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1. Introduction

1.1. Motivation and objective

Manufacturing system engineering methods have been developed in the last decades for investigating the dynamic
behavior ofmanufacturing systems, for estimating their performance and for supporting their efficient design, improvement
and reconfiguration. Among these, simulation and analytical tools are themost commonly adoptedmethods. Typically, these
approaches are focused on the first order performancemeasures of manufacturing systems, such as the average throughput,
the average work in progress and the average system flow time. During the system design phase, these tools are used to
select system solutions that profitably exploit the trade-offs between these first order performance measures. The higher
moments of the system performance measures are generally difficult to analyze and are rarely considered.
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However, in the presence of random events and disturbances in the production, higher moments of the performance
measures are relevant to correctly predict the system output. For example, due to the production variability, the observed
quantity of produced items on a limited time horizon can be highly different from its expected value. This variability
undermines the ability tomeet customer orders on time and to ensure the required service level of the system. This problem
may directly corrupt the profitability of the system. Indeed, systems designed only by considering their mean performance
levels show poor robustness to disturbances. Low output variance indicates stability of the output of the production system,
less unforeseen delays and small fraction of escaped orders, which translates to lower production costs, ultimately leading
to improved company competitiveness. On the contrary, high variance means instability of the output and significant
fluctuations in production quantities observed on a day by day basis.

Typical sources of variability in production systems are random failure occurrences and durations. A real case in the
automotive industry [1] reports that for a system composed of 22 machines affected by the occurrences of 144 different
failure modes the weekly cumulated production has a coefficient of variation, estimated from the available field data over
three months, equal to 0.263. Thus, it is highly probable that the weekly demand will not be met since the system was
designed only considering its long term expected performance.

This problem has recently become even more critical in the manufacturing context, since frequent external demand
fluctuations and unpredictable shortages are more and more commonly experienced. For example, since 2008 the German
automotive market has experienced quarterly demand fluctuations varying between 300000 units and 600000 units. In
this situation, the combined effect of internal production fluctuations and external demand variability can directly translate
into overall insufficient company’s performance. Therefore, developing tools to understand, analyze, and control the higher
moments of the production system output is of paramount importance for the manufacturing industry.

1.2. Literature review

In spite of the relevance of this issue in industry, the number of papers discussing the higher moments of the output
in production lines is still relatively limited and the underlying assumptions of the available methods are simplistic,
thus preventing their wide application in industry. Existing research contributions on the analysis of higher moments of
manufacturing system performance measures are solely devoted to the analysis of the production variance, considering
both the cumulated production and the inter-departure times of the output process.

The output variability of production lineswas originally studied in [2]. The author proposed an exact numericalmethod to
calculate the first twomoments of the asymptotic outputmeasures, i.e., the asymptotic throughput and variance rate, that is
the limiting variance of the output per time unit. Themethod considered small buffered production lines featuring unreliable
machines with geometric/exponential failure and repair times. His approach is based on the state-space representation of
the system and the use of the inverse of the fundamental matrix, thus only simple systems with small number of machines
and buffer capacities can be analyzed with success.

[3] presented an approach to estimate the asymptotic variance rate of inter-departure times in production lines with
exponential processing times, perfectly reliablemachines, and finite buffer capacities. This workwas later extended in [4] to
model machines with general processing times. In this paper, it was observed by simulation that by increasing the skewness
of the processing times the inter-departure variance also increases. The complexity of Hendrick’s approach is comparable
to [2], being dependent on the number of states representing the system.

[5] obtained a closed form expression of the variance of the lead time in a two machine line in which machines may fail
in only one mode. Moreover, a formula for the calculation of the variance of the output of a single machine with a single
failure mode was derived [6]. The method is based on the solution of the difference equation describing the system dynam-
ics. [7] extended the method of Gershwin to the case of the isolated machine with multiple failure modes. The developed
method was then used to approximate the performance of production lines through a decomposition approach. The effect
of previous stages on the last machine in the system is considered by adjusting the failure and repair parameters of the sin-
gle machine model. However, the method is shown to have large errors in the variance estimation (around 20% compared
to simulation results) since the adopted decomposition equations [8] did not capture and propagate the output variability
throughout the line.

Tan proposed a series of studies on the output variability of production systems. These works include the analysis and
calculation of the output variability formachines in isolation,multi-stage unbuffered lines, production lineswith parallel and
series machines and small buffered manufacturing systems. He proposed both continuous time models [9–11] and discrete
time models [12–14] for the analysis. In terms of investigated machine models, the studies include reliable machines with
exponential processing times [9], unreliable machines with a single failure mode featuring geometrically or exponentially
distributed failure times [13] and unreliablemachineswith Coxian distributed repair time [10]. The asymptotic variance rate
and the approximate service level of the system are considered as performance measures of interest. In terms of methods,
Tan proposed amatrix-geometric approach for the estimation of the asymptotic variance rate in buffered systems. Compared
toMiltenburg’s approach, themethod proposed by Tan ismuchmore efficient in terms of number of executed floating-point
operations. The method uses the Grassman approach [15] to iteratively obtain the performance measure. The complexity
of the adopted procedure depends both on the length of the observed time period and on the size of the Markov chain
describing the process, thus on the buffer capacity.



In [16] a fluid Markovian model was proposed to derive an exact closed-form formula to calculate the first twomoments
of the asymptotic output for unreliable machines with generally distributed up and down times. An attempt to extend this
approach to two-machine one buffer dipoles was made, by approximating the dipole behavior with an equivalent single
machine having two switching operational modes. When the second machine is not starved, the equivalent machine is
exactly identical to the secondmachine of the dipole; when the secondmachine is starved, the equivalent machine behaves
as the first machine in the dipole. However, the autocorrelation structure of the starvation times was not considered, thus
this approximation is shown to perform poorly in specific configurations.

In [17] the variance of the output for production lines composed of unreliable machines and finite buffers is derived. The
most limiting assumption to the application of the proposedmethod is the Bernoulli reliabilitymodel, which assumes repair
time equal to the cycle time of the machines. The authors focused on the ‘‘due time performance’’ which is an equivalent
measure of the service level. Recently, a similar approach was proposed to study the transient behavior of production
systems ([18] and [19]).

The transient behavior of production systems was also addressed in [20] and [21]. In fact, the work of [20] studied both
the transient and steady-state variability in the output of small buffered lineswith reliablemachines featuring exponentially
distributed processing times, by adopting n-fold convolution of the inter-arrival and the processing time distributions. [21]
focused on the system output mean and variance during the transient period. The approach models long unbuffered
production lines with unreliable machines subject to a single failure mode, with exponentially distributed failure and repair
times, by using a sample path method.

Recently, an approximate method was proposed by [22] to study long assembly lines with finite buffers and general
service times. Their approach used a two-moment approximation to estimate the output variability in the assembly line, by
measuring the coefficient of variation of inter-departure time.

The effect of the autocorrelation structure proposed by [3] has been further investigated by [23], for small systems
featuring unreliable machines affected by multiple failure modes. The authors extended this approach to approximately
evaluate the asymptotic variance rate of multi-stage production lines with machines having multiple geometric failure
modes [24]. The proposed decompositionmethod suffers the same limitations of the decompositionmethod proposed in [6].

1.3. Contribution

As reported in the previous section, the availablemethods that are applicable tomulti-stage systems only consider simple
serial system layouts under the assumptions of exponentially or, in the discrete time domain, geometrically distributed
machine failure and repair times. However, real systems commonly present more complex structures and material flows.
Moreover, while in real systems the times to machine failures can often be modeled using exponential or geometrical
distributions with acceptable accuracy, given the mechanical and electronic nature of failures, the times to repair are rarely
observed to follow exponential distributions [25].

This paper considers general Markovian machines and systems in the analysis, thus enabling to revise these critical
assumptions of the existing methods. In these more realistic settings, very little is known on how to manage production
systems to smooth and control the variability of their output. Moreover, in terms of considered performancemeasures, only
the cumulated production and the inter-departure times have attracted interest in the past. However, productionmanagers
are generally interested also in time-related performance measures, such as the system completion time, or in quantiles
of distributions of performance measures, to answer important questions like ‘‘What is the due date to be quoted for a
given order?’’ and ‘‘What is the probability of delivering a given order on time, under a particular system configuration?’’. In
addition, only the second moment of the production output has been considered in previous works. However, in order
to better approximate the system service level of the system, higher moments should be considered, especially in the
short–medium run.

To overcome these limitations, the objective of this paper is to develop a general theory and a methodology to analyze
the moments of the cumulated output and the moments of the completion time in manufacturing systems modeled
as arbitrarily complex Markov chains. Grounding on the exact calculation of the moments of the distribution of these
performancemeasures, the quantiles of the distributions can also be approximated. The generality of the proposed approach
allows modeling and studying the moments of the output variability under many different system configurations within
a unique framework, also including several previously uninvestigated system layouts. Among these, unbuffered multi-
stage serial–parallel systems with limited repair capacity, systems with machines producing in batches, and buffered
two-machine lines with degrading machines are modeled and analyzed as examples in this paper, within the proposed
framework.Moreover, the impact of themain systemandmachine parameters on the variability of the output is investigated,
with the objective of deriving new system design rules for reducing the variability and meeting the due-time performance
of the system.

1.4. Paper organization

The paper is organized as follows. In Section 2 we discuss Markov reward models reporting existing results and deriving
new ones. In Section 3 we illustrate the application of the proposed framework on several examples. Conclusions are drawn
in Section 4.



Fig. 1. Example continuous Markov reward model: Markov chain (left) and a possible trajectory (right).

2. Markov reward models

In a Markov reward model (MRM) an underlying Markov chain modulates the reward rate. A sojourn of length u in an
up-state accumulates a quantity of reward proportional to uwhile in a down-state the production is zero. The generality of
modeling machines with MRMs lies in the facts that
• MRMs allow us to model general failure/repair mechanisms with phase type distributed durations;
• the set of phase type distributions is dense in the field of all positive-valued distributions [26], i.e., it can be used to

approximate any failure/repair distribution;
• there exists methods to construct phase type distributions (either continuous or discrete) with given moments (see,

e.g., [27,28]).

While to compute the distribution of the accumulated reward and the distribution of completion time is computationally
heavy, there exist efficient methods for the calculation of the moments of these distributions. In Section 2.1 we report these
results for continuous time models with continuous reward and in Section 2.2 we derive the counterpart for discrete time
models with discrete reward. The corresponding quantities will be denoted by the same symbols in the continuous and the
discrete case.

2.1. Continuous Markov reward model

A continuous time Markov reward model is defined by the infinitesimal generator of the underlying continuous time
Markov chain (CTMC), denoted by Q, and the reward rates associated with the states denoted by ri for state i and organized
into a diagonalmatrix denoted byR. During a sojourn of length u in state i the system accumulates uri amount of reward. As a
simple example consider amodel composed of two states described by the following infinitesimal generator and ratematrix:

Q =

−1.5 1.5
2.5 −2.5

 , R =

1.2 0
0 2.2


which implies that reward is gained in the first (second) state of the CTMC at rate 1.2 (2.2). The graphical representation and
a possible trajectory for both the underlying CTMC and the accumulated reward are depicted in Fig. 1.

Denoting by X(t) the state of the chain at time t and by Z(t) the accumulated reward (the production), we have Z(t) = t
s=0 rX(s)ds. The completion time, i.e., the amount of time necessary to produce a given quantity x, is denoted by C(x) and

defined as C(x) = min[t ≥ 0 : Z(t) = x]. The quantities characterizing the accumulated reward and the completion time are
Fij(t, x) = P{X(t) = j, Z(t) < x|X(0) = i} (1)

Gij(t, x) = P{X(C(x)) = j, C(x) < t|X(0) = i} (2)
where
• Fij(t, x) is the joint distribution of the accumulated reward and the state of the underlying CTMC supposing that the initial

state is i and
• Gij(t, x) is the joint probability of the completion time and the state at completion supposing that the initial state is i.

The matrices formed of the above quantities, F(t, x) = [Fij(t, x)] and G(t, x) = [Gij(t, x)], can be described in double trans-
form domain which leads to the following expressions [29,30]

F∗∗(s, v) =
1
v
(sI + vR − Q)−1 (3)

G∗∗(s, v) =
1
s
(sI + vR − Q)−1R (4)

where f ∗(s) =


∞

t=0 f (t)e
−stdt denotes the Laplace transform which is applied both according to time (t → s) and accumu-

lated reward (x → v) and I denotes the identity matrix. In theory, both the accumulated reward and the completion time
can be analyzed based on (3) and (4) by numerical or symbolic inverse Laplace transformation. In practice, this approach
works only for small and/or specially structured MRMs.



Fig. 2. Example discrete Markov reward model: Markov chain (left) and a possible trajectory (right).

For larger MRMs, as it was proposed in [31], the moments of the quantity defined in (1) can be computed efficiently. To
this purpose define the moments of the state dependent accumulated reward as

K (n)
ij (t) =


∞

x=0
xndFij(t, x), n = 0, 1, 2, . . . (5)

such that K (n)
ij (t) is the nth moment of the accumulated reward after t time units multiplied by the probability that the state

at time t is j supposing that the initial state is i. Note that if n = 0 then (5) corresponds simply to the transient probabilities
of the underlying CTMC. With the definition in (5), the mean of the accumulated reward after t time units given that the
initial state is i is given by


j K

(1)
ij (t). It was shown in [32] that the matrices K(n)(t) = [K (n)

ij (t)], n = 0, 1, 2, . . . , satisfy the
differential equations

dK(n)(t)
dt

= nK(n−1)(t)R + K(n)(t)Q. (6)

In [31] the authors proposed efficient randomization based methods for the calculation of K(n)(t) for n = 1, . . . ,N whose
time complexity is roughly

N
i=0(i + 1) times higher than the complexity of the transient analysis of the CTMC underlying

theMRM. The space complexity is insteadN+1 higher than for the transient analysis of the CTMC. The same authors propose
a method for the calculation of the moments of the completion time as well but this method is efficient only if the number
of states with zero reward rate is low.

2.2. Discrete Markov reward model

Discrete Markov Reward Models are relevant in the field of manufacturing system modeling. Indeed, in discrete part
manufacturing, the processing time of machines is usually deterministic. Moreover, in many cases, the machines are
synchronous, in the sense that they start and finish the production simultaneously, at fixed points in time. These features
are more realistically captured within the framework of discrete time models.

In the discrete case a discrete time Markov chain (DTMC) modulates the accumulation of reward and a discrete amount
of reward is gained in each time slot (see, e.g., [33]). Let P denote the transition probability matrix of the underlying DTMC
and ri, 0 ≤ ri ≤ c , the integer reward rate associated with state i where c is the maximum reward per step. A sojourn
of length l, l = 1, 2, 3, . . . , in state i provides lri reward. As a simple example consider a model composed of three states
described by the following transition matrix and reward rates

P =

0.5 0.5 0
0.3 0.5 0.2
0.4 0 0.6

 , r1 = 1, r2 = 2, r3 = 0.

The graphical representation and a possible trajectory for both the underlying DTMC and the accumulated reward are
depicted in Fig. 2.

Denoting by Xn the state of the chain after the nth transition and by Zn the reward accumulated in the first n steps, we
have Zn =

n−1
i=0 rXi for n = 1, 2, 3, . . .. Further, let Si, 0 ≤ i ≤ c , denote the set of states with reward rate i and define the

matrices P(i), 0 ≤ i ≤ c , with entries according to

P(i)
kl =


Pkl if k ∈ Si,
0 otherwise.

For the example model introduced above we have

P(0)
=

 0 0 0
0 0 0
0.4 0 0.6

 , P(1)
=

0.5 0.5 0
0 0 0
0 0 0

 , P(2)
=

 0 0 0
0.3 0.5 0.2
0 0 0

 .



Our aim is to characterize the joint probability of the accumulated reward and the background state defined for n =

0, 1, 2, . . . and k = 0, 1, 2, . . . as

Fij(n, k) = Pr{Zn = k, Xn = j|X0 = i}.

It is easy to see that the following recursion holds for n = 1, 2, 3, . . . and k = 0, 1, 2, . . .

Fij(n, k) =

min(k,c)
m=0


l∈Sm

Fil(n − 1, k − m)Plj

which, introducing the matrix notation F(n, k) = [Fij(n, k)], becomes

F(n, k) =

min(k,c)
m=0

F(n − 1, k − m)P(m). (7)

The following theorem provides the discrete counterpart of (3).

Theorem 1. The double z-transform of F(n, k) is given by

F∗∗(z1, z2) =


I − z1

c
m=0

zm2 P(m)

−1

. (8)

Proof. Multiplying the left hand side of (7) by zn1z
k
2 and summing for n = 1, 2, . . . and k = 0, 1, . . . gives

∞
n=1

∞
k=0

zn1z
k
2F(n, k) = F∗∗(z1, z2) −

∞
k=0

zk2F(0, k) = F∗∗(z1, z2) − I (9)

because F(0, 0) = I and F(0, k) = 0 for k = 1, 2, 3, . . .. By performing the same operation on the right hand side of (7) we
have

∞
n=1

∞
k=0

zn1z
k
2

min(k,c)
m=0

F(n − 1, k − m)P(m)
=

c
m=0

∞
n=1

∞
k=m

zn1z
k
2F(n − 1, k − m)P(m)

= z1
c

m=0

zm2
∞
n=1

∞
k=m

zn−1
1 zk−m

2 F(n − 1, k − m)P(m)

= z1
c

m=0

zm2
∞
n=0

∞
k=0

zn1z
k
2F(n, k)P

(m)

= z1
c

m=0

zm2 F∗∗(z1, z2)P(m). (10)

From (9) and (10) we have

F∗∗(z1, z2) − I = z1
c

m=0

zm2 F∗∗(z1, z2)P(m)

which by simple rearrangements provides the theorem. �

The joint distribution of the completion time and the state is defined for n = 1, 2, 3, . . . and k = 1, 2, 3, . . . as

Gij(n, k) = Pr{Zn ≥ k, Zn−1 < k, Xn = j|X0 = i}.

It is easy to see that the following relation holds for n = 1, 2, 3, . . . and k = 1, 2, 3, . . .

Gij(n, k) =

min(k,c)
m=1

c
h=m


l∈Sh

Fil(n − 1, k − m)Plj

which, by the matrix notation G(n, k) = [Gij(n, k)], becomes

G(n, k) =

min(k,c)
m=1

c
h=m

F(n − 1, k − m)P(h). (11)



The following theorem provides the discrete counterpart of (4).

Theorem 2. The double z-transform of G(n, k) is

G∗∗(z1, z2) = I +
c

m=1

c
h=m

z1zm2


I − z1

c
m=0

zm2 P(m)

−1

P(h). (12)

Proof. Multiplying the left hand side of (11) by zn1z
k
2 and summing for n = 1, 2, . . . and k = 0, 1, . . . gives

∞
n=1

∞
k=0

zn1z
k
2G(n, k) = G∗∗(z1, z2) −

∞
k=0

G(0, k) = G∗∗(z1, z2) − I

because G(0, 0) = I and G(0, k) = 0 for k = 1, 2, 3, . . .. By performing the same operation on the right hand side of (11)
we have

∞
n=1

∞
k=0

zn1z
k
2

min(k,c)
m=1

c
h=m

F(n − 1, k − m)P(h)
=

c
m=1

c
h=m

z1zm2
∞
n=1

∞
k=m

zn−1
1 zk−m

2 F(n − 1, k − m)P(h)

=

c
m=1

c
h=m

z1zm2 F∗∗(z1, z2)P(h)

from which by applying (8) the theorem follows. �

2.2.1. Moments of accumulated reward
As in the continuous case, in theory, the accumulated reward and the completion time can be analyzed based on (8) and

(12) by applying double inverse z-transform. This approach is viable for small or highly structured DTMCs. The following
theorem, which is the discrete counterpart of (6), provides an efficient approach for the calculation of the moments of the
accumulated reward defined as

K(l)(n) =

∞
k=0

klF(n, k), k = 0, 1, 2, . . .

Theorem 3. The moments of the accumulated reward, K(l)(n), k = 0, 1, 2, . . . , satisfy the following recursive relation

K(l)(n) =

l
i=0


l
i


K(l−i)(n − 1)

c
m=0

miP(m). (13)

Proof. The moments K(l)(n) can be derived starting from (7) by multiplying both sides by kl and summing up for k =

0, 1, 2, . . . which leads to

K(l)(n) =

∞
k=0

kl
min(k,c)
m=0

F(n − 1, k − m)P(m)

from which by changing the order of the summation and applying

kl =

l
i=0


l
i


(k − m)l−imi

we get

K(l)(n) =

c
m=0

∞
k=m

l
i=0


l
i


(k − m)l−imiF(n − 1, k − m)P(m)

=

c
m=0

l
i=0


l
i

 ∞
k=m

(k − m)l−iF(n − 1, k − m)miP(m)

=

c
m=0

l
i=0


l
i


K(l−i)(n − 1)miP(m)

which yields the expression given in (13). �



The base cases of the recursion are given simply by the matrices

K(l)(0) =


I if l = 0
Z otherwise (14)

where Z denotes a matrix of zeros.
The recursion given in (7) for the distribution of the accumulated reward is based on the so-called forward scheme. It is

easy to verify that the following backward counterpart also holds

F(n, k) =

min(k,c)
m=0

P(m)F(n − 1, k − m) (15)

and it leads to the following theoremwhich is the backward counterpart of Theorem3 and thus provides a backward scheme
for the computation of the moments of the accumulated reward.

Theorem 4. Themoments of the accumulated reward,K(l)(n), k = 0, 1, 2, . . . , satisfy the following backward recursive relation

K(l)(n) =

l
i=0


l
i

 c
m=0

miP(m)K(l−i)(n − 1). (16)

Proof. Follows the same path used for Theorem 3. �

The difference between the forward scheme (Theorem 3) and the backward scheme (Theorem 4) is relevant when a
vector based calculation of the moments of the accumulated reward is implemented. With the forward scheme an arbitrary
initial distribution over all states can be considered and the computations provide the probability of each state at the end of
the transient analysis period. With the backward scheme, with one transient analysis, all states as deterministic initial state
can be analyzed but the identity of the final state is lost.

The expressions given in Theorems 3 and 4 directly provide a procedure for the calculation of the moments of the accu-
mulated reward. The time complexity of calculating K(l)(n) for l = 1, . . . ,N is roughly

N
i=0(i+ 1) times the complexity of

the transient analysis of the underlying DTMC. The space complexity is instead N + 1 higher than for the transient analysis
of the DTMC.

In the following we explain the vector based use of the forward scheme to calculate the first two moments of the accu-
mulated reward assuming an initial probability distribution of the states, given by the vector π(0). Let us use the notation

f(l)(n) = π(0)K(l)(n)
with which f(0)(n) is the vector of the state probabilities after n steps and f(l)(n), l ≥ 1 is the vector containing the informa-
tion on the lth moment of the accumulated reward after n steps. By multiplying the right hand side of (13) by π(0) from the
left, we obtain a recursion for the vectors f(l)(n). Writing this recursion explicitly for l = 0, 1, 2 results in

f(0)(n) = f(0)(n − 1)
c

m=0

P(m)
= f(0)(n − 1)P

f(1)(n) = f(1)(n − 1)P + f(0)(n − 1)
c

m=0

mP(m)

f(2)(n) = f(2)(n − 1)P + 2f(1)(n − 1)
c

m=0

mP(m)
+ f(0)(n − 1)

c
m=0

m2P(m).

The mean accumulated reward can be obtained then by summing up all entries of f(1)(n) while the second moment is the
sum of the entries of f(2)(n). The initial values for the recursion are obtained considering (14) and they are simply

f(0)(0) = π(0), f(1)(0) = |0, . . . , 0|, f(2)(0) = |0, . . . , 0|.
The vector based application of the backward scheme can be obtained by defining the column vectors

b(l)(n) = K(l)(n)1
where 1 is a column vector with all entries equal to 1. The ith entry of b(l)(n) gives the lth moment of the accumulated
reward given that the chain started in state i. By multiplying by 1 both sides of (16) from the right, we obtain a recursive
scheme to calculate b(l)(n). For the first two moments we have

b(0)(n) =

c
m=0

P(m)b(0)(n − 1) = Pb(0)(n − 1)

b(1)(n) = Pb(1)(n − 1) +

c
m=0

mP(m)b(0)(n − 1)

b(2)(n) = Pb(2)(n − 1) + 2
c

m=0

mP(m)b(1)(n − 1) +

c
m=0

m2P(m)b(0)(n − 1).



Fig. 3. A possible way to reach k amount of reward with e amount of excess.

The initial values of the recursion, based on (14), are

b(0)(0) = |1, . . . , 1|T , b(1)(0) = |0, . . . , 0|T , b(2)(0) = |0, . . . , 0|T .

2.2.2. Moments of completion time
In the following we derive an efficient, recursive scheme for the computation of the moments of the completion time. To

this end, let us use the notation

Gij(n, k, e) = Pr{Zn = k + e, Zn−1 < k, Xn = j|X0 = i}

which characterizes not only the time instance of reaching a given amount of reward but also the excess amount upon the
moment of completion. Inmatrix notationwewrite G(n, k, e) = [Gij(n, k, e)]. Themthmoment of the completion timewith
a given amount of excess will be denoted by

L(m)
ij (k, e) =

∞
n=0

nmGij(n, k, e)

with associatedmatrix notation L(m)(k, e) = [L(m)
ij (k, e)]. It follows that, by summing up for all possible values of the amount

of excess, the moments of the completion time, L(m)(k), can be obtained as

L(m)(k) =

c−1
e=0

L(m)(k, e).

The following theorem provides a recursive relation for the quantities L(m)(k, e).

Theorem 5. The moments of the completion time with a given amount of excess, e, 0 ≤ e ≤ c−1, satisfies the forward recursion

L(m)(k, e) =

m
i=0

c−e
f=1

m
i


L(i)(k − f , 0)L(m−i)(1, f − 1 + e).

Proof. The recursion is based on the equation

L(m)
ij (k, e) =

∞
n=0

nmGij(n, k, e) =


x1=0,1,..


x2=0,1,..

(x1 + x2)m
c−e
f=1


l∈S

Gil(x1, k − f , 0)Glj(x2, 1, f − 1 + e) (17)

where we exploited the fact that all possible ways to reach k amount of reward with e amount of excess is composed of two
parts
• reaching a level k − f with zero excess where 1 ≤ f ≤ c − e (described by Gil(x1, k − f , 0)), and then
• reaching level kwith excess e (i.e., arriving to level k+e) without ‘‘touching’’ any level between k− f and k+e (described

by Glj(x2, 1, f − 1 + e) which guarantees that the accumulated reward has not reached level k before x1 + x2 steps).

The two parts are illustrated in Fig. 3. The second part is composed of a sojourn of any length in states with zeros reward
followed by sojourn of length 1 in a state with reward rate f + e during which the process reaches level k+ e in a single step.

The theorem follows from (17) by applying matrix notation and the formula (x1 + x2)m =
m

i=0

m
i


xi1x

m−i
2 . �

The following theorem is the ‘‘backward’’ counterpart of Theorem 5.

Theorem 6. The moments of the completion time with a given amount of excess, e, 0 ≤ e ≤ c − 1, satisfies the backward
recursion

L(m)(k, e) =

m
i=0

c−1
f=0

m
i


L(m−i)(1, f )L(i)(k − f − 1, e).

Proof. The proof follows the line of the proof of Theorem 5. �



In order to carry out the computations we need the matrices that provide the base cases of the recursion. Some of these
matrices are trivial to compute and for what concerns these we have:

L(0)(k, e) =


I if k ≤ 0, k = −e
Z if k ≤ 0, k ≠ −e

L(i)(k, e) = Z if i ≥ 1, k ≤ 0

where negative values of k are considered for computational convenience of the recursion.
Apart of the matrices listed above we need to compute L(i)(1, e) with i ≥ 0 and 0 ≤ e ≤ c − 1. To this end, it is useful to

introduce the matrices P(0,i) with 0 ≤ i ≤ c with entries according to

P(0,i)
kl =


Pkl if k ∈ S0 and l ∈ Si
0 otherwise.

With these matrices, we have

L(i)(1, e) =

∞
k=1

(k + 1)i

P(0,0)k−1 P(0,e+1)P(e+1)

+ P(e+1) (18)

where the first term of the right hand side considers the cases in which the process starts in a state with zero reward, it stays
in the subset of states S0 for k − 1 steps, then it jumps to a state in Se+1 and reaches level 1 with excess e in the subsequent
step. The second term considers instead the cases in which the process starts in a state belonging to Se+1 and it reaches level
1 with excess e in a single step.

In order to compute L(i)(1, e) let us denote the summation in (18) by

R(i)
=

∞
k=1

(k + 1)i

P(0,0)k−1

.

By noting that

R(i)
=

i
l=0


i
l

 ∞
k=1

ki−l


P(0,0)k−1


=

i
l=0


i
l

 ∞
k=2

ki−l


P(0,0)k−2 P(0,0)
+ I


=

i
l=0


i
l

 
R(i−l)P(0,0)

+ I


a recursive formula for R(i) follows

R(i)
=


i

l=1


i
l

 
R(i−l)P(0,0)

+ I

+ I

 
I − P(0,0)−1

.

The above expression points out that, as in case of continuous timeMRMs, the presence of many states with zero reward
increases the computational complexity. Indeed, in order to compute the R(i) matrices, the inversion of a matrix with as
many rows as many zero states there are is required. This matrix inversion leads to a full matrix and hence can increase
drastically the space complexity as well. We briefly mention that, if a vector based implementation is applied then the
matrix inversion can be avoided but the calculations would still require the solution of linear systems during every step of
the computation.

The expressions given in Theorems 5 and 6 directly provide a procedure for the calculation of the moments of the
completion time. If the number of zero states is low then analyzing the moments of the completion time is as complex
as analyzing the moments of the aggregated reward.

The vector based application of Theorems 5 and 6 follows the same line as described for the accumulated reward at the
end of Section 2.2.1.

3. Analysis of systems by Markov reward models

Due to the generality of the proposed approach, several system architectures andmachinemodels can be analyzedwithin
the framework described in the previous sections, both under the continuous and discrete assumptions.1 However, due to
space limitations, in this paper we report the detailed analysis and results only for a few system architectures, including

1 In reference to the discrete time setting, a graphical JAVA tool for the computation of accumulated reward and completion time is available at
http://www.di.unito.it/~angius.

http://www.di.unito.it/~angius


Fig. 4. Layout of the system with N identical parallel machines.

serial–parallel systems with limited repair capacity, buffered systems with degrading machines, and buffered systems
producing in batches. The outputmoments of such systems have never been previously analyzed in the literature.Moreover,
we focus onmore traditional serialmulti-stagemanufacturing lines andwe show the effect of down timedistributions on the
moment of the output performance. In addition, we derive some useful properties of this class of systems. For each example,
the system configuration is represented by adopting the following formalism:machines are representedwith squares, finite
capacity buffers are representedwith circles, andmaterial flows are representedwith arrows. All the numerical experiments
reported in this section have been executed on a 2 GHz Intel Centrino Dual Core, with 4 Gb of RAM.

3.1. Parallel machines with limited repair capacity

Consider a manufacturing system, or a portion of it, composed by N identical parallel machines, as represented in Fig. 4,
each one characterized by failure rate λ, repair rate µ and attended by K ≤ N repairmen. If operational, each machine is
always working and its processing rate is equal to 1. If failed, a machine requires service by an operator to be restored to
its operational condition. Within this experiment the impact of the number of repairmen on the moments of the system
completion time and the cumulative production is investigated for the first time. The associated continuous MRM has the
following infinitesimal generator (where we omit the diagonal entries)

Q =



• Nλ
µ • (N − 1)λ

2µ • (N − 2)λ
. . .

Kµ • λ
Kµ •


and the matrix composed of the reward rates is

R =



N
N − 1

. . .

1
0


.

The matrices Q and R of this simple model are such that the expressions given in (3) and (4) can be computed in a symbolic
manner for any value of N and K . This gives the possibility of analyzing the production as a function of λ and µ. Based on
the properties of the Laplace transform, the Laplace transform of the moments of the accumulated reward (i.e., the Laplace
transform of K(n)(t)) can be obtained from F∗∗(s, v) as

K(n)∗(s) =


∞

t=0
e−stK(n)(t)dt = lim

v→0
(−1)n

dnvF∗∗(s, v)

dvn
.

In general it is possible to obtain the inverse Laplace transform of the entries of K(n)∗(s) only if the numerical values of
λ, µ,N and K are known. For example, with λ = 1, µ = 2,N = 3, K = 2 the mean accumulated reward at time t given
that the system is started with all machines up (obtained by summing up the entries of the first row of K(1)∗(s) and applying
inverse Laplace transform) is

0.3709 + 1.963t + 0.001644e−8.372t
− 0.03e−5.t

− 0.3425e−2.627t

while the second moment (obtained the same way from K(2)∗(s)) is

−0.2429 + 2.0009t + 3.8558t2 + 0.004623e−8.372t t − 0.084e−5.t t
− 0.8434e−2.627t t + 0.003189e−8.372t

+ 0.1776e−5.t
+ 0.06217e−2.627t .



Fig. 5. Accumulated reward as a function of time for identical machines with limited repair capacity with λ = 1, µ = 2,N = 3 for different values of K :
mean (left) and index of dispersion (right).

In Fig. 5 the mean and the index of dispersion of the cumulated production as a function of time are depicted. While the
cases K = 2 and K = 3 are almost identical for what concerns the mean, they differ for the variance of the cumulated
production. Therefore, by only looking at the first moment of the cumulated production, one would probably take the
decision of dedicating 2 repairmen to this system, since the additional personnel cost is not compensated by a significant
throughput gain. However, by also considering the second moment, the best decision could be allocating one additional
repairmen to reduce the variance of the output of a 20%, for example at time 10, thus generating a more stable output,
ultimately compensating the additional personnel cost by a reduction of backlog costs.

In general, it is not possible to obtain expressions for the moments of the production as a function of time and the
parameters of the model (λ, µ,N, K ) but a symbolic expression for the asymptotic behavior of these functions can be
obtained. This can be done as follows. The non-vanishing terms of the mean are of the form a10 + a11t while for the second
moment it is a20 + a21t + a22t2. Denoting bym1(t) andm2(t) the mean and the second moment of the accumulated reward
at time t and by m∗

1(s) and m∗

2(s) their Laplace transforms (which can be easily obtained by appropriate summations of the
entries of K(1)∗(s) and K(2)∗(s)), the coefficients describing the non-vanishing terms can be obtained as

a11 = lim
s→0

s2m∗

1(s)

a10 = lim
s→0

s

m∗

1(s) −
a11
s2


a22 =

1
2
lim
s→0

s3m∗

2(s)

a21 = lim
s→0

s2

m∗

2(s) −
2a22
s3


a20 = lim

s→0
s

m∗

2(s) −
2a22
s3

−
a21
s2


.

Having obtained the above coefficients the limiting value of the index of dispersion can be obtained as

I =
a21 − 2a11a10

a11
.

The above procedure provides symbolic expressions for any value of N and K . For example, with N = 3 we have that the
limiting values of the index of dispersion is

2λ

72λ6

+ 216µλ5
+ 324µ2λ4

+ 240µ3λ3
+ 94µ4λ2

+ 16µ5λ + µ6


2λ2 + 2µλ + µ2
 

6λ3 + 6µλ2 + 3µ2λ + µ3
2

×
λ

18λ6

+ 108µλ5
+ 234µ2λ4

+ 249µ3λ3
+ 146µ4λ2

+ 48µ5λ + 8µ6


(λ + µ)2

3λ3 + 6µλ2 + 6µ2λ + 2µ3

2 2λ
(λ + µ)2

for K = 1, 2 and 3, respectively, where the simplicity of the last expression is due to the fact that with K = 3 the model
simplifies to the sum of three independent machines.

Nowwe turn our attention to the analysis of the completion time. The same stepswehave applied to the double transform
of the accumulated reward, F∗∗(s, v), can be applied to the double transform of the completion time, G∗∗(s, v). We report
briefly the results that can be obtained. With λ = 1, µ = 2,N = 3, K = 2, the mean of the completion time for x units of
product is

−0.1183 + 0.5092x − 0.006899e−5.302x
+ 0.1252e−1.697x



Fig. 6. Completion time as a function of the required quantity of the product for identical machines with limited repair capacity with λ = 1, µ = 2,N = 3
for different values of K : mean (left) and index of dispersion (right).

while its second moment is

−0.05676 − 0.04862x + 0.2593x2 − 0.01401e−5.302xx + 0.1398e−1.697xx − 0.005304e−5.302x
+ 0.06207e−1.697x.

Fig. 6 provides the mean and the index of dispersion of the completion time as a function of the required quantity of the
product. The same phenomenon can be observed as for the accumulated reward: the mean completion time is almost
identical for the cases K = 2 and K = 3 but some difference occurs between these two cases for what concerns the
variability of the completion time.

The limiting index of dispersion of the completion time can be obtained without assigning numerical values to λ and µ,
and with N = 3 we have

2λ

72λ6

+ 216µλ5
+ 324µ2λ4

+ 240µ3λ3
+ 94µ4λ2

+ 16µ5λ + µ6


3µ

2λ2 + 2µλ + µ2

2 6λ3 + 6µλ2 + 3µ2λ + µ3


×
λ

18λ6

+ 108µλ5
+ 234µ2λ4

+ 249µ3λ3
+ 146µ4λ2

+ 48µ5λ + 8µ6


6µ(λ + µ)4

3λ3 + 6µλ2 + 6µ2λ + 2µ3

 2λ
3µ(λ + µ)

for K = 1, 2 and 3, respectively,
The procedure we have illustrated here for parallel machines with limited repair capacity with continuous time and

continuous product can be performed with discrete time and discrete product as well by applying basic properties of z-
transform.

3.2. Discrete buffered two-machine line with degrading machines

As a second example, we analyse the output of the second machine of a buffered two-machine line characterized by
machines that undergo a deterioration process. The main goal of this experiment is to investigate the impact of the buffer
size on the moments of the performance measures, for these previously uninvestigated system features. The system is
represented in Fig. 7. We assume discrete time and production of discrete quantities. Moreover, we assume that the two
machines are identical and operate according to a degradation/reparation scheme. The underlying DTMC modeling the
dynamics of each machine has the following transition probability matrix:

P =



1 − p p
1 − p p

. . .

1 − p p
1 − q q

1 − q q
. . .

q 1 − q


withNu up-states andNd down-states.We assume that the quantity produced in the up-states isNu,Nu−1,Nu−2, . . . , 2, 1,
i.e., the productivity of the machines degrades as it crosses the up-states. There is no production in the down-states.
Therefore, at the end of each time slot, the first machine delivers ri parts in the buffer (if it is in state i) and then the second
machine extracts rj parts from the buffer (if it is in state j). When the buffer is totally full the first machine is blocked and
it is not allowed to change state; the same happens to the second machine when the buffer is totally empty (Operation
Dependent Transitions). When the buffer is close to being full (empty) then the first (second) machine produces as much as



Fig. 7. Layout of the buffered two-machine line.

Fig. 8. Number of producedparts as a function of time for themachine–buffer–machine blockwith different buffer sizes:mean (left) and index of dispersion
(right).

allowed by the current buffer content (by the current available parts). This assumption is also sometimes referred as ‘‘partial
batching’’. Under these assumptions, it is straightforward to build a DTMC describing the dynamics of the whole system,
which accounts for both the states of the two machines and the number of parts stored in the buffer. In detail, the state of
the system is described by the triple (α1, α2, b), where α1 refers to the state of the first machine, α2 refers to the state of
the second machine and the buffer level b assumes values 0, 1, 2, . . . , B. The machines act as independent in internal states
(0 < b < B) and the transitions between the system states are obtained by multiplying the corresponding transitions of the
DTMC describing the behavior of eachmachine in isolation. At the boundary (b = 0, b = B), due to the Operation Dependent
Transitions assumption, the transitions are only determined by the failed machine that generates the starvation or blocking
event. The output reward is obtained by considering the states where the second machine is operational and not starved.

For this system, considering empty buffer and fully operational machines as initial state, we compute the mean and
the index of dispersion of the number of parts produced by the second machine by applying the recursion given in (13) for
Nu = 10,Nd = 5, p = 0.1, q = 0.5, under variation of the buffer size B. The results are depicted in Figs. 8 and 9. As expected,
the mean cumulative production is positively affected by the buffer. Indeed, higher buffer results in higher mean cumulated
production. For example, if 2800 parts have to be delivered before time 800 a buffer size of 10 shall be selected, if the first
moment of the production output is observed. However, if the index of dispersion of the cumulated production is observed,
a more complex behavior is captured. Indeed, the index of dispersion is low for low buffer size (B = 5), then drastically
increaseswithmedium buffer size (B = 10) and finally decreases for increasing buffer size (B = 50, B = 100). Therefore, the
configurationwith B = 10 provides an index of dispersion of the cumulated production that is about three times larger than
the index of dispersion with B = 5. Therefore, by moving from a configuration with B = 10 to a configuration with B = 5
the output stability can be consistently increased at the cost of reducing the mean cumulated production. The oscillatory
behavior of the variability as a function of time is due to the fact that both the time to complete failure and the time to repair
of the machines are of low variance. The size of the state space is given by (Nu + Nd)

2(B+ 1) which in our case is 22725 for
B = 100. Note that the method is applicable for much larger state spaces as well.

3.2.1. Skewness and higher order moments
As third test, we illustrate the use of higher order moments in the analysis of a machine–buffer–machine block. We

assume that both machines have geometric failure times with mean time to failure equal to 100. Also for what concerns
times to repair we assume that the two machines are identical but we consider three different distributions with mean
equal to 10: the geometric distribution, the order two hyper-geometric distribution with coefficient of variation (CV) equal
to 2, and the order two hypo-geometric distribution with CV equal to 0.5. Both machines produce one part per time slot in
the up state. The capacity of the buffer is 5.

The idea behind these tests is to refute the hypothesis that the normal distribution is a good estimator of the distribution
of the number of items produced at a given time unit. This has been done by estimating the symmetry of the distribution
through the computation of the skewness.2 If the service level of the lines was following a normal distribution then the
skewness of both the accumulated reward and the completion time would be constant to zero. Fig. 10 confirms our belief,
i.e., in a short time horizon, the hypothesis above is a biased estimator. This is showed on the r.h.s. where all the three curves
of the skewness start quite far from zero and get reasonably close to zero after time 2000 only.

2 The skewness corresponds to the standardized third moment and is equal to E[(X−µ)3]

E[(X−µ)2]3/2
.



Fig. 9. Time required to complete a task as a function of the number of items for the machine–buffer–machine block with different buffer sizes: mean
(left) and variance (right).

Fig. 10. Number of produced parts as a function of time for the machine–buffer–machine blocks with different coefficients of variation: mean (left) and
skewness (right).

Fig. 11. Time required to complete a task as a function of the number of items for the machine–buffer–machine block with different coefficients of
variation: mean (left) and skewness (right).

Fig. 11 gives a quantification of the error in regards to the size of the lot. In particular, we can observe that the error
can be consistent for small and medium lot sizes. Thus, the normal distribution assumption overestimates the service level
leading to the risk of generating optimistic system configurations.

On the left side of the figures it is possible to observe that as far as the mean sojourn times are the same, the expected
service level is independent from the CVs.

3.3. Systems with machines producing in batches

The fourth set of tests deals with the impact of batch productions in case of full batching policy [34]. The main goal of
this experiment is to investigate the impact of the batch size on the moments of the performance measures.



Fig. 12. Number of produced parts as a function of time for themachine–buffer–machine block with different batch sizes on the first machine: mean (left)
and index of dispersion (right).

Fig. 13. Time required to complete a task as a function of the number of items for the machine–buffer–machine block with different batch sizes on the
first machine: mean (left) and index of dispersion (right).

We consider a two machine system, with machines having failure and repair times distributed according a geometric
distribution, with mean as in the previous test case. The size of the buffer is set to 20. Full batchingmeans that the upstream
machine can only produce a batch if there is enough space in the downstream buffer. Similarly, the downstream machine
can only produce a batch if there are enough semi-finished parts in the upstream buffer.

We tested different batch sizes and assumed two scenarios: in the first, the upstream machine produces only in batch,
whereas the downstreammachine is able to produce only one item per unit time, if operational; in the second scenario, the
situation is reversed. Figs. 12 and 13 depict both the mean and the index of dispersion of the cumulated production for the
first scenario. It is possible to observe that the variability of the cumulated production decreases by increasing the batch size
of the first machine although the expected production remains almost unchanged.

The results for the second scenario are depicted in Figs. 14 and 15. The figures show that the expected cumulated
production quantity is characterized by step curves. In particular, the curves show the presence of cold points (minimal
result with maximum effort) and hot points (maximum result with the minimal effort) both for short time intervals and for
small lot sizes. For example, assuming a batch size equal to 15, the production of a lot of 16 items requires the same time as
the production of a lot composed of 30 parts. This analysis may help the decision about lot sizing, taking into account both
the mean and the variance of the cumulated production.

The right sides of the figures show the variability of the cumulated production. It is possible to observe that the larger
the batch and the more variability is observed in the cumulated production. In particular, much larger is the dimension of
the batch and much larger are the spikes that characterize the accumulate reward index of dispersion.

From this simple example it can be concluded that the reversibility property does not hold for batch production, since the
system and its reversed system show different behavior, both in terms of mean and variance of the cumulated production.

3.4. Multi-stage buffered systems with single up–down machines

3.4.1. Reversibility property for the asymptotic second moments
The following tests deal with production lines formed by four machines, Fig. 16, each one having geometric failure and

repair timeswithmean equal to 100 and 10, respectively.We test the effect of different buffer sizes on the output variability.



Fig. 14. Number of produced parts as a function of time for the machine–buffer–machine block with different batch sizes on the second machine: mean
(left) and index of dispersion (right).

Fig. 15. Time required to complete a task as a function of the number of items for the machine–buffer–machine block with different batch sizes on the
second machine: mean (left) and index of dispersion (right).

Fig. 16. Layout of the considered four-machine line.

The idea behind the test is to show that the reversibility property holds also for higher order performance measures.
Indeed, it was proved in [35] that, in buffered production lines, the average throughput remains invariant under reversal of
the line. Line reversal means that every item passes through the stations in the reverse order, that is, beginning with the
last station and ending with the first station. However, this property has never been discussed for higher order performance
measures. In our example, since all machines are identical, this means that a production line having three buffers with
capacity 5, 5, 2 provides the same cumulated output variance of a line whose buffers have been inverted, i.e., 2, 5, 5. In this
section, we experimentally show that this property is always true when the time approaches infinity whereas in a finite
time horizon it is true only if the machines start from the same state. Figs. 17 and 18 illustrate these results. A formal proof
of this statement will be subject of future works.

3.4.2. Six machines—estimation completion time
In this last experiment, we consider a Markovian model of the production line in Fig. 19, composed of six machines

and five buffers, each one with a capacity of 5; hence the whole state space is composed of 26
× 65

= 497 664 states.
This model dimension does not allow the direct computation of the completion time distribution. The reason is that the
number of stateswith zero production is high and the inversion of thematrixP(0,0) generates a densematrixwhose handling
is not possible. Therefore, we compute the completion time distribution using the duality with the accumulated reward
distribution. Specifically, we apply the proposed approach to compute the first 20 moments of the accumulated reward
of the system. Then, we approximated the distribution of this measure by using the method described by Telek and Tari
in [36,37]. Given a r.v. X , this method takes as input a finite number of moments of X and returns an upper and lower
bound for the probability Pr{X = x}. The method works in such a way that the more x is far from the expectation, the
more accurate the bounds are. In general, the accuracy of themethod (tighter intervals) improves if the number of moments
increases. The computation of the 20 consideredmoments required half an hour. Note that the computation of themoments



Fig. 17. Number of produced parts as a function of time for a production line composed of four machines and three buffers having sizes B1–B2–B3: mean
(left) and index of dispersion (right).

Fig. 18. Time required to complete a task as a function of the number of items for a production line composed of four machines and three buffers having
sizes B1–B2–B3: mean (left) and index of dispersion (right).

Fig. 19. Layout of the considered six-machine line.

of the accumulated reward is feasible for bigger state spaces. The result are shown in Fig. 20 and in Fig. 21. In particular,
Fig. 20 shows the expected value and the index of dispersion of the cumulated reward since time 2000. Fig. 21 shows the
approximated completion time c.d.f. for a lot of 2000, in comparisonwith its normal approximation, obtained by considering
only the first twomoments. As it can benoticed, in this case the completion time c.d.f. calculatedwith the normal distribution
approximation is within the bounds calculated with themethod proposed in [36,37]. This is in line with the results reported
in Section 3.2.1, since the lot size in the considered case is large enough for accepting the normal distribution. Therefore, the
method proposed in this paper can be used to approximate the entire distribution of the considered performancemeasures,
enabling to accept or refuse the normal distribution approximation, depending on the considered system parameters and
time or lot size.

4. Conclusions

In this paper, a methodology for the analysis of the moments of the cumulated output and the completion time of
unreliable Markovian systems has been presented. The framework is based on both continuous and discrete Markov reward
models of general complexity, which allows for modeling several system architectures and failure/repair mechanisms. The
approach allows the derivation of closed form formulas for the secondmoment of the production output for specific system
settings. The main results reported in this paper are as follows:

• The stability of the output can be increased by changing the buffer size. In particular, there are cases where it is possible
to reduce the variance of the cumulated output at the cost of reducing the mean of the cumulated output.

• The service level calculated by approximating the cumulated production by a normal distribution is a biased estimator.
The error can be consistent, especially for small and medium lot sizes. In particular, this approximate service level
estimator overestimates the service level, thus leading to the risk of generating optimistic system configurations.



Fig. 20. Number of produced parts as a function of time for a six machine production line: mean (left) and index of dispersion (right).

Fig. 21. C.d.f. estimation of the completion time for a six machine production line.

• The system ‘‘reversibility’’ property holds for the asymptotic variance rate and the asymptotic completion time. It does
not hold, in general, for the secondmoment of the cumulated production, at a given time, and the secondmoment of the
completion time, at a given lot size.

• The number of operators in parallel machining stages consistently affects both the mean and the variance of the
cumulated production. In particular, increasing the number of repairmen is beneficial since it increases the first moment
and decreases the second moment of the system output.

Future research activities will be dedicated to the extension of the approach to deal with systems with multiple random
rewards. This extensionwould allow including in themodel the case of impulse type rewards.Moreover, particular attention
will be given to the analysis of the transient period of production systems depending on the initial system conditions,
since the presented analysis can be in principle applied to study this problem. Furthermore, more complex systems design
problemswill be tackled including the computation of highermoments of the performancemeasures directly in the problem
formulation.
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