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Exact vibration solutions for cross-ply laminated plates with two opposite

edges simply supported using refined theories of variable order

Lorenzo Dozio

Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa, 34, 20156, Milano, Italy

Abstract

This paper presents exact solutions for free vibration of rectangular cross-ply laminated plates with at

least one pair of opposite edges simply supported using refined kinematic theories of variable order. Exact

natural frequencies are obtained using an efficient and unified formulation where the solving set of second-

order differential equations of motion and related boundary conditions are expressed at layer level in terms

of so-called fundamental nuclei having invariant properties with respect to the order of the plate theory. The

nuclei are then appropriately expanded according to the number of layers and the order of the theory and

the resulting equations are transformed into a first-order model whose solution is obtained by using the state

space concept. In this way, the mathematical effort needed to derive analytical solutions is highly reduced.

Both higher-order equivalent single-layer and layer-wise theories are considered in this study. Comparisons

with other exact solutions are presented and useful benchmark frequency results for symmetric and un-

symmetric cross-ply laminates are provided.

Keywords: Free vibration, exact solutions, cross-ply laminated plates, refined theories, higher-order plate

theories, layer-wise plate theories.

1. Introduction

Exact vibration analysis of structural elements like beams, plates and shells can be regarded as the the-

oretical foundation of almost all approximate solution methods. Exact vibration solutions can be relevant

for understanding the dynamic response and performing quick parametric and optimization studies. Fur-

thermore, they can serve as a valuable reference for validating numerical methods on their convergence and

accuracy and as a basis for developing advanced modelling techniques such as the dynamic stiffness method

and the superposition method [1].

By restricting the analysis to plate problems, mathematically exact solutions are typically available as

closed-form solutions and series solutions [2]. It is well known that the most common series solution for
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plates is the so called Navier-type solution. In 1820, Navier introduced a simple method for bending analysis

of rectangular plates based on the expansion of the displacement field and the load in a double trigonometric

series which identically satisfies the boundary conditions of the problem. Exact results can be obtained for

specially orthotropic laminates with all edges simply supported [3]. As in the case of bending, the same

double Fourier series can be used for vibration and buckling problems.

It is also well known that exact solutions do exist for rectangular specially orthotropic laminates having

one pair of opposite edges simply supported and the remaining two edges having any possible combination

of free, simple support or clamped conditions [3]. In this case, the displacement is assumed to be expanded

in a single trigonometric series along the direction normal to the pair of opposite simply supported edges.

This form of solution is typically referred to as a Lévy-type solution both for static and dynamic problems.

However, as stated by Leissa [4], it was first used by Voigt for transverse vibration analysis in 1893, six years

before Lévy proposed the same type of solution for solving the plate bending problem.

Exact transverse and in-plane free vibration analysis of isotropic thin plates with at least two opposite

edges supported was first provided by Leissa [4] and Gorman [5], respectively. The remarkable work by

Hashemi and Arsanjani [6] on moderately thick plates using the Mindlin theory can be considered a coun-

terpart of that undertaken much earlier by Leissa for thin plates. Exact vibration solutions of isotropic

multi-span and stepped rectangular plates were presented by Xiang and his co-workers [7, 8, 9, 10]. More

recently, Voigt-type solutions for free transverse vibration of thick plates have been also derived via the

third-order shear deformation theory [11].

The first-known exact solutions for laminated plates having one pair of opposite simply supported edges

are presented in a series of papers by Khdeir, Reddy and Librescu [12, 13, 14, 15, 16, 17]. Assuming a single

series solution in one direction, the equations of motion are transformed into a set of ordinary differential

equations in the other direction. This set is further transformed into a first-order state space model whose

general solution is applied to the boundary conditions to obtain the natural frequencies of the problem.

Exact eigenfrequencies of symmetric cross-ply and antisymmetric angle-ply laminated plates are generated

using the classical lamination plate theory (CLPT), the first-order shear deformation theory (FSDT) and

the third-order shear deformation theory (TSDT) originally proposed by Vlasov for isotropic structures and

then extended by Reddy to composite plates and shells [18]. At a later stage, the same method has been

applied to plates modelled according to a second-order shear deformation theory [19] and a two-variable

refined theory [20].

All the above-cited analytical works are based on two-dimensional (2-D) plate theories essentially built

according to a Newtonian approach, where the kinematic variables of the displacement model represent

physical quantities like translations, rotations and warping. They neglect plate thickness stretching and

are simple enough to yield economical models that could be handled rather easily by analytical techniques.

However, they may introduce overly simplified assumptions concerning the three-dimensional (3-D) kine-
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matics of deformation of the plate. Indeed, multilayered constructions are typically characterized by high

transverse shear and normal deformation and by a displacement field with discontinuous derivatives along

the thickness direction (so called zig-zag effect). Such complicating effects are completely discarded or only

approximately captured by FSDT and TSDT. The accuracy of Newtonian-based plate theories in predicting

the laminate vibration behavior is even worse when the thickness-to-length ratio of the plate increases and

the frequency range of interest widens.

Owing to the complex nature of the 3-D deformation of laminated plates, many refinements of FSDT

have been proposed in the literature to improve the accuracy of 2-D plate models without resorting to a

cumbersome fully 3-D analysis. They are typically referred to as refined or higher-order shear deformation

theories [21, 22, 23, 24, 25, 26] and belong to the class of theories developed according to a Lagrangian ap-

proach, where each kinematic variable of the assumed displacement model can be considered as a generalized

coordinate without a direct physical meaning. Generally speaking, Lagrangian-based plate theories can be

classified as equivalent single-layer (ESL) models, where the classical FSDT displacement form is enriched

with higher-order terms as series expansion of the thickness coordinate, and layer-wise (LW) models, in

which a different displacement field is postulated in each layer and appropriate continuity conditions are

enforced at each layer interface. The number of expansion terms for each displacement variable included

into the plate model is referred to as the order of the theory.

The disadvantage of refined plate theories is the complexity of the resulting models, which are lengthy

and tedious to derive and difficult to solve by analytical methods. To the best author’s knowledge, exact

Voigt-type solutions based on a refined theory have been obtained only recently by Boscolo [27]. In this

work, free vibration of rectangular laminated plates is solved using a first-order layer-wise theory. Exact

eigenfrequencies are validated by comparison with available analytical 3-D and 2-D Navier-type solutions.

The approach developed in Ref. [27] is used by Boscolo and Banerjee [28] within the framework of the

dynamic stiffness method. Although the first-order layer-wise displacement model may suffer from some

limitations in terms of accuracy and efficacy, the effort is remarkable.

The aim of the present work is to present an efficient, unified and somehow automatic method to provide

exact vibration solutions of thin and thick cross-ply laminates with at least two opposite edges simply

supported. It can be considered as a generalization of what presented in Ref. [27]. The novel procedure

introduced here overcomes the shortcomings of the previous formulations which were limited to plate models

derived from a single theory with fixed kinematics (i.e., fixed order). Using the present approach, the solving

equations must not be re-derived when a different order of the theory is adopted and thus the mathematical

effort needed to obtain analytical solutions is substantially reduced. In particular, both two-dimensional

ESL and LW theories of variable order are considered. As a result, a considerable number of new exact

frequency results are obtained which can be useful as benchmark solutions for future comparison.
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2. Governing equations at layer level

2.1. Preliminaries

Consider an unloaded cross-ply laminated rectangular plate of length a, width b and thickness h (see

Figure 1). The plate consists of Nℓ layers, which are assumed to be homogeneous and made of orthotropic

material of mass density ρk. The kth layer has thickness hk and is located between interfaces z = zk and

z = zk+1 in the thickness direction. The layer numbering begins at the bottom surface of the laminate (i.e.,

z1 = −h/2).

The equations of motion are derived from the principle of virtual displacements (PVD), which is written

as follows
Nℓ
∑

k=1

∫

Ω

zk+1
∫

zk

(

δǫkp
T
σ

k
p + δǫkn

T
σ

k
n

)

dζdΩ = −

Nℓ
∑

k=1

∫

Ω

zk+1
∫

zk

δukTρk
∂2uk

∂t2
dζdΩ (1)

where

uk(x, y, ζk, t) =
[

uk(x, y, ζk, t) vk(x, y, ζk, t) wk(x, y, ζk, t)
]T

(2)

is the displacement vector at any point of the layer k, ζk is the local dimensionless thickness coordinate

(−1 ≤ ζk ≤ +1), Ω = [0, a]× [0, b], and the stress and strain vectors for the kth layer are partitioned into

in-plane and out-of-plane (normal) components as follows

σ
k
p =

[

σk
xx σk

yy τkxy

]T

, ǫ
k
p =

[

ǫkxx ǫkyy γk
xy

]T

σ
k
n =

[

τkxz τkyz σk
zz

]T

, ǫ
k
n =

[

γk
xz γk

yz ǫkzz

]T

The linear strain-displacements relations are expressed in matrix notation as

ǫ
k
p = Dpu

k, ǫ
k
n = Dnu

k +
∂

∂z
uk (3)

where

Dp =











∂/∂x 0 0

0 ∂/∂y 0

∂/∂y ∂/∂x 0











, Dn =











0 0 ∂/∂x

0 0 ∂/∂y

0 0 0











2.2. Refined theories of variable order

According to the technique proposed by Carrera [29], an entire class of 2-D refined LW plate theories

are employed by expressing the displacement vector uk through the Einstein notation as follows

uk(x, y, ζk, t) = Fτ (ζk)u
k
τ (x, y, t) (4)

where τ is the theory-related index, Fτ (ζk) are appropriate thickness functions defined locally for the layer,

and

uk
τ (x, y, t) =

[

uk
τ (x, y, t) vkτ (x, y, t) wk

τ (x, y, t)
]T

(5)
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is the vector of generalized (Lagrangian) kinematic coordinates in the assumed displacement model corre-

sponding to index τ . Various theories of different order can be obtained by choosing the type of thickness

functions and the range values of τ . In this work, a family of layer-wise theories of variable order N , which

is a free parameter of the formulation, is considered by assuming τ = t, b, r (r = 2, . . . , N) and selecting

Ft(ζk) =
1 + ζk

2
; Fb(ζk) =

1− ζk
2

; Fr(ζk) = Pr(ζk)− Pr−2(ζk) (6)

where Pi(ζk) is the Legendre polynomial of ith order. In so doing, the displacement variables uk
b and uk

t are

the actual values at the bottom and top surfaces of layer k, respectively, and the interlaminar displacement

continuity can be easily imposed as uk
t = uk+1

b for k = 1, 2, . . . , Nℓ−1. Each member of the family is shortly

denoted here by the acronym LDN , which stands for (L)ayer-wise (D)isplacement-based theory of order N .

Note that the number of degrees of freedom for a LDN theory is given by 3(N + 1)Nℓ − 3(Nℓ − 1).

The same formal approach can be also used to define a class of ESL plate theories. Since in this case

the kinematics is layer-independent, the k index in Eq. (4) is dropped and global thickness functions Fτ are

selected. The classical z expansion is here adopted in terms of Taylor polynomials by assuming

Fτ = zτ (7)

where now t = 0 and b = 1. The related N -order ESL theory is denoted by the acronym EDN , which stands

for (E)quivalent single-layer (D)isplacement-based theory of order N . As such, the number of degrees of

freedom for a EDN theory is 3(N + 1). It is noted that, according to the present framework, a first-order

and third-order ESL theory are defined, respectively, as follows:

ED1 (first-order ESL theory):



















u = u0 + zu1

v = v0 + zv1

w = w0 + zw1

(8)

ED3 (third-order ESL theory):



















u = u0 + zu1 + z2u2 + z3u3

v = v0 + zv1 + z2v2 + z3v3

w = w0 + zw1 + z2w2 + z3w3

(9)

Therefore, they differ from conventional FSDT and TSDT. In particular, ED1 includes a first-order term

in the expansion of the transverse displacement w, which is not present in FSDT. ED3 model contains

12 kinematic variables compared to 5 of TSDT since transverse normal strain effects are included through

the third-order expansion of w and no specific conditions (such as traction-free boundary conditions on

the top and bottom faces of the laminate) are imposed to reduce the number of dependent unknowns. As

discussed in Dozio and Carrera [30], classical FSDT can be recovered from ED1 model after imposing the

condition of null transverse normal stresses and introducing an appropriate shear correction factor into the

constitutive equations. Note also that ED1 exhibits a thickness locking problem [31], which appears since it
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shows a constant distribution of transverse normal strain. Therefore, it should not be used as is, especially

if relatively thin plates are considered. In order to avoid thickness locking, ED1 can be reduced to FSDT

as explained before.

2.3. Equations in terms of stress resultants

Substituting Eq. (4) into the strain-displacement relations (3) and the PVD statement yields

Nℓ
∑

k=1

∫

Ω

[

(

Dpδu
k
τ

)T
R

k
pτ +

(

Dnδu
k
τ

)T
R

k
nτ + δuk

τ

T
R

k
nτz

]

dΩ = −

Nℓ
∑

k=1

∫

Ω

δuk
τ

T
ρkJk

τs

∂2uk
s

∂t2
dΩ (10)

where the index s has the same meaning of τ , Jk
τs is a thickness integrals defined as

Jk
τs =

zk+1
∫

zk

FτFsdζ (11)

and the following stress resultants are introduced

R
k
pτ =



















Rk
xxτ

Rk
yyτ

Rk
xyτ



















=

zk+1
∫

zk

Fτσ
k
pdζ, R

k
nτ =



















Rk
xzτ

Rk
yzτ

Rk
zzτ



















=

zk+1
∫

zk

Fτσ
k
ndζ, R

k
nτz =

zk+1
∫

zk

Fτzσ
k
ndζ (12)

in which Fτz = dFτ/dz.

After integrating by parts Eq. (10) and exploiting the arbitrariness of δuk
τ over the plate domain Ω, the

equations of motion can be written in terms of stress resultants for any layer k as

D
T
pR

k
pτ +D

T
nR

k
nτ −R

k
nτζ = ρkJk

τs

∂2uk
s

∂t2
(13)

From the boundary terms, the following conditions along each plate edge are obtained

uk
τ = 0 or nxR

k
xxτ + nyR

k
xyτ = 0

vkτ = 0 or nyR
k
yyτ + nxR

k
xyτ = 0

wk
τ = 0 or nxR

k
xzτ + nyR

k
yzτ = 0

(14)

where nx and ny are the components of the outward normal to the edge.

2.4. Equations in terms of displacements

Assuming a linearly elastic material, the constitutive equation in the laminate reference coordinate system

are written as

σ
k
p = C̃k

ppǫ
k
p + C̃k

pnǫ
k
n

σ
k
n = C̃kT

pnǫ
k
p + C̃k

nnǫ
k
n

(15)
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where the matrices of stiffness coefficients for the kth layer of a cross-ply laminate are given by

C̃k
pp =











C̃k
11 C̃k

12 0

C̃k
12 C̃k

22 0

0 0 C̃k
66











, C̃k
pn =











0 0 C̃k
13

0 0 C̃k
23

0 0 0











, C̃k
nn =











C̃k
55 0 0

0 C̃k
44 0

0 0 C̃k
33











(16)

Note that the stiffness constants C̃k
ij are derived from the stiffness coefficients Ck

ij expressed in the layer

reference system through a proper coordinate transformation [3].

By inserting Eq. (15) into Eq. (12) and using again the strain-displacement relations, the equations of

motion at layer level expressed in Eq. (13) can be compactly written in terms of displacement coordinates

as follows

L
kτsuk

s = ρkJk
τs

∂2uk
s

∂t2
(17)

where L
kτs is a 3 × 3 matrix of differential operators called fundamental nucleus of the formulation given

by

L
kτs = D

T
p C̃

k
ppJ

k
τsDp +D

T
p C̃

k
pnJ

k
τsDn +D

T
p C̃

k
pnJ

k
τsz

+D
T
n C̃

kT

pnJ
k
τsDp +D

T
n C̃

k
nnJ

k
τsDn +D

T
n C̃

k
nnJ

k
τsz

− C̃kT

pnJ
k
τzsDp − C̃k

nnJ
k
τzsDn − C̃k

nnJ
k
τzsz

(18)

and

Jk
τsz =

zk+1
∫

zk

FτFszdζ, Jk
τzs =

zk+1
∫

zk

FτzFsdζ, Jk
τzsz =

zk+1
∫

zk

FτzFszdζ (19)

are thickness integrals.

Accordingly, the boundary conditions in Eq. (14) can be compactly written for each edge of the plate as

B
kτsuk

s = 0 (20)

where B
kτs is a 3× 3 fundamental nucleus matrix of boundary-related differential operators.

3. The solution procedure

3.1. Voigt-type solution

Let’s now assume that the plate is simply-supported at edges y = 0 and y = b and the remaining edges

x = 0 and x = a can have any combination of free, simply-supported or clamped condition. According to

the outlined framework, the condition of simple support at y = 0, b is specified herein for any theory-related

index s as follows

uk
s = 0

Rk
yys = 0 (y = 0, b)

wk
s = 0

(21)
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A solution for free harmonic motion of the laminate which satisfies the above boundary conditions is sought

as follows

uk
s =



















Uk
sm(x) sin (βmy)

V k
sm(x) cos (βmy)

W k
sm(x) sin (βmy)



















ejωmt (m = 1, 2, . . . ) (22)

where ωm denotes the unknown eigenfrequency associated with the m-th eigenmode and βm = mπ/b. Note

that the expression in Eq. (22) is indeed a series solution with respect to index m due to the same Einstein

notation used before for theory-related indices.

3.2. Ordinary differential equations and fundamental nuclei of the solution

Substituting the solution (22) into Eqs. (17) yields, for each m = 1, 2, . . . , the following system of

second-order ordinary differential equations for the kth layer

Lkτs
2

d2Uk
s

dx2
− Lkτs

1

dUk
s

dx
− Lkτs

0 Uk
s = 0 (23)

where

Uk
s (x) =

[

Uk
sm(x) V k

sm(x) W k
sm(x)

]T

(24)

is the vector of unknown amplitudes and

Lkτs
2 = Jk

τs











C̃k
11 0 0

0 C̃k
66 0

0 0 C̃k
55











(25)

Lkτs
1 =











0 l12 l13

−l12 0 0

−l13 0 0











,
l12 = βm(C̃k

12 + C̃k
66)J

k
τs

l13 = C̃k
55J

k
τzs − C̃k

13J
k
τsz

(26)

Lkτs
0 =











l11 0 0

0 l22 l23

0 l23 l33











l11 = β2
mC̃k

66J
k
τs + C̃k

55J
k
τzsz − ρkJk

τsω
2
m

l22 = β2
mC̃k

22J
k
τs + C̃k

44J
k
τzsz − ρkJk

τsω
2
m

l33 = β2
mC̃k

44J
k
τs + C̃k

33J
k
τzsz − ρkJk

τsω
2
m

l23 = βm(C̃k
44J

k
τzs − C̃k

23J
k
τsz)

(27)

are the 3× 3 matrices representing the fundamental nuclei of the governing equations along x direction.

Doing the same for the boundary conditions at edges x = 0 and x = a, the following equations for layer

k are obtained

Bkτs
1

dUk
s

dx
+Bkτs

0 Uk
s = 0 (x = 0, a) (28)

where Bkτs
i (i = 0, 1) is the 3×3 fundamental nucleus corresponding to the boundary conditions. According

to the type of edge condition at x = 0, a, the boundary-related nuclei are expressed as follows
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- clamped edge:

Bkτs
1 = 0, Bkτs

0 = I (29)

- free edge:

Bkτs
1 = Jk

τs











C̃k
11 0 0

0 C̃k
66 0

0 0 C̃k
55











, Bkτs
0 =











0 −βmC̃k
12J

k
τs C̃k

13J
k
τsz

βmC̃k
66J

k
τs 0 0

C̃k
55J

k
τsz 0 0











(30)

- simply-supported edge:

Bkτs
1 = Jk

τs











C̃k
11 0 0

0 0 0

0 0 0











, Bkτs
0 =











0 −βmC̃k
12J

k
τs C̃k

13J
k
τsz

0 0 0

0 0 0











(31)

3.3. Equations of the multilayered plate

Equations (23) and (28) are written at layer level in terms of fundamental nuclei Lkτs
i and Bkτs

i . In

order to obtain the governing equations and related boundary conditions of the multilayered plate according

to the assumed kinematic theory, a simple expansion and assembly-like procedure is applied. The procedure

is graphically depicted in Figure 2 for L matrices.

First, by varying the theory-related indices τ and s over the defined ranges, the nuclei Lkτs
i and Bkτs

i

are expanded (see Figure 2a) so that a new system of equations and related boundary conditions is obtained

as follows

Lk
2

d2Uk

dx2
− Lk

1

dUk

dx
− Lk

0U
k = 0

Bk
1

dUk

dx
+Bk

0U
k = 0 (x = 0, a)

(32)

where

Uk(x) =
[

UkT

t (x) UkT

r (x) UkT

b (x)
]T

(33)

and

Lk
i =











Lktt
i Lktr

i Lktb
i

Lkrt
i Lkrr

i Lkrb
i

Lkbt
i Lkbr

i Lkbb
i











, Bk
i =











Bktt
i Bktr

i Bktb
i

Bkrt
i Bkrr

i Bkrb
i

Bkbt
i Bkbr

i Bkbb
i











(34)

Note that Lk
i and Bk

i are square matrices of dimension 3(N + 1).

Then, the final set of equations is written as

L2
d2U

dx2
− L1

dU

dx
− L0U = 0

B1
dU

dx
+B0U = 0 (x = 0, a)

(35)
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where U(x) is the vector containing all the independent kinematic variables Uk(x) (k = 1, . . . , Nℓ), and

the resulting matrices Li and Bi are simply summed layer-by-layer in case of ESL theories or assembled by

enforcing the interlaminar continuity condition in case of LW theories (see Figure 2b).

3.4. State-space model and solution

A state space approach is used to solve the free vibration problem by converting Eqs. (35) into a first-order

form as follows

dZ

dx
= AZ

BZ = 0 (x = 0, a)

(36)

where

Z(x) =







dU/dx

U







(37)

and

A =





L2 0

0 I





−1 



L1 L0

I 0



 , B =
[

B1 B0

]

(38)

A general solution can be expressed as

Z(x) = eAxc (39)

where c is a vector of constants connected to boundary conditions. Using a spectral decomposition of the

exponential matrix, the solution can be written as

Z(x) = VDiag
(

eλix
)

V−1c (40)

where V is the matrix of eigenvectors of A and λi are the corresponding eigenvalues. Replacement of

solution (40) into the system of boundary equations in Eq. (36) yields a homogeneous system

BVDiag
(

eλix
)

V−1c = Hc = 0 (x = 0, a) (41)

The natural frequencies associated with the m-th mode are determined by setting |H| = 0. Note that, since

H = H(ωm), an iterative numerical procedure must be employed to derive the frequency parameters.

3.5. Summary of the method

As a summary, the present method can be implemented through the following steps:

1. Select the number of half waves m of the vibration mode in the y direction.

2. Build the fundamental nuclei Bkτs
i (i = 0, 1) using Eqs. (29-31) according to the edge condition at

x = 0 and x = a.
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3. Expand the nuclei Bkτs
i as outlined in Figure 2 in order to build Bi matrices and the related B matrix

in Eq. (38).

4. For any iteration step over the selected range values of ωm:

(a) Build the fundamental nuclei Lkτs
i (i = 0, 1, 2).

(b) Expand the nuclei Lkτs
i as outlined in Figure 2 in order to build Li matrices and compute A

matrix in Eq. (38).

(c) Compute the spectral decomposition of matrix A.

(d) Compute the H matrix in Eq. (41) and its determinant.

(e) Check if the determinant changes sign. If yes, the value of the natural frequency is found by using

the bisection method.

4. Numerical results

4.1. Validation of the method

The present method is first validated by comparison with Navier-type solutions and 3-D exact eigenfre-

quencies for a square fully simply-supported [0o/90o/0o/90o] plate having side-to-thickness ratio b/h = 10.

The four layers are assumed to have identical thickness and to be made of an orthotropic material with the

following properties: E1 = 25.1× 106 psi, E2 = 4.8× 106 psi, E3 = 0.75× 106 psi, G12 = 1.36× 106 psi, G13 =

1.2 × 106 psi, G23 = 0.47 × 106 psi, ν12 = 0.036, ν13 = 0.25, ν23 = 0.171. Table 1 shows the first five

non-dimensional natural frequencies Ω = ωh
√

ρ/E2 corresponding to two vibration mode combinations

(l,m) = (1, 1) and (2, 1), where l is the number of half waves in the x direction. Frequency solutions

computed by the present method using higher-order ESL and LW theories up to order N = 4 are shown

along with Navier-type solutions based on the same set of refined plate theories and 3-D exact results from

Ref. [32].

It can be observed that the present exact solutions are perfectly identical to the exact Navier-type ones.

The degree of accuracy of 2-D ESL theories with respect to 3-D analysis improves by increasing the order N

of the theory since the higher-order terms included into the assumed kinematic field help in reproducing the

correct mechanical behavior of the plate. The same is true for the class of LW theories considered herein. It

is also shown that, as expected, present exact 2-D frequency values are always higher than the ones computed

by the 3-D exact model. Note that, in general, LW theories of order N provide more accurate results than

ESL theories of the same order due to the richer displacement model of a layerwise description and the

capability of predicting the through-the-thickness zig-zag behavior of the displacements in correspondence

of each layer interface. Moreover, the discrepancy between ESL theories and the 3-D model increases when

higher-order vibration modes are considered. As a final remark, excellent agreement with 3-D results is

observed when LD3 and LD4 theories are adopted.
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4.2. Comparison with CLPT and TSDT

Some examples corresponding to a three-layer symmetric [0o/90o/0o] square laminated plate for which

exact vibration solutions are available in the literature are now analyzed. For the sake of comparison, the

following dimensionless properties of a fiber-reinforced material are used: E1/E2 = 40, E2 = E3, G12/E2 =

G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = ν23 = 0.25. Six different combinations of boundary conditions

are considered (see Figure 3). The combination of simply-supported (S), free (F) and clamped (C) edges

is denoted by a two-letter compact notation corresponding to the conditions at edge x = 0 and x = a,

respectively.

First, exact dimensionless fundamental frequency Ω = (ωb2/h)
√

ρ/E2 is shown in Table 2 for various

length-to-thickness ratios b/h corresponding to thin, moderately thick and thick plates. Present solutions

computed with ED3 and LD4 theory are compared with those obtained by Hadian and Nayfeh [33] with the

third-order shear deformation theory (TSDT). The values of the classical lamination plate theory (CLPT)

are also presented as a reference. ED3 and LD4 are selected as representative models of higher-order shear

and normal deformation theories and very refined quasi 3-D approaches, respectively. It is shown in all

cases that, as the thickness-to-length ratio increases, the fundamental frequency decreases at a rate which

depends on the boundary conditions. It is also observed that, as expected, the frequency results are all in

good agreement when b/h = 50 and the error of CLPT increases dramatically when the plate gets thicker.

The discrepancy between TDST and ED3 is negligible for moderately thick plates (b/h = 20 and 10) having

any combination of boundary conditions. However, rather inaccurate results are obtained using TSDT when

SC and CC thick plates with b/h = 5 are considered. Note also that, by comparing results of ED3 and

LD4 theories, the fundamental frequency is well estimated by a third-order ESL theory without the need of

relying to a more costly layer-wise approach.

The next numerical study deals with the effect of the in-plane orthotropicity ratio E1/E2 on the funda-

mental frequency of the cross-ply plate considered before. Exact dimensionless frequency Ω = (ωb2/h)
√

ρ/E2

is shown in Table 3 for a moderately thick plate with b/h = 10 and various E1/E2 ratios ranging from 2

to 30. As before, present solutions are reported only for ED3 and LD4 theory. When available, they are

compared with those obtained by Khdeir [17] using TSDT and CLPT. An excellent agreement between

TSDT and more refined kinematic theories is observed for low (E1/E2 = 2) to moderate (E1/E2 = 20)

orthotropicity ratios and for all combinations of boundary conditions. The exact fundamental frequency is

slightly overestimated by TSDT when E1/E2 is high, especially when edges x = 0 and x = a are clamped.

4.3. Higher-order modes

The effectiveness of refined 2-D ESL and LW theories in providing highly accurate eigenfrequencies can be

appreciated when higher-order vibration modes are evaluated. For this purpose, the fundamental frequency

Ω = (ωb2/h)
√

ρ/E2 of a [0o/90o/0o] plate with a = b and b/h = 10 is computed for increasing values

12



of number m of half waves in the y direction. Each layer of the laminate has the following dimensionless

material properties: E1/E2 = 40, E2 = E3, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = ν23 = 0.25.

The frequency results are presented in Table 4 up to m = 5 for two representative ESL theories (ED3 and

ED4) and LW theories (LD1 and LD4). Comparison values computed using TSDT [17] and a semi-analytical

3-D approach [34] are also reported for m = 1, 2, 3. 3-D reference results from Chen and Lue [34] are only

available for SS, SC, CC and FC boundary conditions.

It is seen that LD4 is capable of providing values very close to 3-D frequencies even if high values of

m are considered. The accuracy of ESL theories and TSDT is comparable and acceptable when m = 1

and m = 2, but the difference with respect to 3-D analysis is quite considerable at higher m values. A

first-order layer-wise theory may provide better results than ESL approaches. However, it is observed that

accurate prediction of the natural frequency of higher-order modes requires refined (i.e., higher-order) layer-

wise approaches. Results computed using LD4 for m = 4 and m = 5 are considered to be reliable exact

benchmark values for future comparison. Finally, note that eigensolutions of high-frequency modes tend to

the same value, as expected, irrespective of the boundary conditions of the problem.

5. Conclusions

A powerful and efficient formulation capable of providing exact Voigt-type solutions for cross-ply rect-

angular laminates using refined equivalent single-layer and layer-wise 2-D theories of variable order is pre-

sented. The novelty and main advantage of the approach is its invariance with respect to the assumed plate

kinematics, so that the mathematical effort required to derive and obtain the analytical solutions is order-

independent. Several first-known exact frequency values are obtained for thin, moderately thick and thick

plates with at least one pair of opposite edges simply supported. The present method is validated against

Navier-type solutions and 3-D exact analysis. Comparisons with classical plate theories and discussion on

their accuracy are also provided as a function of the plate thickness ratio, in-plane orthotropicity ratio and

evaluation of higher-order modes.
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(a) Plate geometry (b) Example of lamination layout

Figure 1: A rectangular cross-ply laminated plate with one pair of opposite edges simply supported.

(a) Expansion of theory-related indices τ and s

(b) Assembly-like procedure over the layers (example with two layers).

Figure 2: Graphical representation of the expansion and assembly procedure to transform fundamental

nuclei of the formulation into the final matrices governing the plate problem.

Figure 3: Combinations of boundary conditions considered in the numerical study.
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Table 1: Validation of the present method by comparison with Navier’s solutions and 3-D exact analysis for

a fully simply-supported square [0o/90o/0o/90o] plate with b/h = 10.

Mode Mode

(l, m) Model 1 2 3 4 5 1 2 3 4 5

(1,1) 3D-exact [32] 0.0662 0.5460 0.6000 1.2425 1.2988

Navier-type solutions Present method

LD4 0.0662 0.5460 0.6000 1.2425 1.2988 0.0662 0.5460 0.6000 1.2425 1.2988

LD3 0.0662 0.5460 0.6000 1.2425 1.2988 0.0662 0.5460 0.6000 1.2425 1.2988

LD2 0.0662 0.5460 0.6000 1.2429 1.2993 0.0662 0.5460 0.6000 1.2429 1.2993

LD1 0.0665 0.5474 0.6013 1.2762 1.3279 0.0665 0.5474 0.6013 1.2762 1.3279

ED4 0.0673 0.5480 0.6019 1.2433 1.4109 0.0673 0.5480 0.6019 1.2433 1.4109

ED3 0.0677 0.5481 0.6020 1.2438 1.4204 0.0677 0.5481 0.6020 1.2438 1.4204

ED2 0.0689 0.5481 0.6020 1.3716 1.5065 0.0689 0.5481 0.6020 1.3716 1.5065

(2,1) 3D-exact [32] 0.1519 0.6388 1.0761 1.2417 1.3425

Navier-type solutions Present method

LD4 0.1519 0.6388 1.0761 1.2417 1.3425 0.1519 0.6388 1.0761 1.2417 1.3425

LD3 0.1519 0.6388 1.0761 1.2417 1.3425 0.1519 0.6388 1.0761 1.2417 1.3425

LD2 0.1520 0.6388 1.0762 1.2420 1.3430 0.1520 0.6388 1.0762 1.2420 1.3430

LD1 0.1532 0.6401 1.0877 1.2769 1.3711 0.1532 0.6401 1.0877 1.2769 1.3711

ED4 0.1571 0.6406 1.0919 1.2433 1.4517 0.1571 0.6406 1.0919 1.2433 1.4517

ED3 0.1595 0.6407 1.0924 1.2439 1.4611 0.1595 0.6407 1.0924 1.2439 1.4611

ED2 0.1662 0.6407 1.0931 1.3716 1.5453 0.1662 0.6407 1.0931 1.3716 1.5453
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Table 2: Exact dimensionless fundamental frequency Ω = (ωb2/h)
√

ρ/E2 of a [0o/90o/0o] square plate with

various side-to-thickness ratios b/h and different combinations of boundary conditions along x direction.

Boundary conditions

b/h Model SS SC CC FF FS FC

CLPT [33] 18.891 28.498 40.740 4.438 5.076 8.269

50 LD4 18.641 27.484 38.203 4.453 5.078 8.203

ED3 18.641 27.484 38.203 4.453 5.078 8.203

TSDT [33] 18.641 27.496 38.231 4.451 5.065 8.216

20 LD4 17.483 23.578 29.993 4.413 5.018 7.973

ED3 17.488 23.588 30.018 4.423 5.023 7.978

TSDT [33] 17.483 23.652 30.208 4.422 5.024 7.890

10 LD4 14.696 17.197 19.811 4.289 4.868 7.297

ED3 14.711 17.226 19.858 4.319 4.893 7.317

TSDT [33] 14.702 17.427 20.315 4.322 4.895 7.335

5 LD4 10.232 10.749 11.510 3.894 4.408 5.851

ED3 10.269 10.808 11.593 3.978 4.477 5.911

TSDT [33] 10.263 11.156 12.333 3.987 4.483 5.975
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Table 3: Exact dimensionless fundamental frequency Ω = (ωb2/h)
√

ρ/E2 of a moderately thick [0o/90o/0o]

square plate with various orthotropicity ratios E1/E2 and different combinations of boundary conditions

along x direction.

Boundary conditions

E1/E2 Model SS SC CC FF FS FC

2 LD4 6.756 8.221 10.072 2.882 3.706 4.156

ED3 6.757 8.224 10.081 2.883 3.706 4.156

10 LD4 9.792 12.543 15.507 3.238 3.986 5.136

ED3 9.794 12.552 15.524 3.239 3.987 5.138

20 LD4 12.054 14.938 17.878 3.634 4.311 6.026

ED3 12.061 14.954 17.906 3.643 4.317 6.032

TSDT [17] 12.052 15.036 18.124 3.642 4.313 6.034

CLPT [17] 13.948 20.610 29.166 3.721 4.443 6.515

30 LD4 13.576 16.293 19.068 3.982 4.602 6.723

ED3 13.586 16.316 19.106 3.999 4.617 6.736

TSDT [17] 13.577 16.458 19.448 4.000 4.615 6.744

CLPT [17] 16.605 24.870 35.431 4.106 4.770 7.445
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Table 4: Exact dimensionless fundamental frequency Ω = (ωb2/h)
√

ρ/E2 for increasing values of m of a

[0o/90o/0o] square plate with b/h = 10 and different combinations of boundary conditions along x direction.

Boundary conditions

m Model SS SC CC FF FS FC

1 3D [34] 14.496 17.195 19.809 − − 7.256

LD4 14.696 17.197 19.811 4.289 4.868 7.297

LD1 14.924 17.583 20.329 4.313 4.891 7.359

ED4 14.709 17.224 19.854 4.319 4.893 7.317

ED3 14.711 17.226 19.858 4.319 4.893 7.317

TSDT [17] 14.702 17.427 20.315 4.322 4.895 7.335

2 3D [34] 21.675 23.289 25.085 − − 16.998

LD4 21.676 23.292 25.086 15.576 16.132 16.977

LD1 21.992 23.718 25.618 15.777 16.331 17.192

ED4 21.909 23.523 25.321 15.912 16.451 17.282

ED3 21.911 23.527 25.324 15.913 16.452 17.283

TSDT [17] 21.914 23.694 25.712 15.948 16.483 17.326

3 3D [34] 34.976 35.877 36.908 − − 31.929

LD4 34.976 35.878 36.909 30.992 31.503 31.901

LD1 35.644 36.609 37.703 31.604 32.111 32.517

ED4 35.898 36.794 37.821 32.069 32.548 32.936

ED3 35.913 36.811 37.837 32.082 32.561 32.949

TSDT [17] 35.982 36.996 38.184 32.203 32.676 33.076

4 LD4 51.541 52.072 52.677 48.557 49.027 49.248

LD1 52.747 53.316 53.961 49.732 50.196 50.426

ED4 53.404 53.937 54.546 50.597 51.023 51.242

ED3 53.461 53.993 54.602 50.649 51.077 51.296

5 LD4 69.751 70.083 70.458 67.326 67.759 67.893

LD1 71.557 71.916 72.317 69.108 69.536 69.677

ED4 72.487 72.829 73.217 70.239 70.624 70.761

ED3 72.629 72.972 73.361 70.378 70.764 70.901
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