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a  b  s  t  r  a  c  t

A  non-iterative,  non-cooperative  distributed  state-feedback  control  algorithm  based  on neighbor-to-
neighbor  communication,  named  distributed  predictive  control  (DPC),  has  been  recently  proposed  in
the  literature  for  constrained  linear  discrete-time  systems,  see  [15,14,2,4]. The  theoretical  properties  of
DPC, such  as  convergence  and  stability,  its  extensions  to the  output  feedback  and  tracking  problems,  and
applications  to  simulated  plants  have been  investigated  in these  papers.  However,  for  a  practical  use  of
DPC  some  realization  issues  are  still open,  such  as  the automatic  selection  of  some  tuning  parameters,  the
initialization  of the  algorithm,  or its  response  to  unexpected  disturbances  which  could  lead  to  the lack of
the recursive  feasibility,  a  fundamental  property  for any  model  predictive  control  (MPC)  technique.

This paper  presents  novel  solutions  to all these  issues,  with  the  goal  to make  DPC  attractive  for  industrial
and  practical  applications.  Three  realistic  simulation  examples  are  also  discussed  to evaluate  the  proposed
numerical  algorithms  and  to  compare  the  performances  of  DPC  to those  of a standard  centralized  MPC
algorithm.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Due to the growing complexity of process plants and to the
increasing number of networks of systems, in the last decades
researchers have been putting huge efforts in the field of decentral-
ized and distributed control [26,19]. Distributed solutions seem to
be very promising with respect to decentralized schemes, because
they allow one to take advantage of information transmission
between the local controllers, see e.g. [18], and do not require
the computational and communication loads of centralized solu-
tions. However, distributed techniques are characterized by an
intrinsically higher degree of complexity in the design phase with
respect to centralized controllers. This could represent a great
obstacle to their diffusion in the industrial world, and motivates
the development of many innovative distributed model predictive
control (MPC) algorithms for large-scale systems, see the survey
papers [25,6] and the book [22], where the most recent and popular
algorithms have been collected and described.

According to the classification of [25], a new non-iterative,
non-cooperative approach based on neighbor-to-neighbor com-
munication, called distributed predictive control (DPC), has been
described in [15,14,2,4], where its convergence and stability

∗ Corresponding author: Tel.: +39 02 23993599; fax: +39 02 23993599.
E-mail address: marcello.farina@polimi.it (M.  Farina).

properties have also been extensively analyzed. However, for a
practical application of DPC, a number of issues concerning its real-
ization and tuning have still to be solved and its performances must
be assessed in realistic simulation scenarios. For these reasons, the
aim of this paper is to consider and provide easy solutions to the
main realization issues related to DPC (and similar distributed MPC
methods), i.e. the use of a discretization method preserving the
sparsity of the original continuous-time system, the computation
of the required invariant sets, and the definition, both in the off-line
and in the on-line phases, of the reference trajectories to be fol-
lowed by the state and control variables. The proposed algorithms
are then used for the realization and tuning of DPC applied to three
realistic simulation problems. Specifically, the continuous-time
models of the temperature dynamics in a simple building, of the
level in a four tank system, and of a flotation process are controlled
with DPC and the obtained performances are compared to those
of a centralized model predictive control (cMPC) algorithm.

The paper is organized as follows: in Section 2 the DPC algorithm
is summarized, while in Section 3.1 the discretization method, pre-
serving the sparsity of the underlying continuous-time system,
called mE-ZOH and originally presented in [7,8,12], is illustrated.
Simplified procedures for computing the RPI sets are presented in
Section 3.3. In Section 3.4, two techniques for the distributed design
of the reference trajectories are proposed, while Section 4 contains
the considered simulation examples. Some conclusions are drawn
in Section 5.

http://dx.doi.org/10.1016/j.jprocont.2014.02.016
0959-1524/© 2014 Elsevier Ltd. All rights reserved.
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Notation. A matrix is Schur stable if all its eigenvalues lie in the
interior of the unit circle. The short-hand v = (v1, . . .,  vs) denotes a
column vector with s (not necessarily scalar) components v1, . . .,  vs.
The symbol ⊕ denotes the Minkowski sum, namely C = A ⊕ B if and
only if C = {c : c = a + b, forall a ∈ A, b ∈ B}, while ⊕M

i=1Ai = A1 ⊕ . . . ⊕
AM . The Pontryagin difference is defined using the symbol �, i.e.
C = A � B if and only if C = {c : c + b ∈ A, forall b ∈ B}. For a discrete-time
signal st and a, b ∈ N, a ≤ b, we denote (sa, sa+1, . . .,  sb) with s[a:b].
Given a generic compact set L,  H = box(L) is the smallest hyper-
rectangle containing L with faces perpendicular to the cartesian
axis. Finally, ‖L‖∞ = max

l∈L
‖l‖∞.

2. The basic distributed predictive control algorithm

In this section, the distributed predictive control (DPC) algo-
rithm first presented in [15] and further developed in [4] is briefly
described. Let us assume that the system is constituted by M linear,
discrete-time, non-overlapping subsystems, dynamically coupled
through states and inputs, and subject to state and control con-
straints. For each subsystem Si, the dynamics is given by

xi
k+1 = Aiix

i
k + Biiu

i
k +

M∑
j=1,j /=  i

{Aijx
j
k

+ Biju
j
k
} + di

k (1)

where xi
k

∈ Xi ⊆ Rni and ui
k

∈ Ui ⊆ Rmi are the state and input

vectors of the ith subsystem Si (i = 1, . . . , M),  di
k ∈ Di ⊂ Rni is an

unknown bounded disturbance and the sets Xi, Ui and Di are con-
vex neighborhoods of the origin. The subsystem Sj is said to be a
neighbor of the subsystem Si if and only if Aij /= 0 and/or Bij /= 0,
i.e., if and only if the states xj and/or inputs uj of Sj influence the
dynamics of Si. The symbol Ni denotes the set of neighbors of Si

(which excludes i).
Letting xk = (x1

k
, . . .,  xM

k
), uk = (u1

k
, . . .,  uM

k
) and dk =

(d1
k, . . .,  dM

k ), the overall collective system can be written as

xk+1 = Axk + Buk + dk (2)

where the matrices A and B have block entries Aij and Bij

respectively, x ∈ X  =
∏M

i=1Xi ⊆ Rn, n =
∑M

i=1ni, u ∈ U =
∏M

i=1Ui ⊆
Rm, m =

∑M
i=1mi, d ∈ D  =

∏M
i=1Di ⊂ Rn, and X, U are convex by

convexity of Xi and Ui, respectively.

Remark 1. System 2 can be seen as the state-space representa-
tion of a discrete-time empirical model obtained from data through
identification procedures, for instance by means of impulse or step
response experiments, or it can be computed as the the lineariza-
tion and discretization of a continuous-time first principle model.
In the latter case, the discretization procedure must guarantee to
maintain the sparsity of the original continuous-time model, i.e.,
the mutual influences among the subsystems. This issue is dis-
cussed in the following Section 3.1.

The following assumption on decentralized stabilizability is
needed.

Assumption 1. There exists a block diagonal matrix K =diag(K1,
. . .,  KM), with Ki ∈ Rmi×ni , i = 1, . . .,  M such that: (i) A + BK is Schur,
(ii) Fii = (Aii + BiiKi) is Schur, i = 1, . . .,  M.

At any time instant k, each subsystem Si transmits to its
neighbors its future state and input reference trajectories (to
be later specified) defined over the prediction horizon N,
and called x̃i

k+� and ũi
k+�, � = 0, . . .,  N − 1, respectively. These

trajectories coincide with the assumed trajectories introduced
in [10]. By adding suitable constraints to its MPC  for-
mulation, Si is able to guarantee that, for all k ≥ 0, its
real trajectories lie in specified time invariant neighborhoods

of x̃i and ũi, i.e., xi
k

∈ x̃i
k ⊕ Ei and ui

k
∈ ũi

k ⊕ EUi , where 0 ∈ Ei and
0 ∈ EUi . In this way, the dynamics (1) of Si can be written as

xi
k+1 = Aiix

i
k + Biiu

i
k +

∑
j∈Ni

{Aijx̃
j
k

+ Bijũ
j
k
} + wi

k (3)

where

wi
k =

∑
j∈Ni

{Aij(x
j
k

− x̃j
k
) + Bij(u

j
k

− ũj
k
)} + di

k ∈ Wi

and Wi = ⊕j∈Ni
{AijEj ⊕ BijEUj } ⊕ Di.

Each subsystem, using the algorithm proposed in [20], solves
a robust MPC  problem considering that its dynamics is given by
(3), where the term

∑
j∈Ni

(Aijx̃
j
k+�

+ Bijũ
j
k+�

) represents an input

known in advance over the prediction horizon � = 0, . . ., N − 1, to
be suitably compensated, and wi

k
is a bounded disturbance to be

rejected.
Similarly to [20], a nominal model of subsystem Si is associated

to Eq. (3)

xi
k+1 = Aiix

i
k + Biiu

i
k +

∑
j∈Ni

{Aijx̃
j
k

+ Bijũ
j
k
} (4)

while the control law to be used for Si is

ui
k = ui

k + Ki(x
i
k − xi

k) (5)

where Ki must be chosen to satisfy Assumption 1.
Letting zi

k
= xi

k
− xi

k
, in view of (3)–(5) one has

zi
k+1 = Fiiz

i
k + wi

k (6)

where wi
k

∈ Wi. Since Wi is bounded and Fii is Schur, there exists
a robust positively invariant (RPI) set Zi for (6) such that, for
all zi

k
∈ Zi, then zi

k+1 ∈ Zi. Given Zi define, if possible, two sets,
neighborhoods of the origin, �Ei and �Ui, i = 1, . . .,  M such that
�Ei ⊕ Zi ⊆ Ei and �Ui ⊕ KiZi ⊆ EUi , respectively.

At any time instant k each subsystem Si solves the following
i-DPC problem.

min
xi

k
,ui

[k:k+N−1]

VN
i =

N−1∑
�=0

(‖xi
k+�‖2

Qo
i

+ ‖ui
k+�‖2

Ro
i
) + ‖xi

k+N‖2
Po

i
(7)

subject to (4),

xi
k − xi

k ∈ Zi (8)

and, for � = 0, . . .,  N − 1

xi
k+� − x̃i

k+� ∈ �Ei (9)

ui
k+� − ũi

k+� ∈ �Ui (10)

xi
k+� ∈ X̂i ⊆ Xi � Zi (11)

ui
k+� ∈ Ûi ⊆ Ui � KiZi (12)

and to the terminal constraint

xi
k+N ∈ X̂F

i (13)

The choice of the positive definite matrices Qo
i , Ro

i , and Po
i in (7)

is discussed in Section 3.2 to guarantee stability and convergence,

while X̂F
i in (13) is a nominal terminal set which must be chosen to

satisfy the following assumption.

Assumption 2. Letting X̂ =
∏M

i=1X̂i, Û =
∏M

i=1Ûi and X̂F =
∏M

i=1X̂
F
i ,

it holds that:
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1 X̂F ⊆ X̂  is an invariant set for xk+1 = (A + BK)xk;

2 u = Kx ∈ Û for any x ∈ X̂F
;

3 for all xk ∈ X̂F
and, for a given constant � > 0,

VF (xk+1) − VF (xk) ≤ −(1 + �)�(xk, Kxk) (14)

where VF (x) =
∑M

i=1VF
i

(xi) =
∑M

i=1‖xi‖2
Po

i

and �(x, u) =∑M
i=1�i(xi, ui) =

∑M
i=1(‖xi‖2

Qo
i

+ ‖ui‖2
Ro

i

).

At time k, let the pair xi
k|k, ui

[k:k+N−1|k] be the solution to the i-

DPC problem and define by ui
k|k the input to the nominal system

(4). Then, according to (5), the input to the subsystem (1) is

ui
k = ui

k|k + Ki(x
i
k − xi

k|k) (15)

Denoting by xi
k+�|k the state trajectory of system (4) stemming from

xi
k|k and ui

[k:k+N−1|k], at time k it is also possible to compute xi
[k+N|k]

and Kixi
k+N|k. In DPC, these values incrementally define the trajec-

tories of the reference state and input variables to be used at the
next time instant k + 1, that is

x̃i
k+N = xi

k+N|k , ũi
k+N = Kix

i
k+N|k (16)

We underline that, in nominal operating conditions, the only infor-
mation to be transmitted consists in the reference trajectories
updated as in (16). More specifically, at time step k, subsystem Si

computes x̃i
k+N and ũi

k+N according to (16) and transmits their val-
ues to all the subsystems having Si as neighbor, allowing them to
update the reference trajectories.

3. Realization issues and numerical algorithms

3.1. Block-wise discretization of large-scale structured systems

In many control applications, the model of the plant is devel-
oped in the continuous-time starting from physical laws, see for
instance the examples reported in Section 4. In this framework, the
sparse structure of the model clearly represents physical connec-
tions (such as mass or energy flows) between the subsystems, each
one of them described by the linear (or linearized) model

ẋi
c,t = Ac,iix

i
c,t + Bc,iiu

i
c,t +

M∑
j=1,j /=  i

{Ac,ijx
j
c,t + Bc,iju

j
c,t} + di

c,t (17)

where t is the continuous time and the notation is coherent (mutatis
mutandis) with the one adopted in (2). Unfortunately, the sparse
zero-nonzero pattern of the system (zero-nonzero matrices Ac,ij,
Bc,ij) is lost when the exact ZOH (Zero-Order-Hold), Backward Euler,
or bilinear transformations are used, while it is preserved by the
Forward Euler (FE) transformation. However, it is well known that
with FE some important properties of the underlying continuous
time system can be lost; for example stability is maintained only
for very small sampling times, which can be inadvisable in many
digital control applications.

In distributed and decentralized control techniques based on
MPC, where discrete-time models are mainly utilized, the loss of
sparsity can easily result in an increase of the controller complex-
ity, see the DPC algorithm described in the previous section, or the
methods presented in [5,13,15,24]. For these reasons, in order to
improve the performance of FE and to maintain sparsity, a new
discretization method called Mixed Euler ZOH (ME-ZOH) has been
proposed in [7,8], and its properties have been studied in [12]. In

synthesis, ME-ZOH allow one to compute the matrices of (2) start-
ing from the continuous-time model (17) as follows:

Aii(h) = eAc,iih (18)

Aij(h) =
∫ h

0

eAc,iitdt Ac,ij, j /= i (19)

Bij(h) =
∫ h

0

eAc,iitdt Bc,ij, ∀ i, j (20)

where h is the adopted sampling time. It is apparent that the zero-
nonzero structure of the matrices Ac,ij and Bc,ij is maintained. This
discretization method has been used in all the examples reported
in Section 4.

3.2. Computation of the decentralized state-feedback gain

Algorithms for the design of the block-diagonal matrix K sat-
isfying Assumption 1, and the computation of a positive-definite
block-diagonal matrix P = diag(Po

1, . . .,  Po
M), Po

i ∈ Rni×ni satisfying
(AT + KTBT)P(A + BK) − P ≺ 0 have been already presented in [4]. For
completeness, one of the methods described in [4], based on the
solution to suitable LMIs, is reported in the Appendix. This algo-
rithm, which shares many similarities with the method recently
proposed in [28], is less conservative with respect to the one origi-
nally proposed in [15], at the price of a larger computational burden.

To guarantee the convergence of the DPC algorithm, once P and
K have been computed, parameters Qo

i � 0 and Ro
i � 0 must be cho-

sen such that P − (A + BK)TP(A + BK) − (Q + KTRK)(1 + �) � 0, where
Q = diag(Qo

1, . . .,  Qo
M), R = diag(Ro

1, . . .,  Ro
M) and � is an arbitrary

value greater than zero, see [15].

3.3. Simplified methods for the computation of sets

Two of the main issues in DPC are to verify, for all i = 1, . . .,  M
that (I) Ei ⊇ Zi ⊕ �Ei, EUi ⊇ KiZi ⊕ �Ui, Zi ⊂ Xi and KiZi ⊂ Ui, and (II)

X̂F
i ⊆ X̂i and KiX̂

F
i ⊆ Ûi.

Concerning (I), recall that Zi is the RPI set for Eq. (6) where the
disturbance term wi

k
lies in the set Wi. For this reason, the problem

can not be tackled by considering each subsystem separately. In
this section we propose two alternative solutions to (I).

Furthermore, to verify (II) we simply set X̂F
i = ˛Zi for all i = 1, . . .,

M, for a sufficiently small  ̨ ∈ (0, 1). Finally, remark that an algo-
rithm for obtaining a polytopic invariant outer approximation of
the minimal RPI set is presented in [23].

The first technique is based on an empirical simplified “dis-
tributed reachability analysis” procedure, which has obtained
remarkable results in several applications. With respect to the algo-
rithm presented in [4], we  will use rectangular sets (i.e., through
the “box” operation) to greatly simplify the set-theoretical com-
putations (e.g., the Minkowski sum), at the price of slightly more
conservative results.

Algorithm 1. Computation of the RPI sets – method 1

(1) For all i = 1, . . .,  M,  arbitrarily choose hyperrectangles �Ei and
�Ui.

(2) Initialize Zi = ⊕j∈Ni
{box(Aij�Ej) ⊕ box(Bij�Uj)} ⊕ box(Di) for

all i = 1, . . .,  M.
(3) For all i = 1, . . .,  M,  compute Z+

i
= box(FiiZi) ⊕

{⊕j∈Ni
{box(AijZj) ⊕ box(BijKjZj)}} ⊕ {⊕j∈Ni

{box(Aij�Ej) ⊕
box(Bij�Uj)}} ⊕ box(Di).

(4) If Z+
i

⊆ Zi for all i = 1, . . .,  M then go to step 5: by definition, the
hyperrectangles Zi actually correspond to the required RPI sets.
Otherwise set Zi = Z+

i
and repeat step 3.
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(5) If Zi ⊂ Xi and KiZi ⊂ Ui then stop. Otherwise set �Ei = ��Ei,
�Ui = ��Ui, with � ∈ (0, 1), and go to step 2.

A second possibility for computing the RPI sets Zi resorts to solv-
ing a linear programming (LP) problem. For all i = 1, . . .,  M,  we define
sets Ei, EUi , �Ei and �Ui as hypercubes, centered at the origin, with
faces perpendicular to the cartesian axis and the scalars ei = ‖Ei‖∞,
eu

i
= ‖EUi ‖∞, �ei = ‖�Ei‖∞, �ui = ‖�Ui‖∞, and d∞

i
= ‖Di‖∞. Define

also x∞
i

and u∞
i

as the infinity norms of the biggest cubes, cen-
tered at the origin, inscribed inside of Xi and Ui, respectively. If we
define w∞

i
=

∑
j∈Ni

{‖Aij‖∞ej + ‖Bij‖∞eu
j
} + d∞

i
, using the properties

of norm operators it is possible to state that w∞
i

≥‖Wi‖∞, where
Wi is the set containing the real disturbance affecting subsystem i.
To compute the RPI set Zi for (6) (see [23]) we use the hypercube
W∞

i having infinity norm w∞
i

, i.e., Zi = 1
1−˛i

⊕si−1
l=0 Fl

iiW∞
i , where s and

˛i ∈ [0, 1) must fulfill Fsi
iiW∞

i ⊆ ˛iW∞
i . The latter is verified if ‖Fii‖si∞ ≤

˛i in view of properties of the norm operator and of the hypercubes.
In addition, remark that Zi is contained inside the hypercube hav-
ing infinity norm �iw

∞
i

, where �i = 1/(1 − ˛i)
∑si−1

l=0 ‖Fii‖l∞. These
considerations suggest the following procedure for computing Zi.

Algorithm 2. Computation of the RPI sets – method 2

(1) For all i = 1, . . .,  M,  arbitrarily choose parameters ˛i.
(2) For all i = 1, . . .,  M,  compute si such that ‖Fii‖si∞ ≤ ˛i and than

evaluate �i = (1 − ˛i)
−1∑si−1

l=0 ‖Fii‖l∞.
(3) Solve the following linear programming problem.

min
ov

� (21)

subject to

�≥�iw
∞
i ∀i = 1, . . .,  M (22)

�iw
∞
i + �ei ≤ ei ∀i = 1, . . .,  M (23)

‖Ki‖∞�iw
∞
i + �ui ≤ eu

i ∀i = 1, . . .,  M (24)

�iw
∞
i ≤ x∞

i ∀i = 1, . . .,  M (25)

‖Ki‖∞�iw
∞
i ≤ u∞

i ∀i = 1, . . .,  M (26)

�ei≥�ei ∀i = 1, . . .,  M (27)

�ui≥�ui ∀i = 1, . . .,  M (28)

where ov = (�e1, e1, �u1, eu
1, . . .,  �eM, eM, �uM, eu

M) ∈ R4M

contains only strictly positive elements. �ei and �ui are arbi-
trary positive parameters to be used in order to have sets �Ei

and �Ui bigger than a prescribed size.
(4) Compute Zi = (1 − ˛i)

−1⊕si−1
l=0 Fl

iiW∞
i .

In the proposed optimization problem, the objective function
combined together with constraints (22) aims at minimizing the
bigger RPI set. Constraints (25) and (26) guarantee the existence
of sets X̂i and Ûi for all the subsystems. Lastly, constraints (23)
and (24), if the LP problem turns out to be feasible, allow one to
find the hypercubes Ei, �Ei, EUi and �Ui such that Ei ⊇ Zi ⊕ �Ei and
EUi ⊇ KiZi ⊕ �Ui.

3.4. Distributed methods for the computation of reference
trajectories

The DPC algorithm assumes that an initial feasible initial refer-
ence trajectory exists. This problem can be cast as a purely offline
design problem.

On the other hand, disturbances of unexpected entity could
occur during the ordinary system operation, alterating the
system’s condition (e.g., by producing constraint violation,
such that, xi

k+1 − xi
k+1|k /∈ Zi) with possible serious consequences on

the future solution (e.g., concerning feasibility) of the control prob-
lems. Once this condition is detected by a given system Si, it must
be broadcast to all other subsystems through an event-based emer-
gency iterative transmission, and an extra-ordinary reset operation
requires the recalculation of new suitable state and output refer-
ence trajectories for all subsystems. The simplest solution consists
(consistently with the approach suggested in [9]) in generating
such trajectories using a centralized controller. This has the draw-
back that a centralized controller must be designed together with
the distributed ones, and that it must be kept activated while the
system is running in order to recover the proper functioning of
the process if unpredicted external disturbances affect the plant.
Obviously, this need of a centralized “hidden” supervisor greatly
reduce the advantages of utilizing a distributed control scheme.

In this section we present two  different trajectory generation
methods, useful both for offline reference trajectory generation (i.e.,
performed at time k = 0) and for extra-ordinary reset operations,
requiring number of iterative information exchanges between
neighbors. The first method (i.e., Algorithm 4) is applicable in case

x ∈ X̂F
, while the second one (i.e., Algorithm 5) can be used in case

x /∈ X̂F
.

Therefore, we  first need a procedure to check whether xk ∈ X̂F
,

i.e., that xi
k

∈ X̂F
i for all i = 1, . . .,  M.

To this purpose we define some useful notation: denote with
G = (V, A) the connected, undirected communication graph sup-
porting the distributed control architecture for system (2). V is the
set of M nodes, each corresponding a subsystem, while A  is the set
of undirected arcs connecting the nodes (given two  nodes i, j ∈ V,
there exists an undirected arc – of unitary length – i ↔ j ∈ A  if and
only if j ∈ Ni or i ∈ Nj). We  denote with Ps

max the longest among
all the shortest paths linking all the possible pairs of nodes in V.
Ps

max can be computed, for instance, using the Floyd–Warshall algo-
rithm [16]. Ps

max represent the maximum number of hops required
sending information from a node to all other vertices. The following
procedure has to be executed.

Algorithm 3. Algorithm for evaluating whether xk ∈ X̂F

(1) For all i = 1, . . .,  M,  initialize �i = 1 if xi
k

∈ X̂F
i or �i = 0 if xi

k
/∈ X̂F

i .
Set � = 0.

(2) Receive �j from all j ∈ Ni and from all j : i ∈ Nj . Set � = � + 1.
(3) For all i = 1, . . .,  M,  set �i = min

j:(i↔j)∈A
⋃

{i}
(�j). If � < Ps

max go to step

2. If � = Ps
max go to step 4.

(4) For all i = 1, . . .,  M,  if �i = 1, then controller i can conclude that

xk ∈ X̂F
. Otherwise, it holds that xk /∈ X̂F

.

Note that, after Ps
max iterations, it holds that �i = �j for all i, j = 1,

. . .,  M.
We  now present the two distributed techniques for generating

the trajectories x̃i
[k:k+N−1] and ũi

[k:k+N−1] that each subsystem has to
transmit to its neighbors. The first one, to be used when the whole

state xk is inside X̂F
, is based on the auxiliary control law, and guar-

antees to find a solution. It requires N transmissions of information
from each subsystem to its neighbors. The second one, instead, is
an optimization-based procedure which has been proved to be very

effective when xk /∈ X̂F
. The latter provides also the minimum pre-

diction horizon length N such that a reference trajectory exists for
all subsystems.

Algorithm 4. Computation of the reference trajectories – Method

1 (x ∈ X̂F
)

(1) For all i = 1, . . .,  M,  initialize x̃i
k = xi

k
and ũi

k = Kix̃
i
k.
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(2) Receive x̃j
k

and ũj
k

from the neighbors (j ∈ Ni). If N = 1 stop. If
N ≥ 2, set � = 0 and then go to step 3.

(3) For all i = 1, . . .,  M,  update the state reference trajectory
as x̃i

k+�+1 = Aiix̃
i
k+� + Biiũ

i
k+� +

∑
j∈Ni

{Aijx̃
j
k+�

+ Bijũ
j
k+�

} and set

ũi
k+�+1 = Kix̃

i
k+�+1.

(4) Receive x̃j
k+�+1 and ũj

k+�+1 from the neighbors (j ∈ Ni). If
� = N − 1 stop. Else, set � = � + 1 and go to step 3.

This first algorithm is very intuitive, because it exploits the

properties of the invariant terminal set X̂F
. The N transmissions of

information allow a distributed state evolution equal to the one that
would result from applying, in a distributed fashion, the auxiliary
control law to the entire system.

Algorithm 5. Computation of the reference trajectories – Method

2 (x /∈ X̂F
)

(1) For all i = 1, . . .,  M,  set � = 0, define sets Bi containing the origin
(their role will be later specified), initialize x̃i

k = xi
k

and receive

x̃j
k

for all j ∈ Ni and for all j such that Bji /= 0.

(2) For all i = 1, . . .,  M,  initialize ũi
k−1 solving the following quadratic

programming (QP) problem

min
ũi

k−1

‖ ˆ̃x
0ii

k+1‖2 +
∑

j:Bji /=  0

‖Bji‖2
2

‖Bii‖2
2

‖ ˆ̃x
0ji

k+1‖2 (29)

subject to

ˆ̃x
0ii

k+1 = Aiix̃
i
k + Biiũ

i
k−1 +

∑
j∈Ni

Aijx̃
j
k

(30)

ˆ̃x
0ji

k+1 = Ajjx̃
j
k

+ Bjiũ
i
k−1 + Ajix̃

i
k (31)

ũi
k−1 ∈ Ûi (32)

ˆ̃x
ii

k+1 ∈ X̂i (33)

(3) For all i = 1, . . .,  M
- if � = 0 receive ũj

k−1 for all j ∈ Ni;

- if � ≥ 1 receive x̃j
k+�

for all j ∈ Ni.

(4) For all i = 1, . . .,  M,  for all j : Bij /= 0 compute 	ij
k+�

= Aiix̃
i
k+� +

Biiũ
i
k+�−1 +

∑
z∈Ni\{j}{Aiz x̃z

k+� + Bizũz
k+�−1}.

(5) For all i = 1, . . .,  M,  for all j : Bji /= 0, receive 	ji
k+�

.

(6) For all i = 1, . . .,  M,  compute ũi
k+� solving the following quadratic

programming (QP) problem

min
ũi

k+�

‖ ˆ̃x
ii

k+�+1‖2 +
∑

j:Bji /=  0

‖Bji‖2
2

‖Bii‖2
2

‖ ˆ̃x
ji

k+�+1‖2 (34)

subject to

ˆ̃x
ii

k+�+1 = Aiix̃
i
k+� + Biiũ

i
k+� +

∑
j∈Ni

{Aijx̃
j
k+�

+ Bijũ
j
k+�−1} (35)

ˆ̃x
ji

k+�+1 = Ajix̃
i
k+� + Bjiũ

i
k+� + 	ji

k+�
(36)

ũi
k+� ∈ Ûi (37)

ũi
k+� − ũi

k+�−1 ∈ Bi (38)

ˆ̃x
ii

k+�+1 ∈ X̂i � ⊕j∈Ni
BijBj (39)

Fig. 1. Schematic representation of a building with two  apartments.

(7) For all i = 1, . . .,  M,  receive ũj
k+�

for all j ∈ Ni.
(8) For all i = 1, . . .,  M,  update the state reference trajectory as

x̃i
k+�+1 = Aiix̃

i
k+� + Biiũ

i
k+� +

∑
j∈Ni

{Aijx̃
j
k+�

+ Bijũ
j
k+�

}.
(9) If xk+�+1 ∈ XF

i for all i = 1, . . .,  M,  then N = � + 1 and stop. Else, set
� = � + 1 and go to step 3.

The second algorithm aims at iteratively finding feasible inputs
using one-step predictions. Each controller i minimizes a cost func-
tion including both the norm of the state variable of subsystem i

and the term
‖Bji‖2

2
‖Bii‖2

2
‖ ˆ̃x

ji

k+�+1‖2, limiting the possible negative effect

of the inputs of subsystem i on the state of subsystem j, for all j
such that Bji /= 0. The importance of this factor becomes greater
as the coupling strength through inputs increases. The one-step
prediction Eq. (35) is affected only by the errors on its neighbors’
current inputs but, at the same time, such error is bounded using
constraint (38). Finally note that the check of the stopping criterion
in step 9) requires Algorithm 3 to be applied; to reduce the itera-
tions required, one can check xk+�+1 ∈ XF only after a given number
of iterations and, in case, only periodically.

4. Simulation examples

In this section, the DPC algorithm and the numerical methods
presented in the previous sections are used in some simulation
examples concerning popular case studies in the context of dis-
tributed control.

4.1. Temperature control

We  aim at regulating the temperatures TA, TB, TC and TD of the
four rooms of the building represented in Fig. 1 (see [11,3]). The
first apartment is constituted by rooms A and B, while the second
one by rooms C and D. Each room is equipped with a radiator sup-
plying heats qA, qB, qC and qD. The heat transfer coefficient between
rooms A–C and B–D is kt

1 = 1 W/m2 K, the one between rooms A–B
and C–D is kt

2 = 2.5 W/m2 K, and the one between each room and
the external environment is kt

e = 0.5 W/m2 K. The nominal exter-
nal temperature is TE = 0 ◦C and, for the sake of simplicity, solar
radiation is not considered. The volume of each room is V = 48 m3,
and the wall surfaces between the rooms are all equal to sr = 12
m2, while those of the external walls are equal to se = 24 m2. Air
density and heat capacity are � = 1.225 kg/m3 and c = 1005 J/kg K,
respectively.
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Letting 
 = �cV, the dynamic model is the following:



dTA

dt
=  srkt

2(TB − TA) + srkt
1(TC − TA) + sekt

e(TE − TA) + qA



dTB

dt
= srkt

2(TA − TB) + srkt
1(TD − TB) + sekt

e(TE − TB) + qB



dTC

dt
= srkt

1(TA − TC ) + srkt
2(TD − TC ) + sekt

e(TE − TC ) + qC



dTD

dt
= srkt

1(TB − TD) + srkt
2(TC − TD) + sekt

e(TE − TD) + qD

The considered equilibrium point is: qA = qB = qC = qD = q = Tsekt
e,

with TA = TB = TC = TD = T = 20 ◦C. Let ıTA = TA − T , ıTB = TB −
T , ıTC = TC − T , ıTD = TD − T , ıTE = TE − TE , ıqA = (qA − q)/c�V ,
ıqB = (qB − q)/c�V , ıqC = (qC − q)/c�V and ıqD = (qD − q)/c�V . In
this way, denoting �1 = srkt

1/c�V , �2 = srkt
2/c�V , �3 = sekt

e/c�V ,
� = �1 + �2 + �3, x = (ıTA, ıTB, ıTC, ıTD), u = (ıqA, ıqB, ıqC, ıqD) and
d = [�e �e �e �e]TıTE the previous model is rewritten in state space
representation ẋ(t) = Ac x(t) + Bcu(t) + d(t), where

Ac =

⎡⎢⎢⎢⎢⎣
−� �2 �1 0

�2 −� 0 �1

�1 0 −�  �2

0 �1 �2 −�

⎤⎥⎥⎥⎥⎦ , Bc =

⎡⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎦
The discrete-time system of the form (2) (with n = 4 and m = 4) is
obtained by mE-ZOH discretization with sampling time h = 10. The
partition of inputs and states is:

x[1] =
[

ıTA ıTB

]T
, u[1] =

[
ıqA ıqB

]T

x[2] =
[

ıTC ıTD

]T
, u[2] =

[
ıqC ıqD

]T

The constraints on the inputs and the states of the linearized system
have been chosen as:

x[1]
min =

[
−5 −5

]T
, x[1]

max =
[

5 5
]T

x[2]
min =

[
−5 −5

]T
, x[2]

max =
[

5 5
]T

u[1]
min =

[
−0.038 −0.038

]T
, u[1]

max =
[

0.030 0.030
]T

u[2]
min =

[
−0.038 −0.038

]T
, u[2]

max =
[

0.030 0.030
]T

Matrices Ki and Pi representing a feasible solution to (44)–(47) are:

K1 = K2 =
[

−0.0986 −0.0005

−0.0005 −0, 0986

]
P1 = P2 =

[
2.17 · 106 1

1 2.17 · 106

]

The selected weighting matrices are Q o
1 = Q o

2 = Ro
1 = Ro

2 = I2.
Algorithm 1 for computing the RPI sets has been used, while the
initial reference trajectories have been generated using Algorithm
5.

In the simulations reported below, the perturbed initial con-
ditions for ıTA = −3.2 ◦C, ıTB = −2.58 ◦C, ıTC = −1.12 ◦C, ıTD = 3.55 ◦C
have been set, the real external temperature has been assumed to
randomly vary between −10 ◦C and 10 ◦C and a sudden decrease
of temperature TA has been forced at t = 350 s, representing for
instance to the opening of a door, to show the capability of
Algorithm 4 to recover the reference trajectories.

The results of the simulations, performed using the continuous-
time process model, are shown in Fig. 2, while the values of the
input variables are depicted in Fig. 3. In both these figures a com-
parison between DPC and a centralized MPC  (cMPC), with the same
state and control weighting matrices is provided, showing only a
small reduction of performances.

To quantitatively assess the performance deterioration of DPC
with respect to cMPC, the following two indices have been consid-
ered

ISRE =
M∑

i=1

∫ Tend

0

√
x(t)[i]′x(t)[i]dt (40)

J =
M∑

i=1

Nend∑
k=0

x[i]′
k

Qix
[i]
k

+ u[i]′
k

Riu
[i]
k

(41)

where Tend is the final time and Nend is the total number of discrete-
time steps of the simulation experiment. The values of ISRE and J
corresponding to the state transients of Figs. 2 and 3 with DPC and
cMPC are reported in Table 1.
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Fig. 2. State trajectories with DPC (black lines) and cMPC (gray lines) of ıTA (left, solid lines), ıTB (left, dashed lines), ıTC (right, solid lines), ıTD (right, dashed lines).
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Fig. 3. Input trajectories with DPC (black lines) and cMPC (gray lines) of ıqA (left, solid lines), ıqB (left, dashed lines), ıqC (right, solid lines), ıqD (right, dashed lines).

Table 1
ISRE and J with DPC and cMPC in the temperature control problem.

ISRE cMPC 461.4
DPC 501.1
DPC/cMPC 1.09

J  cMPC 120.2
DPC 127.8
DPC/cMPC 1.06

4.2. Four-tanks system

A benchmark case often used to assess the effectiveness of dis-
tributed control algorithms is the four-tanks system schematically
drawn in Fig. 4, originally described in [17] and then utilized, for
instance, in [1,21,2].

The goal is to regulate the levels h1, h2, h3 and h4 of the four
tanks. The manipulated inputs are the voltages of the two  pumps
v1 and v2. We  assume to have a bounded unknown disturbance
w = (w1, w2) on the applied voltages, such that the real input to
the plant is (v1 + w1, v2 + w2). Let the parameters �1 and �2 ∈(0, 1)
represent the fraction of water that flows inside the lower tanks,

Fig. 4. Schematic representation of a four-tanks system.

and are kept fixed during the simulations. Then, the dynamics of
the system is given by

dh1

dt
= − a1

A1

√
2gh1 + a4

A4

√
2gh4 + �1k1

A1
v1

dh2

dt
= − a2

A2

√
2gh2 + (1 − �1)k1

A2
v1

dh3

dt
= − a3

A3

√
2gh3 + a2

A2

√
2gh2 + �2k2

A3
v2

dh4

dt
= − a4

A4

√
2gh4 + (1 − �2)k2

A4
v2

(42)

where Ai and ai are the cross-section of Tank i and the cross section
of the outlet hole of Tank i, respectively. The coefficients k1 and k2
represent the conversion parameters from the voltage applied to
the pump to the flux of water. The values of the parameters, taken
from [17], are: A1 = A4 = 28 cm2, A2 = A3 = 32 cm2, a1 = a4 = 0.071
cm2, a2 = a3 = 0.057 cm2, k1 = 3.35 cm3/Vs, k2 = 3.33 cm3/Vs,  �1 = 0.7,
�2 = 0.6. The considered equilibrium point is v1 = v2 = 3 V, h1 =
12.263 cm,  h2 = 1.409 cm,  h3 = 12.783 cm and h4 = 1.634 cm.
Denoting ıhl = hl − hl , l = 1, 2, 3, 4 and ıvi = vi − vi, i = 1, 2, x = (ıh1,
ıh2, ıh3, ıh4), u = (ıv1, ıv2), d = B(w1, w2), linearizing system (42)
around the considered equilibrium point and discretizing it using
mE-ZOH with sampling time h = 1 s, we obtain a linear system of
the type (2), where

A =

⎡⎢⎢⎣
0.98 0 0 0.04

0 0.97 0 0

0 0.03 0.99 0

0 0 0 0.96

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0.08 0

0.03 0

0 0.06

0 0.05

⎤⎥⎥⎦
The inputs and states are partitioned as:

x[1] =
[

ıh1 ıh2
]T

, u[1] = ıv1

x[2] =
[

ıh3 ıh4
]T

, u[2] = ıv2

The constraints on the inputs and the states of the linearized system
have been chosen as:

x[1]
min =

[
−12.263 −1.409

]T
, x[1]

max =
[

40 40
]T + x[1]

min

x[2]
min =

[
−12.783 −1.634

]T
, x[2]

max =
[

40 40
]T + x[2]

min
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Fig. 5. Trajectories of the states x[1] (left) and x[2] (right) obtained with DPC (black lines) and with cMPC (gray lines) for the four-tanks system. Solid lines: ıh1 and ıh3; dashed
lines:  ıh2 and ıh4.
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Fig. 6. Inputs ıv1 (left) and ıv2 (right) obtained with DPC (black lines) and with cMPC (gray lines) for the four-tanks system.

u[1]
min = u[2]

min − 3, u[1]
max = u[2]

max = 3

The disturbances w1,2 on the applied voltages are assumed to
randomly vary between −0.01 V and 0.01 V. Matrices Ki and Pi
satisfying the LMI  conditions are:

K1 =
[

−0.772 −0.181
]

, K2 =
[

−0.778 −0.250
]

P1 =
[

48.3 −1

−1 59.3

]
, P2 =

[
166.8 1.94

1.94 70.7

]

The weighting matrices are Q o
1 = Q o

2 = I2 and Ro
1 = Ro

2 = 1. To com-
pute the RPI sets Algorithm 1 has been used, and the initial
reference trajectories has been designed using Algorithm 4.

Starting from initial conditions ıh1 = 0.274 cm,  ıh2 = 0.067 cm,
ıh3 = 0.203 cm,  and ıh4 = 0.254 cm.  The simulation results, obtained
using the continuous-time nonlinear model, are reported in Fig. 5,
while in Fig. 6 the applied real voltages are shown. In addition
to the external disturbance (w1, w2), included in the robust con-
troller design, at time t = 100 s an unpredicted impulse equal to
2 V has been applied to the first pump. The reference trajectories
were then re-generated online to recover the nominal operating

conditions with Algorithm 4. The performances are close to the
ones obtained with centralized MPC, as also witnessed by the val-
ues taken by the indices ISRE and J defined in (40) and (41) and
reported in Table 2.

4.3. Cascade coupled flotation tanks

The third example deals with the level control problem of flota-
tion tanks proposed in [27]. The system is constituted by five tanks
connected in cascade with control valves between the tanks (Fig. 7).
A flow of pulp q enters the first tank. The goal is to keep stable the
levels yi, i = 1, . . .,  5, in all the tanks. The manipulated inputs are the
commands to the valves vi, i = 1, . . .,  5.

Table 2
ISRE and J with DPC and cMPC in the in the four-tanks system problem.

ISRE cMPC 74.2
DPC 82.3
DPC/cMPC 1.11

J  cMPC 1.36
DPC 1.47
DPC/cMPC 1.08
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Fig. 7. Schematic representation of the flotation tanks.

The mathematical model describing the dynamics of the levels
inside the five tanks is [27]:

�r2 dy1

dt
= q − k1v1

√
y1 − y2 + h1

�r2 dy2

dt
= k1v1

√
y1 − y2 + h1 − k2v2

√
y2 − y3 + h2

�r2 dy3

dt
= k2v2

√
y2 − y3 + h2 − k3v3

√
y3 − y4 + h3

�r2 dy4

dt
= k3v3

√
y3 − y4 + h3 − k4v4

√
y4 − y5 + h4

�r2 dy5

dt
= k4v4

√
y4 − y5 + h4 − k5v5

√
y5 + h5

(43)

where r is radius of the tanks, ki, i = 1, . . .,  5 are the valves coefficients
and hi, i = 1, . . .,  5 are the physical height differences between sub-
sequent tanks. We  set r = 1 m,  ki = 0.1 m2.5/Vs, i = 1, . . .,  5 and hi = 0.5
m, i = 1, . . .,  5. The nominal value for the inlet flow is q = 0.1 m3/s
and we assume it is affected by an uncertainty w = ±0.5% randomly
varying with the time. We  considered the equilibrium point where
yi = 2 m,  i = 1, . . .,  5, and, correspondingly, vi = 1.4142 V, i = 1, . . .,  4
and v5 = 0.6325 V. Let ıyi = yi − yi, i = 1, . . .,  5, ıvi = vi − vi, i = 1,
. . .,  5, x = (ıy1, ıy2, ıy3, ıy4, ıy5), u = (ıv1, ıv2, ıv3, ıv4, ıv5) and
d = Bdw. The linearization of system (43) in correspondence of the
considered equilibrium point and its discretization with mE-ZOH

using a sampling time 5 s, leads to a linear system of the form (2),
where Bd = [1.4714 0 0 0 0]T and

A =

⎡⎢⎢⎢⎢⎣
0.853 0.147 0 0 0

0.136 0.727 0.136 0 0

0 0.136 0.727 0.136 0

0 0 0.136 0.727 0.136

0 0 0 0.157 0.969

⎤⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎣
−0.104 0 0 0 0

0.096 −0.096 0 0 0

0 0.096 −0.096 0 0

0 0 0.096 −0.096 0

0 0 0 0.111 −0.248

⎤⎥⎥⎥⎥⎦
The partitions of inputs and states, for i = 1, . . .,  5 is:

x[i] = ıyi, u[1] = ıv1

The constraints on the inputs and the states of the linearized sys-
tem, for i = 1, . . .,  5, have been set as:

x[i]
min = −1, x[i]

max = 1, u[i]
min = −vi, u[i]

max = 3 − vi

Matrices Ki and Pi solving the LMI  conditions are:

K1 = 0.287, K2 = K3 = K4 = 0.143, K5 = 0.776

P1 = 1.18, P2 = 1.07, P3 = 1.05, O4 = 1, K5 = 1

The weighting matrices, for i = 1, . . .,  5, are Q o
i

= Ro
i

= 1. To compute
the RPI sets Algorithm 2 has been used, while the initial reference
trajectories have been designed using Algorithm 5.

The initial levels of the tanks have been assumed to be differ-
ent from the required values, that is ıy1 = −23.3 cm, ıy2 = −21.6 cm,
ıy3 = 23.3 cm,  ıy4 = 44.4 cm,  and ıy5 = −12.9 cm and at time t = 300 s
a disturbance of magnitude w = 0.1 m3/s has been applied to
the plant. In Fig. 8 we  show the transients, obtained using the
continuous-time nonlinear model, of the state and input of the
first tank, directly affected by the external flow q. Figs. 9 and 10
report, respectively, the states and the inputs of the remaining four
tanks. Note that, also in this case, the distributed control system
reacts to the disturbance by generating from scratch the reference
trajectories (with Algorithm 4). Moreover, only minor differences
arise between the centralized and the distributed solutions, as again
shown by the indices (40) and (41) reported in Table 3.
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Fig. 8. Trajectories of the state x[1] (left) and of the input u[1] (right) obtained with DPC (black lines) and with cMPC (gray lines) for the control of the floating tanks.
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Fig. 9. Trajectories of the states x[2] (a), x[3] (b), x[4] (c) and x[5] (d) obtained with DPC (black lines) and with cMPC (gray lines) for the control of the floating tanks.
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Fig. 10. Inputs u[2] (a), u[3] (b), u[4] (c) and u[5] (d) obtained with DPC (black lines) and with cMPC (gray lines) for the control of the floating tanks.

Table 3
ISRE and J with DPC and cMPC in the flotation tanks control problem.

ISRE cMPC 10.7
DPC 12.2
DPC/cMPC 1.14

J  cMPC 6.6
DPC 6.7
DPC/cMPC 1.01

5. Conclusions

This paper has described some numerical algorithms and tuning
rules for the realization of DPC, a non-iterative, non-cooperative
approach based on neighbor-to-neighbor communication and
characterized by a number of tuning parameters which must be
carefully selected to guarantee stability and convergence prop-
erties. It is believed that these results can make DPC a practical
solution to the design of innovative distributed predictive control
algorithms, to be used in an industrial context.

The proposed algorithms, as well as the performances provided
by DPC, have been tested in three examples. Notably, in these exam-
ples DPC has been used to control the nonlinear, continuous-time
models of the considered systems, and the results achieved have
been compared to those provided by a standard centralized MPC
algorithm. Future works will consider the extension of the algo-
rithm to enable plug and play capabilities.

Appendix A.

A.1. Computation of the feedback gain K

Define two  matrices S and Y such that K = YS−1 and P = S−1, and
consider the following set of LMI  to be solved with respect to Y and
S:[

S SAT + YT BT

AS + BY S

]
� 0 (44)

[
Sii SiiA

T
ii + YT

iiB
T
ii

AiiSii + BiiYii Sii

]
� 0 (45)

subject to

Sij = 0 ∀i, j = 1, ..., M (i /= j) (46)

Yij = 0 ∀i, j = 1, ..., M (i /= j) (47)

where, for i, j = 1, . . .,  M Sij ∈ R
(ni+mi)×(nj+mj), Yij ∈ R

mi×(nj+mj) are the
blocks entries of S and Y.
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