelastic coupling between structural bridge modes.

The peculiarity of this eigenvalue problem is the mutual
interdependence between the aeroelastic effects and the eigen-
properties of the system. In fact, given a mean wind speed, the
aeroelastic matrices (Eq. (8)) are a function of the reduced velocity
Vn that (Eq. (5)) depends on the eigenvalues of the system, which
are unknown (Eq. (10)).

Due to this nonlinear dependence, the numerical algorithm is
made of two main loops. Fig. 4 shows a flowchart that summarizes
the whole procedure. The first one updates the mean speed value
and through an iterative nonlinear algorithm, it computes the
stationary equilibrium position of the structure forced by the
mean wind loads. The second loop computes the eigenvalue
solution of the aeroelastic system, giving as a result the frequen-
cies and the damping of each mode, at the current mean wind
speed. This iterative procedure ends when the difference between
the old and the new set of eigenvalues is below a prefixed
threshold.

2.3. Monte Carlo simulations

As described in the previous section, the solution of the aero-
elastic problem involves many parameters, it is strongly nonlinear,
and it has to be iteratively solved. A common procedure that is used
to investigate such complex systems is the Monte Carlo simulation
technique (MC) (Zio and Marseguerra, 2002; Baraldi et al., 2010).

Considering a problem in which a variable δ is a function of n
independent variables βj (i.e. δ¼ δðβ1;…; βnÞ), it is possible that a
closed-form solution linking the uncertainties of the inputs to the
distribution of the output does not exist. A numerical method to
solve this problem is the MC method that requires the knowledge
of the statistical distributions of the n independent variables to
numerically obtain the distribution of the dependent variable δ.

The number of simulations performed is equal to the number of
the iso-probability bands in which the distributions of the inde-
pendent variables are divided, in order to sample the correspond-
ing realizations of δ. The greater is the number of simulations, the
greater is the statistical reliability of the results. We call the
number of simulations sample size (SS). If SS were equal to infinity,
we would have the perfect description of the dependent variable
distribution; in practice, we have to check that the statistical
dispersion of the MC output data is stable over a threshold of SS.

Given the sample size SS and the number of independent
variables n, the MC method allows one to select the values of the xj
for each simulation through the so-called Monte Carlo Matrix
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(MCM). Each element of the MCM is a random number uniformly
distributed between 0 and 1, and it corresponds to the inverse
cumulative probability which the variable βj assumes during the i-
th simulation, as sketched in Fig. 5.

2.4. Uncertainties considered in the analysis

Dealing with aerodynamic stability, wind and structural engi-
neers has to manage with two main kinds of uncertainties:

� uncertainties about the structural properties of the bridge;
� uncertainties about the aerodynamic characteristics of the deck

section.

The first kind of uncertainties concerns the structural proper-
ties of the bridge, both mechanical and geometrical. Starting from
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Table 1
Main properties of the first asymmetrical modes: modal shapes, frequency ratios, and modal mass ratios.
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the final design of the bridge, a different global and/or local
geometrical or technological realization of the project may have
an impact on the aeroelastic behavior of the structure, affecting
directly mass, frequencies and structural damping of the bridge. A
possible estimation of the effect of the variation of these para-
meters on the bridge structural characteristics may be inferred
from the mathematical model of the bridge (typically a FE model)
that is used during its design: uncertainty may be related to the
correct representativeness of the full scale structure, and to a
possible variability of its structural characteristics (e.g. the con-
strains definitions).

The second kind of uncertainties deals with fluid–structure
interaction and with several aerodynamic issues. On the one hand,
the analytical models adopted to compute the aerodynamic forces
acting on the bridge, approximate the aerodynamic phenomena;
on the other hand, they rely on experimental coefficients that are
measured in wind tunnel on scaled models. Concerning the
experimental coefficients, apart from uncertainties related to the

measurement process, other sources of uncertainty are the wind
tunnel flow and the model characteristics: Reynolds number self-
similarity, the residual turbulence of nominal smooth flow, the
surface roughness of the model, the appropriate representation of
the aerodynamic effects of sharp edges, and so on.

From an engineering point of view, all these uncertainties have
to be carefully taken into account in the evaluation of the
aeroelastic stability since they have a great effect on the results.
This is particularly important for very long span bridges, like
the one that is considered in this paper, since the design of
such a bridge relies on structural and aerodynamic optimizations.
In particular, for the Messina Bridge, the deck must be light
enough to allow for the railway traffic and characterized
by small aerodynamic coefficients to guarantee the aeroelastic
stability.

3. Results

In this section we apply the methodology described to the
Messina Straits Bridge. It is a suspended bridge with a main span
length of 3300 m and a deck chord width of 60 m. The deck has a
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multi-box section, with a central railway girder and two external
roadway girders (see Fig. 2).

The numerical results are presented according to the following
logic:

1. A stability analysis is performed using nominal input values,
and the results are taken as a reference. Besides, this analysis
allows one to select the structural modes that are more critical
for aerodynamic stability.

2. The aerodynamic and structural input parameters that mostly
influence the stability index are selected by means of a deter-
ministic sensitivity analysis.

3. A MC simulation is performed to assess the distribution of the
stability index around the nominal value, using the structural
modes identified in the first analysis, and taking as

independent variables the parameters selected in the second
one. A Gaussian distribution is assumed for all the input
parameters, with variances that are in the range of those
reported by other researchers (e.g. Cheng et al., 2005).

3.1. Deterministic approach using nominal values

The first analysis was performed considering the nominal
values of both structural and aerodynamic parameters. In parti-
cular, each modal dimensionless damping ratio ζstr is assumed

Table 2
Effect on critical flutter velocity and on the total damping of the single and
combined variations of vertical and torsional frequencies. Bold rows refer to cases
cited in the text.

Input Output

Δ% Δ%ζtot Δ%

ωz ωθ SLS1 SLS2 ULS SILS Vfl

�10 �10 �2 �3 �6 �11 �10.2
�10 �5 7 8 11 16 �1.8
�10 0 12 14 20 31 6.8
�10 5 15 17 26 40 15.1
�10 10 17 20 31 46 23.3

�5 �10 �15 �18 �29 �41 �13
�5 �5 �1 �1 �3 �5 �5
�5 0 7 8 12 18 3.4
�5 5 11 14 21 32 11.9
�5 10 14 17 26 40 20.3

0 �10 �38 �44 �59 �70 �13.7
0 �5 �13 �15 �23 �33 �7.9
0 5 7 8 13 20 8.4
0 10 11 13 21 33 16.9

5 �10 �66 �71 �79 �83 �4.1
5 �5 �33 �38 �51 �62 �8.9
5 0 1 1 2 4 �2.8
5 5 �11 �13 �19 �26 5.1
5 10 7 8 14 22 13.5

10 �10 �77 �78 �80 �80 39.4
10 �5 �60 �65 �74 �79 �1.4
10 0 �28 �33 �44 �55 �4.1
10 5 �9 �10 �15 �20 2.2
10 10 1 1 4 7 10.1
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Fig. 11. Example of flutter derivative coefficient with the considered ranges of
variation.

h3 a2 a3 a1 h1 h2 a4 p3 h4 p6 p5 p4 p2 p1 h6 h5 a6 a5
−6

−4

−2

0

2

4

6

Δ 
V flu

tte
r [%

]

Δ FD −10%
Δ FD 10%
Δ FD −5%
Δ FD 5%

Fig. 12. Influence of single flutter derivatives on flutter speed variation.

Table 3
Effect on total damping of the single variations of most significant Flutter
derivatives.

Δ%FD Δ%ζtot Δ%Vfl

SLS1 SLS2 ULS SILS

an

2 �10 �12 �13 �14 �16 �4.1
�5 �6 �6 �7 �8 �2.1
5 6 6 7 8 2.1

10 12 13 14 17 4.2

hn

3
�10 2 3 5 7 5.1
�5 1 1 2 3 2.3
5 �1 �1 �2 �3 �2.1

10 �2 �3 �5 �7 �3.8

an

1 �10 2 3 4 6 2.5
�5 1 1 2 3 1.2
5 �1 �1 �2 �3 �1.1

10 �2 �3 �4 �6 �2.1

an

4 �10 0.9 1.0 1.3 1.8 1
�5 0.5 0.5 0.6 0.9 0.5
5 �0.5 �0.5 �0.7 �0.9 �0.5

10 �0.9 �1.0 �1.3 �1.8 �0.9

hn

2
�10 0.8 0.8 0.8 0.6 �1.1
�5 0.4 0.4 0.4 0.3 �0.6
5 �0.4 �0.4 �0.4 �0.3 0.6

10 �0.8 �0.8 �0.8 �0.6 1.2

hn

1
�10 �0.1 �0.1 �0.3 �0.7 �2
�5 �0.1 �0.1 �0.2 �0.4 �1.1
5 0.1 0.1 0.2 0.4 1.1

10 0.1 0.2 0.4 0.8 2.4
an

3 10 4�0:1 �2.5
�5 �1.3
10 o0:1 1.4
�5 2.7



equal to 0.3%. Results are reported in terms of total damping
coefficient ζtot, which is taken as a stability index.

For each mode, the stability index is defined as

ζtot ¼ �α=jλj ð12Þ
where α is the real part of the eigenvalue λ and jλj its magnitude.

The total damping is computed at different values of mean
wind speed corresponding to prescribed return periods reported
in the Messina Strait Bridge technical requirements as SLS1, SLS2,
ULS and SILS (associated to a return period of 50, 200, 2000 and
greater than 2000 years).

The stability analysis was initially performed using the first 150
structural modes. The analysis (150 modes – Fig. 6) allows one to
understand the flutter phenomenon of the Messina suspension
bridge. The aerodynamic instability occurs due to the coupling of
the first vertical and torsional asymmetric deck modes. It is worthy
to underline that this behavior is exhibited by all the vertical–
torsional homologous couples of modes (higher than the first), but
the instability occurs at higher wind speeds. Moreover it is
important to note that only the torsional modes are negatively
affected by aerodynamics, since the total damping of lateral and
vertical bending modes always increases with wind speed. In the
following, we will focus our attention only onto the index of
stability of this mode.

A second stability analysis was performed considering the first
three modes involved in flutter coupling (first lateral bending,
vertical bending and torsional asymmetric modes) whose proper-
ties are reported in Table 1.

Using only the first asymmetric set of modes instead of the
larger initial modal base (3 modes vs. 150 modes – Fig. 7), the
numerical procedure still allows one to perform a very accurate
prevision of the influence of the mean wind speed onto the
damping of the modes (the error is less than 1%), and therefore
only the first three modes will be considered in the following. This
result is consistent with previous studies about flutter of bridges
(e.g. Chen et al., 2000, 2001).

The evolution of the torsional mode shape, as a function of the
wind speed, is shown in Fig. 8. This mode gradually couples with
the vertical one, and at flutter speed the torsional motion has with
a phase lead of 1301 with respect to the vertical one. At instability,
in physical coordinates, the displacement of the quarter-span
section at the leading edge will be

zedge ¼ zþθ
B
2
¼ 1 � sin ðωtÞþ0:26 � sin ðωt�501Þ ð13Þ

3.2. Deterministic sensitivity analysis

The sensitivity analysis is performed to evaluate the influence
of both mechanical and aerodynamic parameters on the stability
index, and to focus the attention onto the most significant ones.
The parameters considered in the deterministic stability analysis
are the structural parameters of the involved modes (modal mass
and stiffness) and the aerodynamic coefficients (pn

i , h
n

i and an

i ).

3.2.1. Modal parameters
First, the effects of a change in the structural frequencies were

analyzed; this analysis allows one to indirectly consider structural
nonlinearities, such as the change in stiffness due to static
aerodynamic stresses. It is worth noting that to obtain a given
variation of the circular frequency, several strategies are available.
In fact, γ being the variation factor, to modify the frequency from ω
to ω̂ ¼ γω we have to manage the variation of modal mass and
stiffness parameters (m and k):

ω̂ ¼ γω¼ γ

ffiffiffiffiffi
k
m

r
¼

ffiffiffiffiffi
k̂
m̂

s
ð14Þ

Since it is not clear from experimental campaigns, based on
output-only identification methods (e.g. Qin et al., 2001; Çevik and
Pakdemirli, 2005), whether uncertainties in eigen-frequencies of
long span bridges are due to uncertainties in either mass or
stiffness, three different variation strategies have been
investigated:

� Variation of frequency due to a mass change only: m̂ ¼m=γ2

and k̂ ¼ k.
� Variation of frequency due to a stiffness change only: m̂ ¼m

and k̂ ¼ kγ2.
� Variation of frequency due to an equal variation in stiffness and

mass: m̂ ¼m=γ and k̂ ¼ kγ.

To compare these three methods, we performed some tests using
all the possible combinations of both the variations of the vertical
(ωz) and torsional (ωθ) frequencies equal to �10%, �5%, þ5%, þ10%.

The variation of the lateral frequency has negligible effects and
it is not discussed in the rest of the paper. Finally, we highlight that
when the modal mass or stiffness changes, the corresponding
modal shape is not modified.

Table 4
MC simulations: summary of tested uncertainties combinations. The elements in the cells are the SS tested.

Δ%ω

75 710 715

Δ%FD
75 50, 100, 150, 500, 1000 50, 100, 150, 500, 1000 50, 100, 150, 500, 1000
710 50, 100, 150, 500, 1000 50, 100, 150, 500, 1000, 2500, 5000 750, 10 000
715 50, 100, 150, 500, 1000
720 50, 100, 150, 500, 1000, 2500, 5000
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Fig. 13. Statistical analysis of results increasing SS (Δ%ω¼Δ%FD¼ 710%). Thin
line: 2.5–97.5% percentiles, bold line: 25–75% percentiles.



In the following, any variation of a given parameter ξ is defined
as a percentage of variation with respect to its nominal value, and
identified with the nomenclature Δ%ξ.

Results for flutter velocity are reported in Fig. 9. Two parameters
mainly influence the flutter speed: the frequency ratio ωθ=ωz and
the torsional frequency ωθ . As it has been reported in previous
studies (Dyrbye and Hansen, 1997; Matsumoto et al., 2010), flutter
speed has a minimum for ωθ=ωz � 1:1. Moreover, for frequency
ratios higher than that threshold, the Selberg formula, or other
approximate analytical formulas (Chen, 2007; Matsumoto et al.,
2010), can be used to analyze the flutter critical speed (see Fig. 10).

For the case ωθ=ωz41:1 the simplified formula of Chen (2007)
can be used. This formula states

Vflutter ¼ κωθb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2

z

ω2
θ

 !
mr

ρb3

 !vuut ð15Þ

where κ is a parameter that depends non-linearly on flutter
derivatives, b is the half-chord length, m and I¼mr2 are the
effective modal mass and moment of inertia per unit span,
respectively. It can be easily seen that the flutter speed is
proportional to the torsional frequency and to the frequency ratio
ωθ=ωz .

Comparing the three methods of varying the frequencies
presented in Fig. 9, it can be noticed that they all show the same
trend, therefore we decided to proceed in the analysis using the
strategy of modifying both modal mass and stiffness, since it leads
to the largest percentage variations.

Variations of the frequencies have a remarkable effect, not only
on the critical mean wind speed at which flutter occurs, but also
on the total damping. Numerical results are reported in detail in
Table 2 for all the considered combinations. It is interesting to note
that the variation of critical flutter velocity and the variation of the
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Fig. 15. MC results: variation of total damping percentiles obtained increasing FD variations range Δ%ω¼ 75. Thin line: 2.5–97.5% percentiles, bold line: 25–75% percentiles.
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total damping are not correlated. As an example, the combinations
[Δ%ωz ¼ �10; Δ%ωθ ¼ �5] and [Δ%ωz ¼ �5; Δ%ωθ ¼ 0] show
equal variation of the total damping, but opposite results regrad-
ing the critical velocity. The combinations [Δ%ωz ¼ 5; Δ%ωθ ¼
�10] and [Δ%ωz ¼ 10; Δ%ωθ ¼ 0] have a similar flutter wind
speed variation, but a different one for damping.

3.2.2. Aerodynamic coefficients
Dealing with the aerodynamic parameters, an analysis similar

to the previous one has been done in order to establish which are
the flutter derivatives that mainly influence the stability of the
structure. Four levels of variation for each flutter derivatives were

tested (710% and 75%), fixing the remaining parameters to their
nominal value. As an example, in Fig. 11 the ranges of variation for
the an

2 coefficient considered in the analysis are reported.
It is shown in Fig. 12 that hn

3, a
n

2, a
n

3, and an

1 have the most
relevant influence on flutter stability, while the total damping is
strongly influenced by an

2, with a minor effect of hn

3 and an

1
(Table 3). The effects of the others flutter derivatives are negligible.
These results confirm previous findings, based on simplified
analytical and numerical approaches (Matsumoto et al., 1996;
Chen, 2007; Matsumoto et al., 2010).

It is important to underline that the influence of the aero-
dynamic parameters is different if we analyze the critical or the
service state wind speeds considering the progressive aeroelastic
coupling between modes, as already introduced in Fig. 8. As an
example, simplifying the problem, it can be noticed that the
variation of the torsional modal total damping, at lower value of
mean wind speed where the mode is still a torsional mode, is
mainly influenced by an

2 (equivalent damping effect on the
torsional mode due to aerodynamic moment), while, near the
critical value of mean wind speed, when the structural–torsional
mode has already a relevant vertical component, it is largely
influenced by hn

3, whose effect is to couple the torsional and the
vertical motion (cf. Eq. (3c)).

Even if a correlation between some flutter derivatives at high
reduced velocity can be found using quasi-steady theory, it is not
straightforward to define a correlation model between flutter
derivatives in all the reduced velocity range (Scanlan et al.,
1997), because many factors are involved (both experimental
and theoretical). Therefore these coefficients will be considered
uncorrelated random variables.

Last but not least, this analysis let us to select the parameters
whose variations produce a negligible effect on stability. Dealing
with the modal structural parameters, the modal damping is
neglected because it represents only an offset of the stability
analysis. On the other hand, the flutter derivatives related to the
lateral dynamic motion and to the vertical acceleration, respec-
tively pn

i (with i¼ 1–6) and hn

4, could be disregarded.
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Fig. 17. MC results: variation of total damping percentile at different service states obtained increasing frequencies variations range Δ%FD¼75. Thin line: 2.5–97.5%
percentiles, bold line: 25–75% percentiles.
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3.2.3. Summary of sensitivity analysis
Using the previous results, the parameters that will be varied in

the statistical analysis will be: both the structural vertical and
torsional frequencies (two independent random variables), and
the aerodynamic parameters an

i with i¼ 1–4, and hn

i with i¼ 1–3
(seven independent random variables). Therefore a total of nine
random variables will be used in the statistical analysis.

As a final comment, considering a different angle of attack ηi for
each deck section produces negligible effects (the maximum
rotation of deck section at mid-span is less than 1 deg at SILS
and the aerodynamic coefficients have a very small slopes). Thus,
in the following analysis, we neglect the stationary deflection of
the bridge. Moreover, additional simulations highlighted that
towers and cables effect do not significantly influence the results
and thus they will be disregarded (Zasso et al., 2013).

3.3. Statistical analysis of critical flutter velocity and total damping
trend

To compute a statistical evaluation of the sensitivity of
the bridge stability, due to the simultaneous variation of the

above-mentioned parameters, Monte Carlo simulations were per-
formed with different sample sizes (SS) and uncertainty levels.

Each random variable δ is varied as δvaried ¼ ϵ � δnominal. The
variation parameter ϵ is described by a Normal distribution with
the mean value being equal to 1, and setting the standard
deviation of the data s equal to Δϵ=3, so that the probability of
having a value of ϵ in the range μ�3soϵoμþ3s is equal to
99.73% (i.e.

R μþ3s
μ�3s PDFðϵ; μ;sÞ dϵ¼ 99:73%). It is worth noting that

the normal distribution is symmetric, but other distributions
might be chosen, as an example of a log-normal distribution
(e.g. Pourzeynail, 2002; Cheng et al., 2005).

Different combinations of variations of mechanical and aero-
dynamic parameters were tested as summarized in Table 4, con-
taining sample size for each corresponding combination.

The very first check of the analysis is to verify and set the SS
threshold in order to achieve reliable results. Fig. 13 shows the
2.5–97.5 and the 25–75% percentile of results obtained with
several Δ%ω¼Δ%FD¼ 710% simulations as a function of an
increasing value of SS. It can be seen that, approximately for SS
greater than 500, all the values of percentiles are stable, so the SS
threshold has been set to 1000. It is clear that the maximum and
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Fig. 19. Flutter speed variation: comparison between MC simulation results and probability fit with Δ%ω¼ 75% & Δ%FD¼ 715% (a) and Δ%ω¼ 715% & Δ%FD¼ 75% (b).
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Fig. 20. Total damping coefficients variation at SLS1: comparison between MC simulation results and probability fit with Δ%ω¼ 75% & Δ%FD¼ 715% (a) and
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Fig. 23. Total damping coefficients variation at SILS: comparison between MC simulation results and probability fit with Δ%ω¼ 75% & Δ%FD¼ 715% (a) and
Δ%ω¼ 715% & Δ%FD¼ 75% (b).
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Fig. 21. Total damping coefficients variation at SLS2: comparison between MC simulation results and probability fit with Δ%ω¼ 75% & Δ%FD¼ 715% (a) and
Δ%ω¼ 715% & Δ%FD¼ 75% (b).
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Fig. 22. Total damping coefficients variation at ULS: comparison between MC simulation results and probability fit with Δ%ω¼ 75% & Δ%FD¼ 715% (a) and
Δ%ω¼ 715% & Δ%FD¼ 75% (b).



the minimum values do not follow a threshold rule, because,
increasing the number of SS, the tails of the input distributions are
better evaluated: it is possible that an extreme realization of the
dependent variable occurs, even if the scatter of the whole set of
simulations is still constant. This does not represent a problem
since the single maximum and minimum value are negligible from
a statistical point of view.

Several MC simulations were performed fixing the variations of
the frequencies Δ%ω and increasing the scatter of the aerody-
namics parameters Δ%FD, and vice versa, in order to verify if the
results obtained with the MC simulations were similar to those of
the deterministic analysis.

Increasing the scatter of the aerodynamic parameters, with a
constant frequency variation level, (i.e. Δ%FD¼ 75, 710, 715,
720; Δ%ω¼ 75), results regarding both critical flutter velocity
and total damping at different service states increase their scatter,
as shown in Figs. 14 and 15. These Figures report the median, the
2.5–97.5%, and the 25–5% percentile: it can be noted that the
distributions tend to be asymmetric increasing the variations of
the aerodynamic parameters.

Considering the frequency variation with a low level of scatter
of the aerodynamic coefficients (i.e. Δ%ω¼ 75, 710, 715;
Δ%FD¼ 75), the scatter of the flutter velocity increases with
the growing of the assigned range of variation of the frequencies
(Fig. 16): it is not symmetric with larger variation on the positive
values. Considering variations of the same order of magnitude, the
influence of the modal parameters affects the critical flutter speed
more than the aerodynamic coefficients.

Increasing the uncertainty of frequencies, the variation range of
the total damping increases, as shown in Fig. 17. The behavior is
very asymmetric, as described for the critical flutter velocity, but
the asymmetry is larger towards negative variations.

This asymmetry can be explained looking at the dependence of
ζtot on the parameter ωθ=ωz . As an example, considering the result
at ULS velocity for Δ%ω¼ 715, reported in Fig. 18, it is possible to
notice the nonlinear dependence of the variation of ζtot on the
variation of ωθ=ωz, which explains the asymmetric distribution.

It is confirmed that, for the considered bridge, the stability of the
structure is more affected by frequency variations than by a change
in the aerodynamic parameters (considering the same level of
uncertainty). This seems consistent with analytical formulas for total
damping (e.g. Chen, 2007; Matsumoto et al., 2010), in which the
highly nonlinear dependence on structural frequency is highlighted.

Fitting the data with a probability distribution is the next step
of the analysis. A unique distribution to fit the results was not
found, mainly due to the asymmetric shape of the tails. As a
reference, a fitting using the likelihood method was performed
using a Normal probability distribution. The goodness of the fitting
is directly linked to the magnitude of the variation and to the non-
linearity of the results.

As far as the flutter speed is concerned (Fig. 19), the scatter of the
results is well fitted by the normal distribution function, both for
large variations of the flutter derivatives (19a) and for large variations
of the frequencies (19b). On the contrary, analyzing the distributions
for the total damping (Figures from 20 to 23), if large variations of
flutter derivatives are considered the normal distribution fits quite
well the results (20a to 23a), while for large variations of the
frequencies the fit is not good, highlighting the highly nonlinear
dependence of the total damping on the frequency ratio ωθ=ωz .

The analysis performed also allows one to state the probability
of not matching the technical specifications, and the probability of
being in a certain prescribed variation band. Considering the
previous scenarios (Δ%ω75%, Δ%FD¼ 715% and vice versa) it
is possible to state the probability that the total damping is lower
than the minimum value allowed by specifications.

As it is stated in the introduction, the results obtained with the
Monte Carlo simulations can be summarized with the diagrams
reported in Fig. 24a and b. As previously noted, the aeroelastic
stability of the considered bridge is more sensible to variations of
the frequencies than to a variation in the aerodynamic coefficients.

Considering the Δ%ω75%, Δ%FD¼ 715% case (Fig. 24a), it is
possible to make the following comments:

� total damping: the 25–75% percentile is within a 5% range of
variation with respect to the nominal value for SLS1 and SLS2,
while it is within a 10% range of variation for ULS and SILS. The
2.5–97.5% percentile is sufficiently far from the design limits.

� flutter velocity: the 25–75% percentile is within a 3% range
of variation with respect to the nominal value, while for the
2.5–97.5% percentile it is within a 10% range.

Considering the Δ%ω715%, Δ%FD¼ 75% case (Fig. 24b), it is
possible to make the following comments:

� total damping: the 25–75% percentile satisfies the specifica-
tions, while the 2.5–97.5% percentile, due to the strong
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Fig. 24. Total damping and critical velocity statistics: comparison between MC
simulation results with Δ%ω¼ 75% & Δ%FD¼ 715% (a) and Δ%ω¼ 715% &
Δ%FD¼ 75% (b).



asymmetry towards small values of damping, can have occur-
rences that overcame the minimum threshold.

� flutter velocity: both the 25–75% percentile and the 2.5–97.5%
percentile are larger than the design wind velocity.

This last result highlights that, for a complete analysis of the
aeroelastic stability, besides the flutter velocity, it is necessary also
to evaluate the trend of the total damping.

4. Conclusions

In this paper we presented a statistical approach to study the
aeroelastic stability of a suspended bridge, taking into account the
effect of the variations from the nominal values of both mechan-
ical and aerodynamic properties of the bridge. The mathematical
and statistical background of the method were presented and the
Messina Straits Bridge was analyzed as a test case.

The aeroelastic stability is studied not only analyzing the
critical flutter velocity, but also the total damping as a function
of the mean wind velocity. As a matter of fact, it has been shown
that configurations with similar flutter velocities may have a
different trend of the total damping.

The methodology requires the knowledge of the statistical
distribution of the parameters with uncertainties, and it allows
one to get the distribution of the total damping and flutter speed
as a result. For the considered test case, we considered the
uncertainty of the most relevant aerodynamic parameters and of
the structural modal parameters. The method can be applied to
any suspended bridge, but the results refer to the case analyzed
due to the complexity of the aeroelastic problem.

The proposed approach can be a versatile design tool to
compare different solutions when designing a new bridge, allow-
ing the designer to indicate the most reliable one, given prob-
ability distribution of its aerodynamic or structural characteristics.
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