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1. Introduction

The identification of damage in a bridge from changes in its vibrational behavior is an inverse problem of important
practical value. Every structural health monitoring program must necessarily deal with this issue in order to provide
quantitative estimates of the level of residual safety.

Significant advances have been obtained on this topic in the last two-three decades, both from the theoretical and
applied point of view. Without claim of completeness, here we recall the investigations developed by Toksoy and Aktan [1],
Teughels and De Roeck [2], Cruz and Salgado [3], Necati Catbas et al. [4], Magalhaes et al. [5]. A critical review of the
literature shows that there is still no general consensus among the experts of the field on the type of the data to be taken as
good indicator of damage and also on the effectiveness of a diagnostic method rather than another. One of the reasons for
this uncertainty is to be ascribed to the peculiar structural behavior of each bridge and to the lack of standard approaches to
structural analysis of bridges. However, the main difficulty is due to the inverse nature of the diagnostic problem and,
consequently, to the non-uniqueness in the identification of damage from dynamic measurements and to the non-
continuous dependence of the solution on the data. Moreover, when identification techniques are applied to study full-scale
real bridges, additional obstacles arise due to the small sensitivity of the dynamic parameters to damage, the presence of
error in measurements and the incompleteness of the field data. The effect of environmental changes could make
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identification even less reliable in some cases. It is probably because of these difficulties that, so far, a limited number of
studies have investigated the effect of damage on the dynamic behavior of full-scale bridges and developed suitable
strategies for damage identification. In this connection, we recall, among others, the research developed by Kato and
Shimada [6], Farrar and Jauregui [7], Maeck et al. [8], Dilena and Morassi [9].

A class of diagnostic methods is based on the interpretation of changes in modal parameters (typically, natural
frequencies and mode shape amplitudes) produced by the damage. From these investigations it emerges that damage-
induced changes in natural frequencies generally are measurable, see, for example, [6,10]. However, their use for damage
detection purposes in bridges should be consider with caution, since several researchers have shown that natural
frequencies could not reliably identify location and the level of damage, see, for instance, [1,7]. The main reason is that, in
order to extract quantitative information on damage from natural frequencies only, an accurate mechanical model of the
system and of the damage mechanism must be available, and this is not the case in many practical applications on bridges,
see, as an example, the research developed in [11]. From several studies it turns out that, in spite of the fact that
measurement of modal amplitude estimates are typically affected by errors larger than those affecting natural frequencies,
mode shapes are the best indicator of where the damage is occurring, see, for example, [10,12]. Mode shape data, actually,
contains direct information of the spatial character of the structural change, even if their ability to identify damage seems
to require the application of suitable identification strategies. Mode shapes, in conjunction with the corresponding natural
frequencies, have been used in [1,13] to reconstruct the flexibility matrix of a bridge. The change in the stiffness coefficient
caused by the damage is determined via model updating procedures in [2] so that a given set of natural frequencies and
corresponding mode shapes are close in some least square sense to those found experimentally. Other methods focus on
the determination of mode shapes or their derivatives to localize damage. The Modal Curvature Method (MCM), proposed
by Pandey et al. [14] on cracked beams, has been applied to bridges by Wahab and De Roeck in [15]. Modal curvature has
been shown to be more sensitive to damage than modal shapes, allowing a more effective identification of structural
change when the damage is localized and one-dimensional beam behavior is dominant on the bridge response. The
drawback of the MCM is mainly connected with the need of evaluating the second derivative of the mode shape in
presence of noise on the data. However, it was shown in [9] that a suitable spline interpolation of the measured data can
lead to correct identification of the damage even in presence of few measurement points, provided that accurate estimates
of the modal parameters are available. In connection with this aspect, it should be recalled that a lot of research has pointed
out that there are situations in which modal parameters are sensitive to changes in environmental conditions
(temperature, moisture, loading), and these effects should taken into account in order to obtain a correct damage
reconstruction, see, for instance, [16].

Another approach to damage identification in bridges that does not need the estimation of modal parameters nor a
numerical model of the structure - since it works directly on the experimental data—has been proposed in recent years.
A class of methods is based on a definition of a damage index in terms of variations of the Operational Deformed Shapes
(ODSs) calculated from frequency response functions in the inspection phase with respect to a reference state. An
‘operational deformed shape’ is the deflection shape of a structure subjected to harmonic excitation. If the frequency of the
excitation is close to a modal one, the ODS is dominated by the corresponding mode shape; for other values of the frequency
of excitation the ODS derives from the combination of several modes.

Abrupt changes of the ODS are interpreted as a symptom of a stiffness loss due to a localized damage. The Frequency
Response Curvature Method (FRCM), proposed by Sampaio et al. [17], and the Gapped Smoothing Method (GSM), proposed
by Ratcliffe [18], define a damage index in terms of the variation of curvature related to the reduction of stiffness and
estimated from operational deformed shapes. More recently, Ramesh Babu and Sekhar [19] developed a technique for the
localization of small cracks based on a damage detecting feature called Slope Deviation Curve (SDC) calculated in terms of
the slope of the operational deflection shapes.

The local reduction of smoothness in the curvature of the ODSs was proposed as a damage detecting feature also by
Zhang [20] in a new damage detection algorithm called the Global Filtering Method (GFM) and based on the ODS extracted
from the dynamic response of a passing vehicle excited by a sinusoidal tapping force. The drawback still connected with
both these methods is that the numerical differentiation needed to evaluate slope or curvature introduces errors that often
prevent the detection of damage in case of noisy data.

Methods based on the interpolation of the ODS using smooth functions to enhance the lack of smoothness at the location
of damage do not require the estimation of curvature, thus overcoming some of the problems related to noise in recorded
signals. Pai and Jin [21] proposed a Boundary Effect Detection (BED) method based on the use of trigonometric functions to
model the ODS of a beam and of a sliding window least-square curve fitting technique to estimate the coefficients of the
curve. Basing on the variations of values and sign of these coefficients along the beam, the location of damage can be
detected. More recently, the Interpolation Damage Detection Method (IDDM) for damage localization recently was proposed
by Limongelli [22]. The IDDM tries to overcome the drawback of using curvatures by defining a damage index in terms of
deformed shapes, hence reducing errors connected with double differentiation. A spline interpolation of the deformed
shapes is used to enhance the variation of the deformed shape connected to damage thus avoiding the estimation of
curvatures.

In this paper the sensitivity of the IDDM is investigated with reference to the case of a reinforced concrete single-span
bridge in the Municipality of Dogna (Friuli, Italy). The bridge consists of a slab supported by three longitudinal beams simply
supported at the ends. Harmonically forced tests were conducted to evaluate the variation of the modal parameters of lower



vibration modes after imposing artificial, increasing levels of localized damage [9]. The sensitivity of the method is
documented and discussed with respect to the amount of experimental data used and to the severity of the damage
scenarios considered. Specifically, the sensitivity of the results to the number of available responses, that is the number of
instrumented locations, has been investigated thanks to the availability of sensors deployed along three alignment parallel
to the longitudinal direction of the bridge. Results obtained using just one of the alignments are compared to those given by
the all set of available sensors. Furthermore, the availability of responses recorded before and after damage scenarios of
increasing severity allowed to assess the capability of the method to localize a new damage on a structure already damaged.
Finally, the sensitivity of results of the IDDM to the number of modal contribution considered in the estimation of the
damage feature has been also investigated and discussed and, in order to check the reliability of results given by the IDDM, a
comparison with the well-known Modal Curvature Method is presented.

2. The interpolation method for damage localization: an overview

2.1. The basis of the method

The method applied herein to identify concentrated damages is the Interpolation Damage Detection Method presented by
Limongelli in the case of seismically excited structures [22,23]. The IDDM is based on the determination of a point-wise
interpolation error connected with the approximation of a selected vibrational amplitude profile of the structure by a
polynomial spline function. Specifically, at any given location the interpolation error is defined as the difference between the
vibrational amplitude actually measured and the vibrational amplitude computed at that same location by interpolating the
vibration amplitudes measured at all the other locations.

The main hypothesis underlying the method is that a concentrated damage reflects in a loss of spatial regularity of the
vibrational profile of a structure, compared with the reference (undamaged) state. This actually happens in beams with a
localized damage, such as notches or cracks, since the transverse displacement in the Euler–Bernoulli model loses the C1-
regularity at the damaged cross-sections (see, for example, [24]) and in thin elastic plates with inclusions [25]. Therefore,
the possible increase of the interpolation error between a reference state and an inspection state at one instrumented
location is considered in this method as an indicator of the occurrence of structural damage close to the location where the
change has been detected.

For reader convenience, the main basis of the IDDM are briefly recalled in the sequel. In order to simplify the
presentation, reference is made to a straight beam under small in-plane bending vibration and the vibrational amplitude
profile is defined in terms of the frequency response function (FRF) of the acceleration. We refer to the papers [22,23] by
Limongelli for a more exhaustive presentation of the method.

Let us denote by zl
� �n

l ¼ 1the set of instrumented points located along the beam axis z, as shown in Fig. 1. At the lth
location zl and at frequency fi, we denote respectively by HRðzl; f iÞ and HSðzl; f iÞ the transfer function value calculated from
the recorded signals and through cubic polynomial spline interpolation of the transfer functions HRðzk; f iÞ measured at all
the other instrumented locations zk

� �n
k ¼ 1, with ka l, that is

HSðz; f iÞ ¼ ∑
3

j ¼ 0
cj;lðf iÞðz�zl�1Þj zA zl�1; zl½ �; ð1Þ

where the coefficients ðc0;l; c1;l; c2;l; c3;lÞ are functions of the values HRðzk; f iÞ at locations zk
� �n

k ¼ 1;ka l:

cj;lðf iÞ ¼ gðHRðzk; f iÞÞ ka l ð2Þ

The interpolation error Eðzl;f iÞ is defined as the absolute value of the difference between recorded and interpolated FRFs

Eðzl;f iÞ ¼ HRðzl; f iÞ�HSðzl; f iÞ
�� �� ð3Þ
lz1z
nz z−1lz 1+lz

( )zH lS 1, − ( )zH lS ,

( )zHR

( )zH

( )zH S

at frequency fi

( )lzE

Fig. 1. Spline interpolation of the FRF at z¼zl. Continuous line: recorded FRF profile HR; dashed line: interpolated FRF profile HS.



In order to characterize each location zl with a scalar-valued error index, the norm of the error on the whole range of
frequencies is introduced

EðzlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

N1 þN2

i ¼ N1

E2ðzl; f iÞ
s

; ð4Þ

where N2 is the number of frequency lines occurring in the frequency range starting at line N1 for which the signal-to-noise
ratio is high enough to allow for a correct definition of the FRF.

Transfer function values obviously depend on the state of the structure. Hence, if the estimation of the error function
through Eq. (4) is repeated in the baseline (undamaged) and in the inspection (possibly damaged) configuration, then the
difference between the two values, denoted respectively by E0(zl) and Ed(zl), can provide an indication about the existence of
degradation at location zl

ΔEðzlÞ ¼ EdðzlÞ�E0ðzlÞ: ð5Þ

An increase in the interpolation error between the reference configuration and the current configuration at a station zl, i.e.
ΔEðzlÞ40, highlights a localized reduction of smoothness in the vibrational amplitude profile and, therefore, it is assumed
to be a symptom of a local variation of stiffness at zl associated with the occurrence of damage.

The above analysis has been developed in a deterministic context. Several sources, such as temperature, nonlinear
behavior, soil structure interaction and noise in recorded data, can induce variations of the interpolation error even if no
damage occurs. To take into account the effect of these random variations in the damage localization procedure, the
statistical variability of the interpolation error EðzlÞ at each instrumented location zl

� �n
l ¼ 1 should be investigated, both in the

undamaged and in the inspection configurations, in order to extract and compare the relevant probability distributions
pE;0ðzlÞ and pE;dðzlÞ.

If the two distributions are known, the onset of damage at a given location zl can be investigated by checking their shift,
for example in terms of the mean value. Generally, none of the two distributions is known, unless the structure is
permanently monitored by a network of sensors. However, even in this case, while distribution pE;0 at each instrumented
location can be easily recovered from all the data recorded before the occurrence of damage, the estimation of pE;d should
rely on a very small sample of values of Ed, possibly just one, if a prompt alert is required. The detection of possible damages
in this case is carried out by comparing the value of Ed to the distribution pE;0 in order to check if its value is ‘likely to occur’
in the undamaged configuration. Therefore, the ‘possibly damaged’ locations can be defined as the ones corresponding to
values of the interpolation error having small probability of occurrence in the undamaged configuration, that is values that
lie in the tail of the distribution pE;0, and specifically in its upper tail since only an increase of the interpolation error is
assumed to denounce damage.

In order to quantify how small the probability of occurrence must be in order to be denounce the location as ‘damaged’, a
threshold value ET ðzlÞ has to be defined, so that if the value of EðzlÞ at a given location zl exceeds ET ðzlÞ then an alarm is given
about the structural condition at zl. Actually, even if the value of EðzlÞ is higher than the threshold ET ðzlÞ, there is still a (low)
probability, represented by the area Pf ðzlÞ of the squared region under the graph of pE;0ðzlÞ shown in Fig. 2, that the structure
is undamaged. In this case, being the value of EðzlÞ beyond the threshold, an alarm is given, but it is a false alarm since the
structure is undamaged. In addition to the probability of false alarm, the value ET ðzlÞ defines a value of the probability of
missing alarm PmðzlÞ, that is the probability that the variation of the interpolation error is mistakenly attributed to random
sources while it is actually due to a damage. If the structure is damaged but the value EðzlÞ is lower than the threshold, no
alarm is given. In this case, there is a missing alarm since the structure is actually damaged, and the probability of missing
alarm is represented by the area of the hatched region under the graph of f E;dðzlÞ shown in Fig. 2.

From the above analysis, clearly emerges that the definition of the threshold ET ðzlÞ is a tradeoff between the probability of
false and missing alarm. The optimal choice of the threshold basing on a cost-benefit analysis is beyond the scope of this
paper and will not be performed for the application reported in the following.
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Fig. 2. Threshold and probabilities of false and missing alarm.



2.2. The damage detection procedure

The procedure described above can be implemented if the distribution of the interpolation error in the undamaged
configuration is available, that is when enough data, recorded in the undamaged configuration, are available. If the structure
is only occasionally or periodically tested to detect possible damages, as in most of applications and also in the present case
study, the available data at each instrumented location zl

� �n
l ¼ 1 reduce to a single estimation of E0ðzlÞ and EdðzlÞ, for the

undamaged and the possible damaged structure, respectively. In this case, the lack of experimental data requires some
simplifying assumptions and the application of a slightly different procedure to reduce the effect of the random variations
on the interpolation error. The assumption considered herein is that all sources of random variations equally affect all the
instrumented locations producing a uniform variation (uniform increase or uniform decrease) of the interpolation error at
all zl

� �n
l ¼ 1. Basing on this assumption, if a uniform variation of the interpolation error is detected, then the structure is

considered undamaged and the possible variations of the interpolation error are ascribed to random sources not connected
with damage. On the contrary, if the interpolation error ΔE is ‘localized’, namely it is ‘significantly higher’ at few locations
with respect to the others, then a damage is denounced at those locations.

In order to select ‘significant’ values of ΔE, a threshold value must be introduced for this parameter in terms of its
probability distribution, similarly to what previously described with reference to the case when pE;0 is known. Assuming a
normal distribution for ΔE, the threshold ΔET can be defined in terms of the average μΔE and of the variance σΔE of the
damage parameterΔEðzlÞ on the population of available values (that is, calculated at all the instrumented locations zl

� �n
l ¼ 1),

namely

ΔEðzlÞ ¼ μΔEþνσΔE ; ð6Þ
being ν the value of the standard normal distribution corresponding to the threshold probability.

The damage index DðzlÞ at a given location zlis then defined by the relation

DðzlÞ ¼ΔEðzlÞ�ðμΔEþνσΔEÞ; l¼ 1; :::…;n; ð7Þ
and positive values of DðzlÞ are considered as symptom of possible damage occurred at zl. It should be recalled that if the
right hand side of Eq. (7) is negative, then the damage index is assumed equal to zero. As mentioned above, an increase of ν
leads to a reduction in the probability of false alarms and, simultaneously, to an increase of the probability of missing alarms.
If ΔE is normally distributed, then ν¼1, ν¼2, ν¼3 lead to a confidence level of about 85%, 98%, 99%, respectively, that is
there is 15%, 2%, 1% probability that ΔEðzlÞ exceeds the threshold level and zl be not a damage location (false alarm).

3. A case study: the Dogna bridge

In this section we describe our case study. The Dogna Bridge is the four-span, one-lane reinforced concrete bridge shown
in Fig. 3. The span of the bridge highlighted in Fig. 3 has been the object of an extensive experimental/theoretical research
on the use of dynamic methods for damage detection (see [9]) and structural identification of bridges (see [11]). For the sake
of completeness and for reader convenience, in the sequel we briefly describe the structure and we recall the main features
emerged during dynamic testing.

The bridge deck is formed by a reinforced concrete (RC) slab 0.18 m in thickness, supported by three longitudinal RC
beams of rectangular cross-section 0.35�1.20 m2. Beams are simply supported at the ends and are connected at the
supports, at mid-span and at span-quarters by transverse RC diaphragms. Pier and abutments were built on cast-in-place
concrete piles of 1.0 m in diameter and 18.0 m in length.

The Dogna Bridge suffered of an exceptional flood of the Fella River on August 31, 2003. A visual inspection conducted on
the tested span revealed no apparent deterioration on slab and beams, whereas an advanced state of degradation was
noticed on support bearings side pier. The bridge was demolished on May 2008. Dynamic tests were performed from April 2
to April 11, 2008, and during the experiments the tested span was made independent of the adjacent span by removing the
deck-joint in correspondence of the pier.

Harmonically forced vibration tests were performed on the bridge in its present condition (undamaged configuration,
indicated by U in what follows) and in seven damaged configurations D1–D7, see Fig. 4. The first six damage states were
Fig. 3. General view of the Dogna Bridge (left, tested span circled) and detail of damages D1–D6 (right).



obtained by cutting the downstream lateral beam. Notches were produced by using a hydraulic saw fitted with a diamond
disc. The seventh level of damage was obtained by removing the concrete near the mid-span cross-section of the same beam
by means of a jackhammer. The experimental layout is shown in Fig. 5 and we refer to [9] for a complete account of the
experiment. The vertical motions of the deck structure were produced by means of a vibration generator consisting of a
closed-loop electro-mechanic actuator mounted in vertical direction. During the experiments a time harmonic force with
maximum amplitude of 15 kN has been used. Based on this experimental setup, deck's inertance of the bridge was
Fig. 4. Damaged configurations. Dimensions are in meters.

Fig. 5. Basic dimensions and instrumental layout. Dimensions are in meters.



measured by means of zoom analyses within narrow neighborhoods (approximately 3–5 Hz in size) of the natural
frequencies. Frequency resolution ranged from 0.02 for the lower modes (up to 15 Hz) to 0.04 Hz for higher modes. The
above procedure has been applied for the characterization of all the damaged configurations D1–D7.

By way of example, Fig. 6 shows the FRF modulus of the bridge in the undamaged and in damaged configurations D2, D4,
D6 at locations A10, A11 and A14. In this figure, a linear interpolation of the measured FRFs has been adopted for frequency
ranges in which experimental data were not available.

Fig. 7 shows the evolution of the first five natural frequencies with respect to damage. We refer to the analysis developed
in [11] for a justification of the not monotonic behavior of the frequency values with respect to increasing levels of damage.

Experimental vibrating modes have dominant vertical components. As an example, the undamaged and damaged D4
mode shapes of the deck are shown in Fig. 8. Experimental results confirm that mode shapes are sensitive to the
introduction of damage. Generally speaking, the variations are appreciable in the configuration D1 and become clearly
measurable in subsequent damaged configurations. From visual comparison it emerges that the third and fourth modes are
the most sensitive to damage and, in general, they show an increase in modal amplitude near the damaged region, see [11]
for a detailed analysis.
4. Damage localization

4.1. Application of the Interpolation Damage Detection Method

As recalled in Section 3, harmonically forced dynamic tests were produced on the Dogna Bridge by a shaker located at
one-fourth of the upstream beam. At the time the tests were performed, the main aim was to carry out a modal
characterization of the structure, hence response were measured only within narrow neighborhoods of the expected natural
frequency values (see Fig. 6). Furthermore, the size of these neighborhoods was slightly adjusted during the tests for the
various damage configurations in order to match with the current natural frequency values. The FRFs at instrumented
locations are thus available only in narrow frequency intervals, and the size of these intervals changes from one test to the
other. The application of the IDDM requires that the values of the FRFs are defined in the same frequency interval for both
the reference and the damaged configuration. Therefore, in order to calculate the FRFs in the frequency ranges where they
Fig. 6. FRF amplitude at locations A10 (a), A11 (b) and A14 (c) obtained by linear interpolation outside the measured intervals (in gray).



Fig. 8. Mass-normalized mode shapes in undamaged (dashed line) and damaged D4 (continuous line) configurations.

Fig. 7. Experimental natural frequency values vs damage: (a) Mode 1; (b) Mode 2; (c) Mode; 3; (d) Mode 4; and (e) Mode 5.
were not available, a linear interpolation of the measured values was carried out in the whole interval 8–50 Hz. Even if this
choice may represent a rather crude estimation of the actual values of the FRFs outside the measured intervals, the results of
the analysis show that it allows for a correct localization of the damage. The scarce influence on identification results
produced by this estimation of the FRFs may be due to the fact that linear interpolation is restricted to frequency ranges
which are generally far from resonance regions and that, consequently, have much lower influence on the value of the
damage index with respect to near-resonance values, for all configurations considered in testing.

In order to investigate on the sensitivity of the diagnostic method to the amount of experimental data available, in a first
stage the IDDM was applied considering separately the three alignment of sensors at downstream, central axis and
upstream, corresponding to the set of sensors A1–A3–A6–A10–A12–A15–A17, A4–A8-A11–A13–A16, A2–A5–A9–A14–A18,
respectively. More explicitly, for each alignment the damage index at an instrumented point was evaluated by considering
the FRFs measured at sensors belonging to that alignment, and neglecting all the other instrumented points. Moreover, the
method was implemented by considering different frequency intervals including the first two, three, four and five resonant
frequencies for damage configurations D1–D7.

A preliminary analysis has been developed with the aim of estimating a suitable value of the threshold parameter ν (see
Eqs. (6) and (7)). Numerical results for ν¼2 when the first two and the first five vibrating modes are taken into account are



Fig. 9. Damage index D evaluated in the interval 8–15 Hz (first two vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼2. Circles denote the actual damage locations.

Fig. 10. Damage index D evaluated in the interval 8–50 Hz (first five vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼2. Circles denote the actual damage locations.
summarized in Figs. 9 and 10, respectively. White, light gray and dark gray columns are used throughout the figures of the
paper to denote instrumented points belonging to the downstream, central and upstream beam, respectively. The height of
these columns is proportional to the corresponding damage index value. The choice ν¼2 allows for a correct localization of
severe damage only and, in addition, the probability of missing alarms turns out to be very high. Figs. 11–14 show the values
of the damage index calculated with ν¼1. This last choice leads to a better compromise between the probability of having
false and missing alarms and, unless otherwise specified, will be retained in the remaining of this section. It can be seen
that, apart from few exceptions, the damage index exhibits the highest value at locations close to the actual position of
damage for all the cases examined and, moreover, its value generally increases with the number of vibrating modes
considered in the analysis, thus improving the localization of the damage. This behavior is particularly evident when the
values obtained using the first two modes only are compared with those calculated by adding the third mode, see Figs. 11
and 12. The analysis also shows that the addition of the fifth mode does not significantly improve the identification, indeed,
passing from four to five modes, the damage index exhibits high values at the central and upstream beam, thus reducing the
readability of the correct damage location, compare Figs. 13 and 14. The reason for this trend is probably due to the low
sensitivity of the fifth vibration mode to damage (as shown in [9]), that makes quite unreliable the values of the FRFs—hence
the values of the damage index—in the corresponding frequency range.

Concerning the last damage configuration D7, we recall that it was obtained by introducing a second concentrated
damage at the mid-span of the downstream beam (see Fig. 4). In order to check the capability of the IDDM to localize a new



Fig. 11. Damage index D evaluated in the interval 8–15 Hz (first two vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.

Fig. 12. Damage index D evaluated in the interval 8–28 Hz (first three vibrating modes) from the reference configuration (U) to actual damage
configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.
damage starting from a configuration already damaged (i.e., D6), the IDDM was applied to identify configuration D7
assuming configuration D6 as the reference one. Results show that, when more than two modes are considered, the correct
damaged section is always detected, although some false alarms occur when three or less vibrating modes are included in
the analysis.

For the sake of completeness, the IDDM was also tested to identify the evolution of the damage, that is, to detect a
damage scenario starting from a previous damaged configuration. In brief, it turns out that the method gives a clear
indication of the occurrence of the damage only when the configuration to be identified is D7, for any choice of the starting
configuration. The method fails in other circumstances. A possible justification of this behavior is connected with the main
hypothesis underlying the IDDM, that is, the assumption that a concentrated damage reflects in a loss of spatial regularity of
the vibrational profile of a structure, compared with a reference state. The results seem to suggest that a significant loss of
spatial regularity occurs essentially at the beginning of the damage process, and, therefore, it cannot be detected between
successive damage stages in the case of a single concentrated damage. This is confirmed by the good results obtained in



Fig. 13. Damage index D evaluated in the interval 8–38 Hz (first four vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.

Fig. 14. Damage index D evaluated in the interval 8–50 Hz (first five vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.
identifying damage D7 occurring at a different position with respect to damages D1–D6, thus inducing a loss of spatial
regularity with respect to each of the former configurations (both damaged and undamaged).

We conclude this section by repeating the above analysis for different choices of the set of instrumented points. In a first
stage, all the instrumented points are considered in the evaluation of the damage index. In general terms, a larger amount of
data improves the identification and the result of damage localization turns out to be better than before, both for ν¼1 and
ν¼2, as it is confirmed, by way of an example, by Figs. 15 and 16 (ν¼2) in the case that first two or first four vibration modes
are taken into account. In particular, false alarms located far from the actual damage position are reduced in number and,
moreover, the performance of the choice ν¼2 is now comparable to that resulting from taking ν¼1. Finally, the above
results are compared with those obtained from a less refined mesh. Figs. 17 and 18 (ν¼1) show, in particular, the damage
index value when the sensors A10, A11, A15 and A16, which are close to the damaged area, are not included in calculations.
Comparing with Figs. 13 and 14, the results of identification are quite stable, even if the quality becomes worse when the
fifth vibration mode is considered, probably because of its low sensitivity to damage, as it was mentioned above.



Fig. 15. Damage index D evaluated in the interval 8–15 Hz (first two vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼2 and all the instrumented points are considered in the evaluation of
the damage index. Circles denote the actual damage locations.

Fig. 16. Damage index D evaluated in the interval 8–38 Hz (first four vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼2 and all the instrumented points are considered in the evaluation of
the damage index. Circles denote the actual damage locations.
4.2. A couple of variants

A first variant of the method consists in assuming the interpolation error Eðzl;f iÞ given as the absolute value of the
difference between the modulus of the recorded and interpolated FRFs, namely

Eðzl;f iÞ ¼ HRðzl; f iÞ
�� ��� HSðzl; f iÞ

�� ���� ��; ð8Þ

where zl is the location considered and fi the ith frequency value, see also [23]. This choice obviously entails a reduction in
input information, as the phase data are not used, and, therefore, it is expected that identification results could be affected
compared to the case in which all the information on FRF is known. It is worth noticing that choice (8) is of interest in
applications, since it leads to a simpler calculation of the damage index and, ultimately, to more expeditious diagnostic
analysis. Calculations analogous to those developed in the previous section were repeated under assumption (8).
Corresponding results (with damage index evaluated separately for each alignment of the sensors) are summarized in
Figs. 19–22, and should be compared with those shown in Figs. 11–14. The quality of the identification is comparable,



Fig. 17. Damage index D evaluated in the interval 8–38 Hz (first four vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1 and all the instrumented points, with the exception of the sensors
A10, A11, A15 and A16, are considered in the evaluation of the damage index. Circles denote the actual damage locations.

Fig. 18. Damage index D evaluated in the interval 8–50 Hz (first five vibrating modes) from the reference configuration (U) to actual damage configuration:
(a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1 and all the instrumented points, with the exception of the sensors
A10, A11, A15 and A16, are considered in the evaluation of the damage index. Circles denote the actual damage locations.
although now there is a more pronounced dispersion of the index values, in particular when the first three or the first five
modes of vibration are included in the analysis.

In a second stage, the sensitivity of the IDDM to a different extension of experimental FRFs outside the measuring ranges
has been investigated. In particular, the analytical expression of the FRF (in receptance form)

HklðsÞ ¼ ∑
N

r ¼ 1

AðrÞ
kl

s�sr
þ A

ðrÞ
kl

s�sr
; AðrÞ

kl ¼
uðrÞ
k uðrÞ

l

2iprdmr
; ð9Þ

obtained in [9] as the result of a specific curve fitting technique applied around the resonances of the first five modes of
vibration has been used. In Eqs. (9), N¼5; s¼ io is the frequency variable; sr¼�ξrprþ iprd is the complex pole of the rth
vibration mode, pr and prd¼pr (1�ξr2)1/2 being the undamped and damped circular frequency for mode r, respectively; ul

(r)
is

the lth component of the rth mode shape; and mr¼Σk,l¼1
L

Mkluk
(r)

ul
(r)
, where Mkl is the (k,l)-component of the mass matrix

and L is the number of the monitored degrees of freedom. The complex conjugate of a number is denoted by an overbar.
As an example, Fig. 23 shows the trends of the FRF analogous to those illustrated in Fig. 6. Despite the high accuracy of

the local reconstruction of experimental FRFs, see Table 2 in [9], significant jump discontinuities of the FRF magnitude occur
at boundary points between measured and reconstructed FRFs. It is worth noticing that, in order to ensure an accurate
estimation of modal parameters associated with a particular mode of vibration, a curve fitting technique including the



Fig. 19. Damage index D evaluated according to Eq. (8) in the interval 8–15 Hz (first two vibrating modes) from the reference configuration (U) to actual
damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.

Fig. 20. Damage index D evaluated according to Eq. (8) in the interval 8–28 Hz (first three vibrating modes) from the reference configuration (U) to actual
damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.
contribution of adjacent vibration modes was implemented in [9]. The method allowed for an excellent repeatability in both
the estimation of modal parameters and the local FRF reconstruction (as it is shown, by way of an example, in Fig. 24), but
did not guarantee a comparable accuracy in global FRF reconstruction by extrapolation from measuring intervals to the
entire frequency range 8–50 Hz. In this regard, it should be noticed that having even few points outside the resonance
neighborhoods, would have been probably enough to provide stable reconstruction of the FRF in a wide frequency range.

The results of the IDDM are summarized in Figs. 25 and 26 for damage index evaluated separately for each alignment of
sensors. Generally speaking, high values of the damage index (evaluated according to Eq. (8)) are found in correspondence
to the actual position of the damage. At the same time, however, several false alarms occur in incorrect positions and,
moreover, the accuracy of damage localization does not improve when an increasing number of vibration modes is taken
into account. Overall, the quality of the identification results turns out to be worse than the case in which the FRFs were
extended outside of the measurement intervals by linear interpolation. The reason for this can be attributed to the presence
of the jump discontinuities in reconstructing the FRF terms by the analytical extension (9). Indeed, these singularities may



Fig. 21. Damage index D evaluated according to Eq. (8) in the interval 8–38 Hz (first four vibrating modes) from the reference configuration (U) to actual
damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.

Fig. 22. Damage index D evaluated according to Eq. (8) in the interval 8–50 Hz (first five vibrating modes) from the reference configuration (U) to actual
damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles denote the actual damage locations.
develop at different frequency values from one damage configuration to another, with the consequence of altering the
spatial trend of the interpolation error, and, ultimately, to mask the real effect of the structural damage on FRF data.

4.3. A comparison with the Modal Curvature Method

A comparison between the above results and those obtained by adapting the Modal Curvature Method (MCM) is
discussed in this section. For reader convenience, the main idea of the MCM is briefly recalled in the sequel. We refer to [9]
for more details on damage localization in the Dogna Bridge via the MCM and to [15] for the first application of the MCM on
a full-scale damaged bridge.

Following the approach presented in [9], let us denote by 0¼x0ox1o…oxN¼L the measurement points along a given
longitudinal beam. This decomposition of the interval [0,L] will be denoted by δ. A cubic spline function fδ associated with
the decomposition δ is a C2-function in [0,L] that coincides with a third order polynomial on every subinterval [xi, xiþ1],
i¼0,1,…,N�1. Let y(r)¼(y0

(r)
,y1

(r)
,…, yN

(r)
) be the restriction of the rth normalized mode of the bridge to the set of measurement

points belonging to the beam. A cubic spline function fδ(y(r), � ) defined on [0,L] and such that fδ(y(r), xi)¼ yi
(r)
, i¼0,1,…,N, is

called natural cubic spline function if fδ″(y(r), 0)¼0¼ fδ″(y(r), L). Note that these conditions are certainly verified at the ends



Fig. 23. FRF amplitude at locations A10 (a), A11 (b) and A14 (c) obtained by analytic extension (9) outside the measured intervals (in gray).

Fig. 24. Example of comparison between analytical (continuous line) and experimental (dotted line) FRF in a neighborhood of the second natural
frequency. FRF at locations A11 (a) and A14 (b).
of longitudinal beams of the Dogna Bridge because of simple support end conditions. Under the above assumptions, it is
possible to show that there exists a unique natural cubic spline function fδ(y(r), � ) associated to the decomposition δ and
data y(r). An efficient algorithm for reconstructing the natural spline function is also available, see [9].

Some results of the MCM applied to the Dogna Bridge are summarized in Figs. 27 and 28. In these figures, the variation of
the modal curvature of the first and second normalized (with respect to the mass matrix of the undamaged state) vibrating



Fig. 25. Damage index D evaluated according Eq. (8) and by using the analytical extension (9) in the interval 8–15 Hz (first two vibrating modes) from the
reference configuration (U) to actual damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles
denote the actual damage locations.

Fig. 26. Damage index D evaluated according Eq. (8) and by using the analytical extension (9) in the interval 8–38 Hz (first four vibrating modes) from the
reference configuration (U) to actual damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Threshold ν¼1. Circles
denote the actual damage locations.
mode from the undamaged configuration to a damaged configuration are represented, respectively. In particular, in order to
facilitate the comparison with the results obtained by the IDDM, Figs. 27 and 28 show the absolute value of the changes of
the modal curvatures evaluated at the nodes of the spatial mesh used in the experiments. Fig. 27 clearly shows a significant
increase of the first modal curvature on the downstream beam, near the third-span/fourth-span side-pier. This indication is
confirmed also by the appearance of changes, this time more limited, on the same region of the central beam, whereas the
modal curvature of the upstream beam remains approximately constant for the various damaged configurations. Similar
information can be extracted from the second mode (see Fig. 28). It can be shown that less accurate information is provided
by the third vibration mode, probably because of poor spatial resolution of the measuring points. From the variations of
modal curvature it is also possible to appreciate the increased severity of the damage from configuration D1 to D6. On the
contrary, detection and localization of damage D7 from damage configuration D6 seems not be possible, probably because of
the small sensitivity to damage of lower vibration modes of the bridge to this damage scenario.



Fig. 27. Absolute value of the modal curvature variation of the first (normalized vibration mode) from the undamaged configuration (U) to actual damage
configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Circles denote the actual damage locations.

Fig. 28. Absolute value of the modal curvature variation of the second (normalized vibration mode) from the undamaged configuration (U) to actual
damage configuration: (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; (h) from D6 to D7. Circles denote the actual damage locations.
5. Conclusions

An application of the Interpolation Damage Detection Method for the localization of damage in a single-span reinforced
concrete bridge has been presented in this paper. The damage consists of a series of notches made on a lateral beam to
simulate the effect of incremental concentrated damage. Experimental data are the frequency response functions measured
around the first five resonant frequencies on a grid of points on the bridge deck. The IDDM is essentially based on a
comparison between the FRFs before and after the occurrence of a structural damage, and on the determination of an index
that takes into account the loss of spatial regularity of the vibrational profile of a structure, compared with a reference (e.g.,
undamaged) state, induced by a localized damage. The method has the advantage of not requiring the development of a
numerical model of the vibrating system, since it works directly with the experimental data.

Among other aspects, the analysis presented in this paper allowed to point out some features of the IDDM not yet
showed in previous applications. A first aspect worth of mention is the stability of the method to different extension/
extrapolation from the (narrow) frequency intervals in which the FRF data is available to larger frequency range. Our results
confirm that a linear interpolation of the measured values between adjacent measured intervals should be sufficient. A
second aspect highlighted by the present application, is the ability of the IDDM to localize damage whenever a network of
sensors dense enough is deployed. In our experience, five in-span measurements are enough. In particular, our results show
that if sensors are deployed along more than one alignment in the longitudinal direction of the bridge, then the diagnostic
method allows not only to detect the position of damage along this direction but also to correctly locate the damage on the



transverse direction. Finally, concerning the ability of the IDDM in identifying the evolution of the damage, our results
suggest that this can be done, provided that the severity of damage to be identified corresponds to a not negligible
additional localized loss of spatial regularity of the vibrational amplitude profile with respect to the previous configurations
of the structure.

Overall, the results of this paper confirm that the IDDM can be considered a useful tool for a preliminary localization
of structural damage in full-scale bridges. However, there are still some open problems connected with the proposed
diagnostic method. The accuracy of the FRF measurements, the typology of the damage and the features of the Dogna Bridge
were probably decisive factors for the success of the identification. In other contexts, the sensitivity of the problem to the
accuracy and completeness of the data, and the complexity of the system may play an important role. In addition, the IDDM
is currently based on the assumption that an increase of the interpolation error at one instrumented location between
reference and damaged state can be considered as an indicator of the existence of structural damage close to the location
where the change is detected. It would be worth to considering the mathematical basis of this conjecture, even for simple
vibrating systems, and proving rigorously that the damage index D can effectively provide an indication on the existence
and location of the degradation. All these problems require further investigation, both of theoretical and experimental
character.
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