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1. INTRODUCTION

Natural porous rocks are quite common in many regions of the world, especially in Italy, where 
these materials have been used in the past for the construction of buildings and monuments. We 
refer for
instance to calcarenite [1] and tuffs (de’ Gennaro et al., 2000), in which the porosity often 
reaches
values larger than 0.6 [2]. Analogously, in nature it is not rare to find pumice stones with porosities as 
large as 0.73 and conchyliates with porosities of around 0.65 [3]. Up to now, the mechanical response
of these materials has been mainly studied both experimentally and numerically (Nova et al., 2003) 

by

taking into account their shear strength; in contrast, in some engineering problems like, for instance, 
the design of deep foundations of structures placed on underground cavities (piles/micropiles) the 
study of
compaction banding is quite crucial. An original study of this topic, via small scale experimental 
tests
on shallow foundations, is Nova and Parma [4].

In the last decades, very porous artificial conglomerates are also becoming rather common in the 
geotechnical practise: they are used for instance in special engineering applications in tunnelling and

obtained as by-products of waste soil treatment. As was reported by Cucino et al. [5], very porous
artificial conglomerates are employed in the construction of tunnels within swelling rocks to reduce
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the actions on the tunnel lining. Moreover, very porous artificial materials are often the result of the 
cementation of soils and waste materials [6], which are engineered to improve their physical/
chemical properties using a large variety of binding agents (lime, cement, fly ash, etc.). Jarofix, for 
instance, characterised by a porosity of about 70%, is obtained by mixing sodium jarosite with 
Portland cement and lime [7]. Cement admixed clays are very common cemented soils, by-products 
of ground improvement measures undertaken by cement stabilisation. The porosities of these 
materials are very high, with values of void ratio up to 5 [8, 9] and the presence of a bimodal pore 
structure with large spherical macro-voids along with inter-particle voids [10, 11]. The compaction 
processes within these natural/artificial materials are frequently characterised by the onset of 
compaction bands: Arroyo et al. [7] observed them in Jarofix and artificial conchyliades and 
Castellanza et al.[3] in Gasbeton.

This paper aims to investigate compaction processes taking place within very porous rocks either 
natural or artificial where a large decrease in void ratio is associated with the failure of bonds binding 
grains rather than grain crushing, which instead is observed at very large confining pressures on rocks 
characterised by lower porosities [12–21].

Arroyo et al. [7] and Castellanza et al. [3] observed that under oedometric conditions in both 
highly porous cemented soils and soft rocks like calcarenites: (i) compaction bands can take place 
at low vertical pressures (4–10 MPa); (ii) the mechanical response is markedly affected by the 
presence of large voids within the porous matrix; and (iii) damage mainly takes place in the 
bonds, these latter ones being weakness points in the microstructure. For all these reasons, 
the authors have decided to numerically analyse the compaction phenomenon by starting from 
a simplified description of the microstructure and by employing a numerical strategy based on 
the distinct element method (DEM) capable of taking into account the microstructure of this 
type of materials. Until now, few authors have employed DEM to investigate compaction 
processes in cemented porous materials. Katsman et al. [22] conducted numerical simulations 
on an ideal two-dimensional porous material made up of a regular network of linear springs 
without modelling each rock/soil grain individually. Wang et al. [23] ran more realistic two-
dimensional DEM analyses, but 2D analyses imply that the real porosity and the 3D kinematics 
of the motion of grains cannot be replicated. In the authors’ opinion, this is a fundamental 
limitation on the study of compaction bands because both porosity of the material and 
kinematics of the motion of the soil grains play a crucial role. Finally, more recently, Marketos 
and Bolton [24] investigated the occurrence of compaction bands triggered by grain crushing 
via 3D DEM analyses.

Hereafter, an idealised highly porous geomaterial, made of bonded spherical grains, rather than a 
specific geomaterial, is considered. No quantitative agreement between numerical results and 
available experimental data is thus expected. The numerical results that will be illustrated in this 
paper highlight how the microstructural variables govern the mechanical response of the system. For 
instance, it will be shown that, when compaction bands occur, the internal length of the material is 
mainly related to the size of the macro-voids, whereas, when shear bands take place, the 
characteristic length is mainly related to the grain size distribution [25, 26]. Moreover, it will be 
shown that the fragility/ductility of the mechanical behaviour of bonds, together with the material 
porosity, rules the occurrence of localization at the macro-level.
2. NUMERICAL PROCEDURE

In very porous soft rocks, the presence of macro-voids and bonds can be observed in images obtained 
via optical microscope (Figure 1(a)) and by scanning electron microscope images (Figure 1(b)), [27]. 
As is shown in Ciantia and Hueckel [27], soft rocks like calcarenites can be thus interpreted as 
double porosity materials. The macropores severely affect the mechanical response of the material 
because, under compression, the destructuration of the material is mainly governed by their 
collapse. For these reasons, the idealised material conceived by the authors will be thus 
characterised by the following: (i) presence of macro-voids; (ii) a high void ratio; and (iii) rigid 
grains bonded to one another.



(a) (b)

Figure 1. (a) Macropores in calcarenite observed via polarised light microscope. (b) Macropores in calcarenite
observed via scanning electron microscope (SEM). The arrows indicate the presence of bonds [27].
2.1. Sample generation

The numerical campaign consisted of 16 oedometric tests on cylindrical specimens. In all the
simulations, gravity was absent because geostatic stresses were assumed to be negligible in
comparison with the applied axial stress. The initial height H0 and diameter Δ of specimens were
determined after assigning the following: (i) the initial porosity n (the majority of the samples being
characterised by an initial porosity equal to 0.7); (ii) the total number of grains Np (this was kept
approximately constant and equal to 16 000 for all the generated specimens (Table II)); (iii) the
grain size distribution; and (iv) the specimen slenderness, α=H0/Δ, which was kept constant and
equal to 2.

For a cylindrical specimen, Vt, the total specimen volume is related to the cylinder diameter as

Vt ¼ H0πΔ2

4
¼ παΔ3

4
(1)

Moreover,

Vt ¼ Vs

1� n
(2)

with Vs being the volume of the solid fraction. From Eqns (1) and (2), the size of the sample diameter
was calculated as

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Vs

1� nð Þαπ
3

s
(3)

with the volume of the solid fraction, Vs , calculated as:

Vs ¼ ∑
Np

i¼1

4
3
π

ϕpi

2

� �3

(4)

where ϕpi is the diameter of the i-th grain.
An additional goal of the procedure has been the generation of a specimen with a set of macro-voids

homogeneously distributed in space to generate specimens with both large void ratios and non-
negligible coordination number. The main geometrical parameters of the introduced microstructure
are as follows: (i) the ratio of macro-void size over the average grain size; and (ii) the number of
macro-voids per unit volume.

To obtain a random distribution of pseudo-spherical macro-voids within the specimen, the following
numerical procedure was employed:



• Initially, two different groups of particles were generated within the cylinder: (i) ‘micro-particles’
with linearly varying diameters and (ii) ‘macro-particles’ with a constant diameter ϕm.

• The method employed to generate the samples is the so-called radius expansion method [28]. This
technique allows for the generation of a spatially random grain size distribution with a homogeneous
network of contacts and low lock-in forces (so that specimens with negligible initial self-stresses are
generated). In order to investigate the influence on the material mechanical response of the macro-
voids size, simulations were run for two sizes of the macro-void diameter: ϕ1 = 2.5mm and
ϕ2 = 6.13mm. On the other hand, the final distribution of the micro-particle (grain) size diameters
adopted is the same in all the tests. This is a uniform distribution with the grain diameter ranging from
ϕp,min = 0.98mm to ϕp,max = 1.47mm.

• After generation, (Figure 2), the macro-particles are deleted to attain the desired macro-voids and
bonds are assigned to all the pairs of particles in contact. Bonds were simulated in PFC3D by
employing the so-called ‘parallel bonds’: beam elements with circular cross section, whose constitu-
tive law is described in the following. The adopted parallel bondwas assigned a radius,R, of 0.7 times
the minimum radius of the two grains in contact. Given the adopted particle size distribution, the area
of the parallel bonds ranged from Amin = 0.37mm2 to Amax = 0.83mm2.

The number of macro-particles/macro-voids was determined by trial and error. Specimens with
different numbers of macro-voids and the same overall porosity were generated. The authors observed
that when the number of macro-voids was above a threshold value, stresses were present at the end of
the generation procedure (i.e. the end of particle radii expansion); whereas when the number of macro-
voids was below the threshold, no stresses were present. Because the overall porosity is fixed (e.g.
n=0.7), the lower the number of macro-voids is, the lower the number of contacts among particles is
and consequently the number of bonds. In order to generate a sample free from lock-in forces but at the
same time with a complete network of bonded particles, that is without any unbonded particles being
present, the sample with the largest possible number of macro-particles but with negligible stresses on
the boundaries at the end of the generation procedure (i.e. less than 1 kPa) was adopted. In Table II,

both the obtained standard coordination numbers, cpbN , defined as the number of contact per particle, and

the mechanical coordination number [29], Cpb
N , which excludes floating particles and rattlers (particles

with only one contact), are reported. Although the values of coordination number are quite small,
nevertheless, the obtained microstructure is mechanically stable because of the presence of bonds
holding particles together.
2.2. Contact laws and micromechanical parameters

In DEM, the simplest contact law, governing the mechanical interaction between two unbonded particles,
is a linear spring together with a divider along the normal direction and a linear spring together with a
Figure 2. Cylindrical sample after the generation procedure, with micro-particles (rock/soil grains) in blue
and macro-particles (to become macro-voids) in red.



frictional slider along the tangential direction. The contact stiffness is defined by both the normal and shear 
stiffness of the two contacting entities (either particle or wall). The values of the particle normal and shear
stiffnesses (kpn, ks

p) and the intergranular friction coefficient (μp) employed are reported in Table I. These are
typical values selected in DEM simulations for granular materials when the linear contact law is employed 
[30–32]. Top and bottom platens and lateral walls were set to be frictionless and much stiffer than the 
particles (Table I). The grain density ρp was set equal to 2650kg/m3.

To simulate the action of cementitious bonds, two different bond models, herein called standard 
parallel bond (SPB) model and damage parallel bond (DPB) model, respectively, were employed 
and are described in the following sections. The SPB model was obtained by activating at the same 
time two bond models already available in PFC3D [33]: the so-called ‘contact’ and ‘parallel’ bond 
models. The ‘contact bond’ between two particles prevents tangential irrecoverable slippage whilst 
the ‘parallel bond’ transmits both elastic forces and moments between the two bonded particles. The 
DPB model instead was implemented by the authors in the code via an ad-hoc routine.

Two different regularising damping approaches are commonly employed in DEM analyses: the so-
called local damping and viscous damping. The former type of damping consists of increasing 
decelerations and decreasing accelerations of particles of a fixed fraction, δ, [34]. In the latter case 
instead, two dashpots, one along the normal direction, ruled by parameter βn, and the other one along 
the tangential direction, ruled by parameter βs, are added to the contact model, so that a damping force 
opposing the relative particle motion and proportional to the relative particle velocities is active. The 
dimensionless parameters βn and βs represent the ratio between the applied damping and the critical 
damping coefficients.

Calibration of physically meaningful values of damping is very difficult because the current lack of 
experimental measurements on the dissipative phenomena taking place at the microscopic level (e.g. 
asperity shearing off, grain fracturing, etc.). For this reason, it is desirable to introduce a damage 
model (DPB) able to directly control the fragility/ductility of the bonds. Herein in the following, 
both approaches are employed and critically discussed.

2.2.1. Standard parallel bond model. In this model, bonds behave elastically until brittle failure 
occurs. The default PFC3D ‘parallel bond’ is defined as a function of two stiffness coefficients and 
of the ratio of the bond radius over the minimum grain radius of the bonded particles. The parallel 
bond can be interpreted as a set of elastic springs uniformly distributed over a circular cross section.
The normal and shear ‘distributed’ stiffnesses were taken as kn ¼ 5 � 1012 Pa/m and ks ¼ 2:5 � 1012 

Pa/m. These parameters were selected according to Marketos and Bolton [24] and Potyondy and 
Cundall [28]. Failure takes place when either the maximum tensile stress exceeds the normal bond 
strength (σc ) or the maximum shear stress exceeds the bond shear strength (τc ) (Table II). At failure, 
the entire elastic energy stored in the bond is released instantaneously. The maximum tensile and 
shear stresses acting on the parallel bond periphery can be calculated via beam theory.

2.2.2. Damage parallel bond model. For the reasons previously mentioned, the authors have chosen 
to implement a damage rheological model dealing with a set of generalised stress–strain variables.

A similar approach has been proposed by Potyondy [35] to investigate damage occurring at bond 
level due to stress-corrosion reactions. Differently from that approach, in which the damage reduces 
the diameter of bonds, here the damage process is simulated as a progressive reduction in the 
mechanical properties of bonds.

In the DPB model conceived by the authors the process leading to the breakage of bonds is gradual. 
Bond failure is assumed to occur at the end of a progressive reduction in the mechanical properties 
(stiffness and strength) of the bond. The adopted DPB model is herein illustrated by employing 
generalised variables in terms of forces, Q, and displacements, q, defined as it follows:
kpn [N/m] kps [N/m] μp kwn [N/m] kws [N/m] μw

4 × 106 2 × 106 0.5 4 × 108 2 × 108 0

Table I. Micromechanical parameters of particles and walls.



Table II. Parameters used for the simulations with elasto-brittle and elasto-damage contact model.

Test Np Nm

ϕm

[mm] κ cpbN Cpb
N βn=βs δ ω

σc

[Mpa]
τc

[Mpa]
σ0

[Mpa]
τ0

[Mpa] ν̇ [Hz]

SPBl07κ2_1 16492 2244 2.5 2 2.35 3.18 0.0 0.3 — 130 130 — — 0.76
SPBl07κ2_2 16492 2244 2.5 2 2.35 3.18 0.0 0.7 — 130 130 — — 0.76
SPBl07κ2_3 16492 2244 2.5 2 2.35 3.18 0.0 0.9 — 130 130 — — 0.76
SPBv07κ2_1 16492 2244 2.5 2 2.35 3.18 0.0 0.0 — 130 130 — — 0.76
SPBv07κ2_2 16492 2244 2.5 2 2.35 3.18 0.3 0.0 — 130 130 — — 0.76
SPBv07κ2_3 16492 2244 2.5 2 2.35 3.18 0.6 0.0 — 130 130 — — 0.76
SPBv07κ2_4 16492 2244 2.5 2 2.35 3.18 0.3 0.0 — 130 130 — — 0.61
SPBv07κ2_5 16492 2244 2.5 2 2.35 3.18 0.3 0.0 — 130 130 — — 0.38
SPBv07κ2_6 16492 2244 2.5 2 2.35 3.18 0.3 0.0 — 130 130 — — 0.19
DPB07κ2_1 16492 2244 2.5 2 2.35 3.18 0.0 0.0 0.8 — — 250 250 2.75
DPB07κ2_2 16492 2244 2.5 2 2.35 3.18 0.0 0.0 0.6 — — 250 250 2.75
DPB07κ2_3 16492 2244 2.5 2 2.35 3.18 0.0 0.0 0.4 — — 250 250 2.75
DPB07κ5_1 16491 181 6.13 5 2.34 3.41 0.0 0.0 0.6 — — 250 250 2.75
DPB05κ2_1 16490 520 2.50 2 4.61 4.79 0.0 0.0 0.6 — — 250 250 2.75
DPB05κ2_2 16490 520 2.50 2 4.61 4.79 0.0 0.0 0.8 — — 250 250 2.75
Q ¼

N

V

M

Mt

26664
37775 (5)

with N ¼ F
n�n, V ¼ F

s�s,M ¼ M
s�r andMt ¼ M

n�n. Fn and Fs represent the axial and the shear force
acting on the parallel bond, respectively, and M

n
and M

s
the torque and bending moments. s is a unit

shear vector, and r a unit moment vector parallel to the shear force and the bending moment,
respectively. The corresponding displacements and rotations can be grouped in a vector, q:

q ¼

Un

Us

θs

θn

26664
37775 (6)

with Us =Us � r and θs= θs � r. Un and θn represent the axial relative displacement and rotation,
respectively, between two bonded particles, whilst Us and θs, the tangential relative displacement
and rotation.

The adopted elasto-damage model is based on the following assumptions: (i) damage occurs
isotropically; and (ii) no irreversible displacements and rotations take place, that is, the elastic
stiffness during unloading is lower than the stiffness exhibited during the first loading. Because of
the first hypothesis, the amount of damage is expressed by means of only a scalar state variable, D,
ranging from 0, for intact bonds, to 1, for fully damaged bonds. With the progression of damage, D
increases according to a prescribed damage law. The constitutive relationship introduced in the
following is formulated in the framework of standard damage models [36]. According to the so-
called equivalence principle,

eQ ¼ Deq (7)

where eQ is the associated effective force vector and De is the elastic stiffness matrix. eQ is defined as



eQ ¼ Q
1� D

(8)

The elastic stiffness De has the following form:

De ¼

k
n
A 0 0 0

0 k
s
A 0 0

0 0 k
n
I 0

0 0 0 k
s
J

266664
377775 (9)

with A, I and J being the area, moment and polar moment of inertia of the parallel bond cross section,
respectively. From Eqns (7) and (8), the vector of the generalised forces can be obtained

Q ¼ 1� Dð ÞDeq (10)

This equation defines the constitutive relationship in terms of generalised variables once the evolution
law of the damage variable D is assigned. The activation of damage is ruled by a threshold function
defined in the space of the generalised load variables (N, V, M and Mt):

g ¼ g Q; χ Dð Þð Þ (11)

where χ(D) is the vector of internal variables. The threshold function is analogous to the yield function in
classical plasticity theory: if g< 0, the material behaves elastically and Ḋ ¼ 0 so that χ is constant,
whereas for g ¼ ġ ¼ 0; damage occurs, Ḋ > 0, so that χ reduces and as a consequence the threshold
surface (g=0) shrinks omothetically.

For the sake of simplicity, the influence of torque on the threshold function was neglected; hence,
the activation of damage process is exclusively governed by N, V and M. The threshold function
adopted is a modification of the mathematical expression first proposed by Neal [37]:

g Q; χ Dð Þð Þ ¼
����M—M—

����ξ1 þ �
N—
N
—

�
2

þ
V—
V
—

� �4

1�
�
N—
N
—

�
2
� 1 (12)

where the vector of the internal variables, χ, is defined as follows:

χ ¼
N

V

M

264
375 (13)

with N , V and M are the coordinates in the space of the generalised forces of the intersection points
between the current threshold surface and the coordinate axes (N, V and M), respectively. The shape
of the threshold surface is shown in Figure 3.

Because the Newton–Raphson algorithm adopted to compute the damage model equations
(Appendix) requires differentiability of the threshold function in all the points of its domain, an
extra parameter, ξ1, was added to the original Neal’s formulation to make it differentiable. When
ξ1 = 1, the original Neal’s expression is obtained. If a value of ξ1 just slightly larger than 1 is chosen
(for instance ξ1 = 1.001), differentiability of the function is ensured, and the difference between the
original shape of the Neal’s threshold surface and the one here adopted is practically negligible.



Figure 3. The adopted threshold surface (Eqn (12)) in the N-V-M space.
The evolution of the internal variable vector χ was assumed as follows:

χ ¼
N

V

M

264
375 ¼

eN0

V0

M0

264
375 1� Dð Þω with ω < 1 (14)

with

eN0 ¼
N0 for N < 0

ξ2N0 for N≥0

�
(15)

with ξ2 >1. ω is a parameter governing the ductility of the mechanical response, that is, the rate of
shrinkage of the threshold surface. The larger ω is, the higher is the rate of damage (Appendix).
Because the damage parameter D reaches 1 only asymptotically, we assumed that bond breakage
occurs at D=0.99, with bonds being deleted as soon as D=0.99. Note that unlike the original surface
proposed by Neal, our threshold surface is non-symmetrical, because of the introduced parameter ξ2
representing the ratio of purely compressive strength over purely tensile strength (Figure 3). Here, a
compressive strength 10 times the tensile one was assumed so that ξ2 = 10.

Analogously to the elasto-brittle bond model, the onset of damage is related to the maximum normal
stress σ0 and the maximum tangential stress τ0 of the bond:

N0 ¼ σ0A ¼ σ0�π�R2

V0 ¼ τ0A ¼ τ0�π�R2

M0 ¼ σ0
I—
R
— ¼ 1

4
σ0�π�R3

(16)

where R, A and I are the radius, the area and the moment of inertia of the parallel bond, respectively.
In the Appendix, the detailed implementation of the elasto-damage bond model into the code is

illustrated. In summary, the DPB model is a function of five parameters (σ0, τ0, ξ2, ω and R), the
first three are related to the bond strength, ω to the bond ductility and R to the bond geometry. The
key feature of the bond model here introduced is that the parameters employed are clearly related to
either the geometry or the material properties of the bond.



2.3. Determination of the representative elementary volume

The results of any either numerical or experimental test are reliable if and only if the tested specimens 
are big enough to be representative of the material analysed, nevertheless, in many publications on 
DEM, the question whether the adopted volume is a representative elementary volume (REV) is only 
rarely tackled (e.g. see [38]). For the material here investigated, the size of the REV is a function of 
the following: (1) the size of particles; (2) the size of macro-voids; and (3) the average distance 
among macro-voids, which was calculated as the average distance between the centres of two 
adjacent macro-voids minus the macro-void radius.

To identify a suitable REV, we considered the mechanical response of specimens before any 
breakage of bonds (no localisation has yet occurred) until their mechanical response is linear elastic. 
The specimens were loaded by moving the top platen downwards with the bottom platen fixed. In 
the initial loading phase, the global stiffness of the specimens can be conveniently expressed in 
terms of the oedometric Young modulus, Eoed, defined as the ratio between the axial stress σa, 
calculated as the axial force acting on the upper platen over the platen area and the nominal axial 
strain, as the vertical displacement Δz of the upper platen over H0.

Both particle size distribution and initial porosity of specimens were kept unchanged in the majority 
of the simulations so that the REV size depends exclusively on the size of the macro-voids. As is 
evident from Figure 4, by increasing the specimen size, the variation in Eoed becomes progressively 
smaller until a horizontal asymptote is reached, implying that in case of κ = 2 (Figure 4(a)), 
specimens with H0/ϕp,mean > 45.2, corresponding to Np > 10 000 can be taken as a REV and, 
analogously (Figure 4(b)), specimens with κ = 5 and average distance between macro-voids equal to 
4mm turn out to be representative for the material.
2.4. Detection of compaction bands

Compaction banding is a localization process causing the loss of uniformity in both the strain and stress 
fields within the specimens. Compaction bands are commonly classified as tabular zones of pure 
compressive deformation aligned orthogonally to the direction of the maximum compressive stress. 
To detect the formation of compaction bands, the authors employed two different strategies. The 
first is based on detecting broken and damaged bonds (see Figures 15, 16, 18, 10, 21, 22 and 26). 
According to this approach, the development of zones of higher concentration of damage signals the 
presence of compaction bands. This is the default approach to capture the onset of compaction 
bands in experimental tests (Olsson and Holcomb [17] and Baud et al. [21]). However, the presence 
of zones of higher concentration of bond breakages is not sufficient to prove the development of a 
compaction band. To this end, a second strategy, based on the analysis of the strain field, was 
employed. This requires the calculation of a reliable local measure of strains, which is a particularly 
challenging problem in case of discrete element simulations. To evaluate the field of vertical strain,
(a) (b)

Figure 4. Oedometric Young elastic modulus, Eoed, versus sample height, H0, normalised by the mean
particle size, ϕp,mean, for samples with different number of macro-voids: (a) κ = 2 and (b) κ = 5.



 

εzL ¼ εvolL ¼ ΔVvL

V0L
¼ ΔeL�Vs0L

V0L
(17)

with ΔeL the variation of void ratio in the layer, V0L the initial volume of the L-th layer and Vs0L the
initial volume of solids belonging to the L-th layer.

two techniques were adopted: the first one being based on mesh-free interpolants and the second one 
on a simplified method to measure the variation of void ratio within the sample [39].

In recent years, several kinematic homogenization techniques have been proposed in the literature to 
calculate strains in particulate media. All these techniques rely on the calculation of average 
displacement gradients from the displacements and rotations of single particles. O’Sullivan et al. [40]
showed that mesh-free interpolants are particularly effective in detecting strain localisation. They 
employed the so-called moving least square reproducing kernel (MLSRK) interpolant, first proposed by 
Liu et al. [41] which was employed in this paper, too. This method requires the selection of a value for 
the so-called dilation parameter, ρ, that represents the size of the window function, which is a 
mathematical function used as interpolant for the displacement field achieved from the displacements 
recorded for the particles.

The second technique is based on the subdivision of the sample into a number of equal size layers [42]. 
At each step, the subdivision is repeated. The number of layers is kept constant with each layer being 
of the same size. The void ratio of each layer, eL, was calculated from the total volume of the layer and 
the volume of solids, VsL. The average volumetric strain εvolL, that is, the average vertical strain εzL per 
layer, is calculated as follows:
3. RESULTS

Numerical tests were performed by employing both SPB and DPB models. In Table II, a summary of
the values of the parameters employed is provided. Each test is denoted by the acronym ‘xPByzκw_i’
where x indicates the type of bond model: S for SPB and D for DPB; y indicates the type of damping
employed: l for local and v for viscous; z indicates the initial porosity of the specimen; w represents the
value of the parameter κ; and i represents the identification number of the test.

All the specimens were loaded by moving downwards the upper platen with the bottom platen kept
fixed. The imposed nominal axial strain rate ˙ν is reported in Table II. The difference between the force
acting on the upper platen and the reaction force on the lower platen was constantly monitored and
resulted to be negligible throughout all the tests (Figure 5). As long as no localization due to the
collapse of macro-voids occurs, the specimen continues to be homogeneous; therefore, if the granular
assembly is considered as a continuum body, the presence of equal reaction forces at the boundaries
(a) (b)

Figure 5. Graphs relative to test SPBl07κ2_2. During the test, the lower plate is fixed, whereas the upper
plate moves downwards. (a) Forces acting on the upper Fup and lower Fdw platen against the nominal axial

strain. (b) Total Kinetic energy Ek of the granular system against the nominal axial strain.



implies a uniform stress state. Now, according to the equilibrium equations of continuum mechanics 
(conservation of linear momentum), inertial body forces are equal to the gradient of the stress tensor, 
which is nil in this case because no body forces are present (gravity is absent) and no pressure 
differential is applied on the boundaries (equal reaction forces from the platens); hence, it can be 
concluded that the specimen is under quasi-static conditions, that is, the inertial forces present are 
very small in comparison with the static forces. Note that had both platens been moving (e.g. bottom 
platen moving upwards and upper platen moving downwards), the presence of equal reaction forces 
would not imply the uniformity of the stress field in the specimen because a symmetrical stress 
gradient could develop with the line of symmetry located at half the sample height. Once localization 
occurs because of the collapse of macro-voids, quasi-static conditions are no longer in place even if 
the reaction forces on the platens remain equal (Figure 5(a)) so that spikes of kinetic energy arise in 
the specimen due to the accelerations experienced by the particles involved in the collapse of macro-
voids (Figure 5(b)). The occurrence of localization implies that the sample is no longer homogeneous 
so that the aforementioned considerations on quasi-staticity of the sample are no longer valid and the 
stress field inside the region(s) where compaction band(s) develop may be different from the field in 
the rest of the sample.

In Figure 6 the stress–strain curves of several tests for the same specimen size (H0 = 6.54 cm, 
Δ = 3.27 cm) but for different bond models and damping types are plotted: it emerges that the 
mechanical response of the system is significantly affected by both the constitutive model of the 
bonds and the type of damping adopted. In the following sections, the influence of each factor on 
the mechanical response of the system is investigated.
3;  
3.1. Influence of the damping law (SPB model)

The mechanical response of the tested specimen was investigated for various values of δ for local damping 
(δ =0.0;  δ =0.3;  δ =0.7;  δ =0.9)  and  of  βn, βs for viscous damping (βn = βs =0.0;  βn = βs =0.
βn = βs = 0.6) with the obtained stress–strain curves plotted in Figure 7. From the graphs in the figure, 
two stages of the test can be identified: the first one being the part where the trend is linear and the 
second one the part where it is nonlinear. In the first stage, the specimen exhibits a linear elastic 
behaviour and deforms under quasi-static conditions, and all the curves coincide because of the fact that 
under quasi-static conditions damping does not affect the mechanical response of the material [43]. In
Figure 6. Comparison between the σa�Δz/H0 curves obtained in different tests with different values of
parameters (Table II).



(a) (b)

Figure 7. Comparison between the σa�Δz/H0 curves obtained for different values of (a) the local damping
coefficient δ and of (b) the critical damping ratios βs = βn.
the second phase instead, specimens experience inertial forces due to the movement of particles let free by
the failures of the bonds binding them. It emerges that the local damping is significantly more effective in
reducing the material fragility than the viscous damping.
Moreover, it can be observed that the peak of the axial stress is highly affected by the value adopted for the
local damping (Figure 7(a)) in contrast with the negligible influence exerted by the viscous damping
(Figure 7(b)). The observed trend can be explained considering that when the stress peak is reached,
collapse of several macro-voids has taken place allowing the previously bonded particles freedom of
movement. Now local damping acts directly on particle accelerations reducing them, whereas the
viscous damping acts only when particles come into contact, therefore unlike the viscous damping,
local damping is effective at reducing the speed of the collapse of the macro-voids, which in turn
affects the dynamic equilibrium established in the specimen and therefore the stress peak.

In Figure 8, the dependence of the mechanical response on the loading rate applied is illustrated for tests
run with viscous damping of βn= βs=0.3. Because all the curves coincide during the initial elastic phase, it
Figure 8. Comparison between the σa�Δz/H0 curves obtained for different values of the nominal axial
strain rate ν.



can be concluded that the loading rate does not affect the mechanical response of the specimens as long as 
they remain homogeneous. Also, the values of peak stress, reached after localization has taken place, are 
the same. The only noticeable difference in the plotted stress–strain curves is about the value of axial 
displacement (Δz/H0) when a significant stress drop occurs. This value is not correlated by any 
trend (e.g. proportionality) with the loading rate applied but appears to be random.

3.2. Detection of compaction band propagation

The overall mechanical response of test SPBl07κ2_2 (local damping on; n = 0.7; κ = 2) is hereafter 
illustrated (Figure 9). The average radial stress, σr, was calculated as the ratio between the sum of 
the normal contact forces acting on the lateral surface of the cylinder and its lateral area. In the first 
part of the axial stress – nominal axial strain curve (Figure 9(a)), the response is linear elastic until 
approximately Δz/H0 = 1.3% with all the bonds being intact. After this stage, a marked deviation 
from the linear trend is observed with a few broken bonds uniformly distributed in the specimen 
(Figure 9(b)). At Δz/H0 = 2.3%, the peak of the axial stress (point B in Figure 9(a)) is achieved. 
Subsequently, a steep drop in stress takes place up to point C (Figure 9(a)). At this point, a large 
number of broken bonds are present in the middle of the sample, in a band perpendicular to the 
vertical direction of compression (Figure 9(d)). Looking at the plot of the number of bonds along 
the z-coordinate (Figure 9(e)), a high concentration of broken bonds is evident: the majority of 
breakages occurring in a thick band (about 1/4 of the initial height of the sample, 6 times the 
diameter of the macro-voids) with only a tiny amount of breakages outside the band.
Figure 9. Test SPBl07κ2_2: (a) σa�Δz/H0 and σr�Δz/H0; (b) and (d) spatial distribution of the broken bonds
in the vertical plane (x is the horizontal axis whilst z is the vertical one) at Δz/H0 = 2% and Δz/H0 = 4%, respec-

tively; (c) and (e) number of broken bonds along the vertical axis.



 
 

 

In Figure 10, the strain field within the sample, calculated by employing the MLSRK mesh-free 
method, is plotted at Δz/H0 =2%  and  Δz/H0 = 4%. The value adopted for the so-called dilation
parameter, ρ (see [40]), was determined by trial and error (ρ = 8). For too low values of ρ, the  number
of particles within the window is too small and unrealistically irregular strain fields appear. On the 
contrary, for too large values of ρ, the window region becomes too large to detect any strain 
localization. From Figure 10(a), it emerges that at Δz/H0 = 2%, the local variation of axial strain from 
the value of the nominal strain is small, and the strain field of the specimen is still uniform. Conversely, 
after the drop of axial stress has taken place, (Figure 10(b)), a compaction band perpendicular to the 
direction of compression is visible in the middle of the sample with the strain field being clearly 
nonuniform. Experimental tests from the literature usually show compaction bands starting in the 
vicinity of the platens, because of the presence of tangential stresses caused by friction [3]. However, in 
our numerical simulations, all the boundary walls are frictionless, so that the onset of the compaction 
bands is governed only by the heterogeneities initially present in the samples which, owing to the 
adopted procedure of particle and bond generation, are randomly distributed in space.

Local axial strains were also calculated by means of a second method. The sample was subdivided into 26 
layers of thickness approximately equal to one macro-void diameter. The thickness adopted for the layers 
was determined by trial and error: for higher values of thickness the compaction band could be missed, 
whereas for lower values an unrealistically irregular strain field would be obtained. In Figure 11, the 
average axial strains calculated for each layer are plotted before the stress peak (at Δz/H0 =2%)  and
afterwards (at Δz/H0 = 4%). It can be observed that inside the compaction band, the axial strain 
increases sharply to values significantly higher than the imposed nominal strain. In fact, because of the 
irreversible rearrangements of several unbonded particles, irrecoverable (plastic) deformations take 
place, whereas outside the band, particles are still bonded, so that the material undergoes elastic 
unloading. Looking at Figures 10 and 11, it emerges that the fields of axial strain determined by the 
two different methods, both inside and outside the compaction band, are in a very good agreement 
regarding both the value of calculated strain and the position of the borders of the compaction band.
3.3. Influence of the damage parameter ω (damage parallel bond model)

From the results of paragraph 3.1, it can be concluded that viscous damping is not effective in 
regularising the post-peak regime, whereas local damping is. These forms of damping were originally 
introduced in the DEM with the purpose of either speed up computations or regularising the 
mechanical response of the sample (e.g. dampening oscillations) but without a direct physical relation 
to any micromechanical phenomenon causing energy dissipation, hence, calibration of their values is 
performed on the basis of the desired overall mechanical response of the specimen of granular 
material rather than to reproduce any experimental measurement, however, currently unavailable, of
(a) (b)

Figure 10. Plots of the vertical strain field within the sample (test SPBl07κ2_2) calculated on a planar slice,
xz plane, of the cylindrical sample for: (a) Δz/H0 = 2% and (b) Δz/H0 = 4%.



Figure 11. Vertical strain within the samples for different values of Δz/H0 in test SPBl07κ2_2. The sample
was subdivided into 26 layers. Each symbol represents the average vertical strain within a layer.
dissipative phenomena occurring at the level of grain interaction. Therefore, although damping
parameters affect the ductility of the system, they are not related to the ductility of the bonds and do
not possess a clear physical meaning. Conversely, in case of the DPB model, the ductility of the
bonds is directly controlled by the parameter ω, which possesses a clear physical meaning as the rate
of bond damage progression (see par. 2.2). The ability of the DPB model to replicate in a realistic
way, the damage process occurring in the bonds, is a key advantage over the SPB model. Moreover,
progressive damage of the bonds causes irreversible energy dissipation hence having the effect of
regularising the mechanical response of the system although in a different way than the two forms of
damping employed in the SPB model do. In this section, simulations run with the DPB model, and
no damping are presented with the purpose of assessing the capability of the DPB model to capture
the main features relative to the onset and propagation of compaction bands in highly porous rocks
and cemented soils.

In Figure 12, the typical σa�Δz/H0 and σr�Δz/H0 responses exhibited by specimens with bonds
of the DPB model are plotted. For the sake of analysis of the mechanical behaviour exhibited by the
specimens, three stages phases for the mechanical response can be identified. In the first stage, bonds
remain intact so that the response is linear elastic. The second stage starts with a gradual but
progressive deviation of the response from linearity because of the progressive damage undergone by
bonds in the specimen. In the following, it will be shown that depending on the value of ω, the branch
of the curves in the second stage can exhibit either hardening or softening. During this second stage, a
progressive collapse of macro-voids occurs with the material changing its structure from a high porosity
material to a low porosity one and therefore its mechanical properties, that is, stiffness and strength.
Finally, the third stage starts where a sharp increase in the slope takes place: there, all macro-voids have
collapsed and the material stiffness increases (Figure 12). These three phases are also observed in
experimental tests on highly porous rocks [3].



Figure 12. σa�Δz/H0 and σr�Δz/H0 curves obtained for the DPB model (test DPB07κ2_2). The approx-
imate borders of the stages of the mechanical response are marked by dashed grey vertical lines.
The force–displacement relationship obtained for a single bond tested under uniaxial compression is
plotted in Figure 13(a), for three values of ω: ω =0.8, ω=0.6 and ω=0.4 (tests DPB07κ2_1,
DPB07κ2_2 and DPB07κ2_3). An analogous force–displacement curve scaled down of 10 times in
value is obtained in case of uniaxial tension. Note that ω does not affect the strength but only the post-
peak strain softening phase of the mechanical response of the bond with the highest ductility for
ω =1.0, that is, relative displacements occurring with the contact force being constant, and the lowest
ductility for ω=0.0, that is, elasto-fragile behaviour without any softening. In Figure 13(b), the curves
of axial stress versus nominal axial strain, for samples featured by the aforementioned values of ω
(ω=0.8; ω=0.6; ω=0.4), are plotted. In all the curves, a progressive loss of stiffness is noticeable. The
deviation of the curve from linearity reflects the fact that bonds start to undergo damage: in all the
curves stress drops are visible. The magnitude of the observed drops is highly affected by the amount
of ductility adopted for the bonds: the higher the ductility (i.e. the lower the value of ω) is, the lower
the stress drops turn out to be and the more ductile the global mechanical response of the system
becomes. It is remarkable to note that in case of high ductility of the bonds (ω =0.4), an overall ductile
branch of the curve is obtained with very small stress drops. This shows that the onset of the
compaction band can take place even in the presence of an overall ductile behaviour. This is due to the
(b)

(a)

Figure 13. (a) Constitutive relationship of the parallel bond in the normal direction and (b) comparison
between the σa�Δz/H0 curves obtained in test DPB07κ2_1, DPB07κ2_2, DPB07k2_3.



fact that the collapse of the macro-voids occurs gradually with the grains in the forming compaction band 
that are moving away from each other and at the same time being held together by damaged but still intact 
bonds. Later on (see par 4.3), the influence of the size of the macro-voids is also investigated. It will be 
shown that in case of larger sizes, the macro-voids are so big that their collapse cannot take place 
without full detachment of the grains taking place (i.e. bond breakage occurring), which leads to 
significant accelerations on the grains and in turn to a drop of the axial stress.

From Figure 13, it also emerges that the value of ω is strongly related to the amount of the observed 
stress drops. Intuitively, it can be expected that the ductility of the bonds is related to the global 
ductility exhibited by the sample, so that the more fragile the bonds (the higher ω), the more fragile 
is the mechanical response of the specimen. So the amplitude of the observed stress drops increases 
with ω increasing, that is, with the fragility of the bonds increasing, because the more fragile the 
bonds the less energy is dissipated by bond damaging and the higher is the portion of energy 
inputted in the system, via the motion applied to the platens, that is transferred in the form of kinetic 
energy to the debonded particles whose inertial forces give rise to the drop of nominal axial stress in 
the specimen. A theoretical analysis on the ductility/brittleness of the system will follow in Section 4. 
Finally, from Figure 13, we can also note that the difference in terms of nominal axial strain between 
two consecutive stress drops decreases with ω decreasing, that is, with the ductility of the bonds 
increasing, which implies an increase in the capability of the system to redistribute contact forces 
leading to an overall hardening behaviour.

The curve obtained for ω = 0.6 (test DPB07κ2_2) is qualitatively the most similar to the 
experimental axial stress – axial strain curve reported in Castellanza, et al. [3] for a Pumice stone 
(Figure 14) providing an indication of a realistic value for the damage progression parameter. A 
quantitative match with the experimental curve could be easily obtained by calibrating the other 
micromechanical parameters ruling the contact law (Table I). However, fine-tuning of the values of 
the micromechanical parameters to reproduce a particular experimental curve is not the aim of the 
paper, which is rather to run a parametric investigation of the influence of the main micromechanical 
quantities on the formation of compaction bands in cemented granular geomaterials to come up with 
a deeper understanding of the phenomenon and a theoretical analysis of it. So, it has been shown 
that the DPB model is a suitable bond model to capture the behaviour of very porous rocks and 
cemented soils subject to compaction banding having the advantage of being ruled by only one 
parameter of clear physical meaning whose value can be ascertained by running an oedometric test. 
For this reason, this model was chosen to perform the parametric analysis presented in Section 4.

In order to investigate the relationship between the onset of compaction bands and the progression of 
damage in the bonds, in Figure 15, the spatial distribution of broken and damaged bonds is plotted for 
the three tests run at different values of nominal axial strain (DPB07κ2_3, DPB07κ2_1 and 
DPB07κ2_2). The cross symbols refer to severely damaged bonds, with the damage variable being 
D > 0.5, whilst the dots refer to broken bonds. First, let us compare simulations for low and high values 
of ω, that is, ω = 0.4 and ω = 0.8, respectively. At any stage of the test run for low ω values (Figure 15 
(a), (b) and (c)), the number of severely damaged bonds is largely greater than the number of broken 
bonds. The contrary holds true for the test run for high ω (Figure 15(d), (e) and (f)) where the number
Figure 14. Experimental results obtained on a pumice stone (porosity 70 %) after Castellanza et al. [3].



Figure 15. Spatial distribution of damaged and broken bonds within the specimens for various values of ω
at different times: (a) Δz/H0 = 6% for ω= 0.4; (b) Δz/H0 = 9% for ω= 0.4; (c) Δz/H0 = 10% for ω= 0.4; (d)
Δz/H0 = 5% for ω= 0.8; (e) Δz/H0 = 8% for ω= 0.8; (f) Δz/H0 = 18% for ω= 0.8; (g) Δz/H0 = 15% for

ω= 0.6; (h) Δz/H0 = 21% for ω= 0.6; and (i) Δz/H0 = 31% for ω= 0.6.
of severely damaged bonds is negligible in comparison with the number of broken bonds. In the
intermediate case of ω =0.6 (Figure 15(g), (h) and (i)), the number of severely damaged and broken
bonds is approximately of the same magnitude, which is consistent with the behaviour observed in the
other two cases of high and low ω values. Moreover, it can be derived that the thickness of the
compaction band is related to the value of ω with compaction bands being thinner at low values of ω.

Concerning the sequence of formation of the compaction bands, it can be noted that localizations arise
in several zones of the specimen until full compaction is reached (Figure 15(g)). In all the tests, the
presence of a second band just above the first one can be observed (Figure 15(a), (d) and (g)).
Subsequently, at higher nominal average axial strains, a third and fourth band develop near the top
and bottom boundaries, respectively (Figure 15(f) and (h)).
4. PARAMETRIC ANALYSIS

In the previous section, it has been shown that the DPB model is a suitable bond model to qualitatively
capture the mechanical behaviour of very porous rocks and cemented soils subject to compaction
banding due to bond destructuration. The DPB model has the advantage of being ruled by only one



(i) the influence of initial porosity on the inclination of compaction bands;
(ii) the occurrence of phenomena of global instability; and
(iii) the influence of the size of macro-voids.

parameter, ω, of clear physical meaning (i.e. the bond damage rate). In the following, the main factors 
affecting the mechanical response of the studied geomaterials are investigated, in particular:
4.1. Influence of porosity

In order to assess the influence of porosity on the mechanical response of the system, numerical tests
for a value of initial porosity lower than the value adopted in the previous section, n = 0.5 and n= 0.6,
were run. The grain size distribution and the size of macro-voids, κ = 2, were the same as in the
previous tests. Because of the lower porosity, fewer macro-voids (e.g. Nm = 520) were generated in
these tests. For these lower values of porosity, localization is observed only if high enough values of
ω are adopted (no localisation for ω = 0.6 and localisation for ω= 0.8). This can be explained
considering that lower porosity implies a higher number of bonds per grain, hence, an overall more
stable structure so that the structure becomes unstable only in case of high fragility of the bonds.

From the simulations, the existence of a threshold value of porosity, around n=0.6, below which there
is the formation of a band of localised damaged whose inclination is no longer horizontal but oblique. The
lower the porosity is, the more inclined the band is. In Figure 16(a), the σa�Δz/H0 and σr�Δz/H0 curves
of test DPBv05κ2_2, with n=0.5, are plotted. The occurrence of instability is signalled by a sharp drop in
the monitored stresses taking place at Δz/H0 = 9%. In Figure 16(b), the spatial distribution of the broken
bonds at Δz/H0 = 9% is plotted. Unlike previous tests run for n=0.7, the region where the broken bonds
are concentrated in a band whose normal is inclined of 45 over the x-axis and 34 over the y-axis. The
band propagates vertically; therefore, the direction of propagation does not coincide with the normal to
the plane of the band as in the case of pure mode compaction bands.

The mechanical coordination number relative to the specimen here considered (Cpb
N ¼ 4:72 ) is

significantly higher than that relative to tests in SPBl07κ2_2 and SPBv07κ2_2, leading to a
specimen with higher stiffness and strength, owing to the presence of a larger number of bonds. As
a consequence, at the onset of localisation, the stress ratio, η= q/p, with q =σa�σr, the deviatoric
stress and p= (σa+ 2σr)/3, the mean effective pressure, is 10% higher (η = 1.3 in test SPBv07κ2_2
and η= 1.45 in test SPBv05κ2_1) than in tests SPBv07κ2_2 and SPBv05κ2_1. This observation
further corroborates what was already stated by Rudnicki [44], about the effect of stress anisotropy
on the onset of mixed modes of localisation (mixed between compaction and shear bands): ‘the
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Figure 16. Test DPBv05κ2_2 for n= 0.5: (a) σa�Δz/H0 and σr�Δz/H0 curves; (b) 3D view of the location
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analyses of Issen and Rudinicki [45, 46] suggest that small variations in material parameters may 
favour the appearance of either shear or compaction bands. Bésuellle [47] has shown that the results 
of Rudinicki and Riece (1975) predict that the mode of deformation in the localised (shear versus 
dilatation or compression) varies continuously between pure compaction and pure dilatation’. In
fact, a sample of lower porosity is featured by more bonds at generation, hence, higher strength; 
therefore, the loss of linearity in the stress–strain curve (yield point) corresponding to the occurrence 
of irreversible deformations takes place for a higher value of the stress ratio, η. This value is higher 
than the stress ratio marking the transition between fragile and ductile behaviour but lower than the 
threshold value required for the occurrence of pure shear bands. Therefore, for η in this range, 
mixed modes of localisation take place [44].
4.2. Brittleness of the system

Figures 16(a) and 17(a), referring to tests DPBv07κ5_1 and DPB05κ2_2, respectively, show the 
occurrence of a globally unstable behaviour, that is, a vertical drop in the nominal axial stress. In the 
previous section, it has been shown that the amount of stress drop is related to how quickly a 
compaction band develops and propagates within the specimen. To investigate the phenomenon further, 
the specimen of test DPBv07κ2_2 (Figure 17(a)) was subdivided into 9 layers. Axial and radial stresses 
were calculated for each layer. The radial stress of each layer was determined as the sum of the normal 
contact forces against the cylindrical wall divided by the lateral area of the layer. The vertical stress of 
each layer instead was calculated as the average between the stresses acting at its top and bottom 
interface. In order to determine the vertical stress acting on the boundary of each layer, first, the inertial 
force acting on each layer was calculated as the sum of the inertial forces acting on the particles of the 
layer; second, vertical dynamic equilibrium was imposed for each layer in succession starting from the 
uppermost layer with the stress at the upper boundary given by the reaction force exerted by the top 
platen divided by the platen area. Axial and radial stresses were evaluated at regular discrete intervals 
of nominal axial strains of the sample (see the markers in Figure 17(a)).

In Figure 18, σa � εz and σr � εz curves calculated for three representative layers are plotted. The layers 
considered are the following: layers 8 and 9 where the specimen undergoes localisation and layer 2 
representative of the part of the sample outside the localised region. All the curves exhibit the initial 
linear trend typical of the elastic stage of the material when all bonds are intact. However, taking the
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Figure 18. Test DPBv07κ5_1: stresses versus axial deformation calculated in layer 2 (squares), representa-
tive of the non-localised part of the sample, and layers 8 and 9 (crosses and full circles, respectively), which
are subject to localization: (a) layer axial stress, σa, versus layer axial strain, εz; and ( b) layer radial stress,

σr, versus layer axial strain, εz.
initial slope of the curves into consideration, a slight difference is apparent. This is probably because of the
fact that the layer size is significantly smaller than the specimen size (around one-tenth); hence, it is smaller
than the REV size calculated in Section 2 (Figure 4). The recorded value of the stress peak is the same for
all the curves and coincides with the value measured at the specimen boundaries (Figure 17(a)). After the
stress peak is reached, layers 1, 2, 3, 4, 5, 6 and 7 (Figure 18(a) and (b)) undergo elastic unloading during
the development of the compaction band. Conversely, the stress paths computed for layers 8 and 9, where
the compaction band develops, show that a sort of strain softening occurs (Figure 18(b)). The fall in the
axial stress observed for layers 8 and 9 can be explained with the fact that the unloading of the elastic
domain outside the compaction band is not large enough to compensate for the displacement generated
by the compaction band. After the compaction band has formed (Δz/H0 =5%), all layers undergo
further elastic loading from Δz/H0 = 5% to Δz/H0 = 6% (see the upward linear trends in the final part of
all the axial stress–axial strain curves in Figure 18(a) and radial stress–axial strain curves in Figure 18(b)).
4.3. Influence of the macro-void size

So far, it has been shown that compaction banding is due to the collapse of macro-voids; hence, in this
section, we want to investigate the influence of the macro-void size on the formation of compaction
bands. To this end, tests relative to two specimens with different macro-voids sizes but with similar
coordination number (Table II) were run with all micromechanical parameters for the two specimens
being equal apart from parameter κ, indicating the size of macro-voids. The σa�Δz/H0 curves of test
DPB07κ5_1 (ϕm=6.13mm, κ =5) and test DPB07κ2_2 (ϕm=ϕ1 = 2.5mm, κ =2) are compared in
Figure 19. It emerges that the increase in the diameter of the macro-voids implies (i) an increase in the
initial oedometric modulus, Eoed, of 49%; (ii) an increase in the axial peak stress of 39%; and (iii) an
overall marked increase in the global brittleness because the drop of axial is far more abrupt. Instead,
the value of Δz/H0 at the occurrence of the first peak is similar. The second phase of the σa�Δz/H0

curve is featured by less frequent but more pronounced oscillations of the axial stress, which are due to
the larger size of the macro-voids employed.

Because the two artificial materials are characterised by the same density, grain size distribution and
micromechanical constitutive parameters, the different mechanical behaviour exhibited by the two
numerical specimens has to be ascribed to the difference in the two internal microstructures. The pore
size distribution of the DEM cylindrical samples is a bimodal distribution with two dominant pore
modes: the first is relative to the macro and the second to the micro-pores, respectively. Because the



Figure 19. σa�Δz/H0 curves obtained for test DPB07κ2_2 and test DPB07κ5_1.
global porosities of the two samples coincide, this implies that their pore size distributions differ. Given the
reduction in micro-porosity, relative to specimens DPB07κ5_1, the regions of specimen around macro-
voids are denser: this causes the observed global increase in strength, stiffness and brittleness of the
system.

Now, each localization phenomenon can be related to a characteristic length for the material,
which governs the extension of the localization taking place. Hence, it is desirable to identify the
characteristic length for the bond breakage induced compaction bands taking place in the porous
materials, featured by a bimodal distribution of pores, here investigated. To this end, the
increment of axial deformation along the vertical axis, between pre localization and post
localization for the two tests, here examined (κ = 2 and κ = 5) were calculated via the method
illustrated in Section 2 and plotted in Figure 20. Hatched bands were drawn to highlight the
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Figure 20. Increment of axial deformation occurring during localization, between 3% and 21%, along the
specimen for test DPB07k2_2, with k = 2 and test DPB07k5_1, with k = 5. Each symbol, triangles or squares,
indicates the value of incremental deformation calculated in a layer via the simplified method (20 layers were

used for this purpose). The hatched regions indicate the location of the compaction bands.



regions where compaction banding took place: the darker band indicates the presence of the 
compaction band for the sample with smaller macro-void (κ = 2) whilst the lighter band for the 
sample with larger macro-voids (κ = 5). Comparing the sizes of the two bands, it emerges that they 
are roughly in the same proportion as the size of their macro-voids, that is, there is a ratio of 
roughly 2.5 times. This observation indicates that the size of the macro-void could be taken as an 
approximate measure of the characteristic length of the material for the occurrence of compressive 
compaction bands. Moreover, from Figure 19 emerges that the brittleness of the global mechanical 
response is affected by the characteristic length of the material.
5. CONCLUDING REMARKS

This paper investigated both the onset and the propagation of compressive compaction bands in an 
ideal highly porous material under oedometric conditions via 3D DEM analyses carried out on 
cylindrical samples. The material has been modelled as a collection of bonded grains with several 
macro-voids randomly distributed. This ideal material is evidently inspired by a large class of 
natural/artificial porous geomaterials (e.g. natural cemented soils and artificial conglomerates) where 
(i) a granular structure can be recognised and (ii) the bridges sticking the grains together act as 
predefined points of weakness.

Two different bond models were employed to describe the process: an elasto-brittle model based on 
PFC current bond models, and a more sophisticated elasto-damage model conceived by the authors to 
simulate more realistically the process of bond degradation. The obtained results show that compaction 
bands can be triggered by the breakage of bonds, leading to the collapse of several macro-voids in the 
specimen, without any grain crushing taking place.

Moreover, it was shown that if the elasto-brittle model is employed, the observed mechanical 
behaviour of the specimens, in terms of peak strength, brittleness and onset and propagation of 
localisation, depends on the values of damping adopted even in case of tests run under quasi-static 
conditions. Calibration of meaningful values of damping is very difficult because currently there 
are no experimental measurements able to link bond properties (e.g. ductility) to values of 
damping coefficients. In the elasto-damage model introduced by the authors instead, no damping 
is employed but the progression of bond failure, that is, bond ductility, is controlled by a 
parameter of clear physical meaning: the rate of bond damage progression, ω. Then, the DPB 
model has shown to be a suitable model to qualitatively capture the behaviour of very porous 
weak rocks and cemented soils. The rate of bond damage progression has been found to affect 
both the onset and extension of compaction bands and the overall brittleness/ductility of the 
numerical specimens.

Oedometric tests for different values of porosity were run. Below a certain threshold of porosity, the 
onset of mixed modes of localisation, between a shear and a compaction band, was observed. In this 
case, the direction of propagation of the band is no longer orthogonal to the band boundaries 
because of the presence of both axial and shear strains. The state of stress calculated in the samples 
showed to be in qualitative agreement with the theoretical conditions for the onset of mixed modes 
under axial-symmetric conditions established by [44].

Tests for the different values of macro-void size were performed with the overall density of the 
material, grain size distribution and all the micromechanical constitutive parameters kept constant: 
stiffness, strength and ductility exhibited a dramatic change. When the size of the macro-voids is 
increased, it was observed that snap-back is favoured because the ratio between the material 
characteristic length and the specimen height is decreased. This conclusion supports the idea 
that, when such a phenomenon takes place, the rate of propagation of the compaction band can 
no longer be controlled by the displacement of the specimen platens. It was also shown that, 
in case of double porosity materials and in the absence of grain crushing, the characteristic 
length of the material with regard to the occurrence of compaction bands seems to be related 
to the size of the macro-voids. However, there is no sufficient evidence to exclude that grain 
size or some other material properties may have a stronger influence on the characteristic 
length of the material.



6. NOTATION 

SCALARS
A
 parallel bond area

Amin
 minimum parallel bond area

Amax
 maximum parallel bond area

Cpb
N
 mechanical coordination number
D
 damage variable

Ek
 kinetic energy

Eoed
 oedometric modulus

Fup
 modulus of the vertical force acting on the upper platen

Fdw
 modulus of the vertical force acting on the lower platen

H0
 initial height of the sample

I
 parallel bond moment of inertia

J
 parallel bond polar moment of inertia

Kn
 normal secant contact stiffness

M
 generalised bending moment

M
 third internal variable

M0
 initial value of the third internal variable

Mt
 generalised torque moment

N
 generalised axial force

N
 first internal variable

N0
 initial value of the first internal variable under traction
eN0
 initial value of the first internal variable

Nm
 number of macro-voids

Np
 number of micro-particles

R
 parallel bond radius

V
 generalised shear force

Un
 component of the normal relative displacement between two particles along the unit vec-

tor normal to the contact plane

Us
 component of the shear relative displacement between two particles along the unit vector

tangent to the contact plane

V
 second internal variable

V0
 initial value of the second internal variable

V0L
 initial volume of a layer

VsL
 volume of solids in a layer

Vs0L
 initial volume of solids in a layer

Vt
 volume of the specimen

Vs
 solid fraction of volume

VvL
 volume of voids in a layer

cpbN
 standard coordination number

eL
 void index of a layer

g(Q,χ,D)
g(Q,χ,D)
threshold function
k
n

normal parallel bond stiffness

kpn
 normal particle stiffness

kwn
 normal wall stiffness

ks
 tangential contact stiffness

kps
 tangential particle stiffness

kws
 tangential wall stiffness

k
s

tangential parallel bond stiffness

n
 porosity of the sample

p
 mean effective pressure



q
 deviatoric stress

Δz
 vertical displacement of the upper platen of the sample

α
 ratio between the height and diameter of the sample

βn
 normal critical damping ratio

βs
 shear critical damping ratio

δ
 coefficient of Cundall’s damping

εvolL
 average volumetric strain of a layer

εz
 vertical strain

εzL
 average vertical strain of a layer

η
 ratio between deviatoric stress and mean effective pressure

θn
 component of the normal relative rotation between two particles along the unit vector

normal to the contact plane

θn
 component of the shear relative rotation between two particles along the unit vector tan-

gent to the contact plane

ν̇
 nominal axial strain rate

ξ1
 parameter of DPB model

ξ2
 parameter of DPB model

ϕm
 diameter of macro-voids

ϕ1, ϕ2
 diameters of macro-voids used in the simulations

ϕp
 diameter of a particle

ϕp,max
 maximum diameter of micro-particles

ϕp,min
 minimum diameter of micro-particles

ϕp,mean
 mean radius of micro-particles

Δ
 diameter of the sample

κ
 ratio between macro-voids diameter and mean micro-particle diameter

μ
 friction coefficient at the contact

μp
 inter-particle friction coefficient

μw
 wall friction coefficient

ρp
 density of the particles

ρ
 dilatation parameter for MLSRK mesh-free method

σ0
 maximum value of normal stress (DPB model)

σa
 axial stress

σc
 normal strength of the parallel bond (SPB model)

σr
 radial stress

τc
 shear strength of the parallel bond (SPB model)

τ0
 maximum value of shear stress (DPB model)

ω
 parameter governing the rate of damage
VECTORS
F
n

axial force acting on a parallel bond

F
s

shear force acting on a parallel bond

M

s

torque moment acting on a parallel bond
M
n

bending moment acting on a parallel bond

Q
 vector collecting the generalised forces and moments on the parallel bond
eQ
 effective generalised forces and moments vector

Us
 shear relative displacement between two particles

gi
 unit vector defining the direction of the discontinuity of the strain rate field

n
 unit vector normal to the contact plane between two particles

ni
 unit vector perpendicular to the localization plane

q
 vector collecting the generalised relative displacement and rotations between two particles

r
 unit moment vector tangent to the contact plane between two particles

s
 unit shear vector tangent to the contact plane between two particles



θs
 shear relative rotation between two particles

χ
 vector of internal variables
TENSOR
De
 elastic tensor in the damage model
APPENDIX

Implementation of the elastic-damage bond model

In this section, the implementation of the elasto-damage bond model in PFC is presented. At every
timestep, forces and moments acting on each bond are calculated by PFC from the relative displace-
ments and rotations of the two bonded particles according to the ‘parallel bond’ routine. The calculated
forces and moments were then adjusted to the values predicted by the law of the elasto-damage bond
model presented in Section 2.2 via an ad-hoc routine written by the authors. Referring to Figure A1, the
implemented algorithm can be summarised as follows:

1. For each parallel bond at timestep i, the generalised loads Qi acting on the bond and the damage
variable Di are retrieved from external variables.

2. The new forces acting on each bond, just computed by PFC, are set to zero.
3. Defining Q as the vector of the generalised loads computed according to the linear elastic force–

displacement law, the increment of Q in the timestep would amount to

ΔQ ¼ Q-Qi (A:1)

4. Being qi, the vector of the generalised displacement and rotations

qi ¼ De�1 Qi

1� Dið Þ (A:2)

the corresponding increments in the timestep according to the linear elastic law are as follows:

Δq ¼ De-1ΔQ (A:3)

with De given by Eqn (9).

5. Hence, displacement and rotations at the new timestep, i+ 1, can be calculated as
Figure A1. Schematic representation of the damage algorithm.



(A:4)

6. The actions on the parallel bond computed considering the damage variable at the previous
timestep i

Q’ ¼ 1� Dið ÞDeqiþ1 (A:5)

7. The vector Q’ just computed is correct only if the damage has not increased during the timestep.

This means that

g Q’ Dið Þ; χ Dið Þð Þ≤0 (A:6)

On the contrary, if g> 0, the damage has increased during the timestep, and the new damage variable
Di+1 has to be determined so that the new load point lies on the threshold surface. Thus, the following
equation gives the new damage Di+1:

g Q’’ Diþ1ð Þ; χ Diþ1ð Þð Þ ¼ 0 (A:7)

Equation (A.6) is an implicit one and can be solved by adopting the Newton–Raphson algotithm. If Di

+1 is higher than 0.99, the breakage of the bond is imposed.

8. If Di+1 is lower than 0.99, the new actions Q” on the parallel bond are

Q’’ ¼ qiþ1D
e 1� Diþ1ð Þ (A:8)

9. The variables Q” and Di+1 are recorded in the array of variables describing the bond state so that
they can be retrieved at the following timestep.

 qiþ1 ¼ qi þ Δq
VALIDATION OF THE ELASTO-DAMAGE CONTACT MODEL

In the following, the process of validation for the adopted elasto-damage contact model is provided.
Let us consider two particles with ϕp = 1m joined together by both a parallel and a contact bond. In
this test, the parallel bond between the particles cannot break, even when the damage variable D
exceeds the limit value D= 0.99. The two particles are free to move in the (x, z) plane so each ball
has three DOF. The DOF of the left ball are fixed. Forces and moments can be applied on the right ball,
in order to cause its motion with actions on the parallel bond arising as a consequence.

The DEM parameters employed in these tests are reported in the following table III.
Case of single load
A horizontal force Fx, directed opposite to the x-direction, was applied to the right ball. The force

was applied gradually and linearly over time:

Fx tð Þ ¼ �0:25t (A:9)

with t being the time. The consequent motion of the right ball produces an axial force (compression) on
the parallel bond. In particular, we want to check the behaviour of the bond for the three different
values of ω: 0.3, 0.6 and 0.8. The number of timesteps in the three tests was the same.
Table III. Parameters used for the validation test of the damage model.

ρp [kg/m
3] kn [kN/m] ks/kn k

n
[kN/m3] k

s
=k

n
σ0 [kPa] τ0 [kPa]

2650 1 E+ 6 1 1 E+ 6 1 1.0 1.0



(a) (b)

(c) (d)

Figure A2. Validation test of the damage model: (a) load history; (b) evolution of the damage variable with
the normal displacement; (c) evolution of the internal variable eN0 with the normal displacement; and (d)

normal force-normal displacement curves.
In all the cases, when t= 51s, the displacement Un was equal to 1 × 10� 5m with the force N acting
on the parallel bond reaching the limit value eN0 = 7.85 kN, the bond begins to undergo damage. During
the subsequent damage process, the value of the threshold function g remains equal to 0 (Figure A2(a))

The graphs in Figure A2(b) show the evolution of the damage variable with the normal displacement.
Both the rate of damage and the accumulated displacement Un increase with ω. When ω =0.8, the dam-
age is almost complete and D is very close to 1 but this limit value can only be reached asymptotically.

The parameter eN0 defines the size of the threshold surface (Figure A2(c)). When the critical displacement

is reached, the parameter eN0 decreases with the progress of the damage. The velocity of the shrinkage is
as much higher as ω is closer to 1. Finally, the force–displacement graph is plotted in Figure A2(d). After

the elastic phase, N ¼ eN0, a softening phase, clearly controlled by ω, follows. The slope of the softening
part increases with the increasing of ω, and the softening is more pronounced.

Case of combined load
A vertical and a horizontal force directed opposite to the z-axis and x-axis are applied to the right

ball. The relative rotation, in the y-direction, between the two balls is constrained in order to avoid
the arising of the bending moment on the parallel bond and to study only the interaction between
N and V.

The following loading–unloading histories are relative to the horizontal and vertical force, respectively.

Fx tð Þ ¼ �0:18t t≤60s

�10:8þ 0:18 t � 60sð Þ t > 60s

�
(A:10)



Fz tð Þ ¼
�0:00751t t≤60s

�0:4506þ 0:00751 t � 60sð Þ t > 60s

�
(A:11)
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