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Abstract
We study the existence ofmonotone traveling waves u(t, x) = u(x + ct), connecting two
equilibria, for the reaction-diffusion PDE ut = ( ux√

1+u2x
)x + f (u). Assuming different forms

for the reaction term f (u) (among which we have the so-called types A, B, and C), we
show that, concerning the admissible speeds, the situation presents both similarities
and differences with respect to the classical case. We use a first order model obtained
after a suitable change of variables. The model contains a singularity and therefore
has some features which are not present in the case of linear diffusion. The technique
used involves essentially shooting arguments and lower and upper solutions. Some
numerical simulations are provided in order to better understand the features of the
model.
MSC: 34C37; 35K57; 34B18
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1 Introduction
In this paper, we will be interested in the existence of monotone heteroclinic solutions for
a quasilinear variant of the scalar second order differential equation

u′′ – cu′ + f (u) = , ()

which arises in connection with the Fisher-Kolmogorov PDE

ut = uxx + f (u) ()

when searching for traveling waves with speed c, i.e., solutions having the form u(t, x) =
u(x + ct). Equation () was originally proposed in  by R. Fisher, to model the -
dimensional spreading of an advantageous gene with frequency u(t, x), and analyzed from
the mathematical point of view by Kolmogorov, Petrovsky and Piskounov [] (for this rea-
son, it is briefly referred to as FKPP). From then on, it has found many different applica-
tions and variants in several fields, such as ecology, physiology, combustion, general phase
transition problems.

The process described by () is a reaction-diffusion one, where the spatial diffusion is
linear. The reaction term may have several forms, but we will always assume that it satisfies
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f () =  = f (), meaning that no reaction is present if the gene is completely spread or not
spread at all into the population. Accordingly, we will be interested in monotone traveling
waves connecting  (at –∞) and  (at +∞) and taking values strictly included between
them, i.e., using the terminology in [], the so-called front-type solutions. The existence
of such connections turns out to be important since, for instance in the case of linear
diffusion, under certain assumptions on the initial datum the solutions to the PDE ()
converge, for t → +∞, to suitable combinations of traveling wave-type solutions (see, e.g.,
[, ]).

The linearity of the diffusion term, however, is not always appropriate to model a real-
istic phenomenon. Indeed, it has been observed that, referring to the dependence of the
diffusion with respect to ∇u, there may occur in some instances a kind of saturation effect
for large |∇u| (while a linear dependence in the gradient, for ∇u small, is more realistic).
In such cases, it seems reasonable to replace � with a certain type of nonlinear diffusion in
(). Precisely, the model which we will investigate is given by the flux-saturated diffusion
equation (for a pioneer model of this kind, see for instance [])

ut =
(

ux√
 + u

x

)
x

+ f (u), ()

where the diffusion process is governed by a mean curvature type operator (see [, ]).
Wishing to search for monotone traveling waves u(t, x) = u(x + ct) for (), connecting the
two equilibria  and , we will thus study the problem

⎧⎨
⎩

( u′√
+u′ )′ – cu′ + f (u) = ,

u(–∞) = , u(+∞) = ; u′(t) >  for every t;
()

the values of c for which () has a solution will be called admissible speeds.
It is well known that in the classical case, namely for equation (), different phenomena

may arise, depending on the shape of f . In particular, if f (u) >  for every u ∈ ], [, then
the admissible speeds form an unbounded interval [c∗, +∞[, where the value c∗ takes the
name of critical speed. On the contrary, it suffices to have f (u) ≤  in a neighborhood of
 to force the admissible speed, if any, to be unique, using a monotonicity argument (see
Lemma . below in our quite general context; we will use the name critical speed also
in this case). In any case, it is immediate to see that the existence of a positive admissible
speed is possible only if f (u) >  in a neighborhood of u = .

Another elementary observation narrowing the range for the admissible speeds is re-
lated to the nature of the equilibria  and  when f is differentiable: linearizing around
them yields the eigenvalues

λ,() =
–c ± √

c – f ′()


, λ,() =
–c ± √

c – f ′()


,

and we see that u =  is a saddle if f ′() < , while u =  is a spiral for c < f ′() or an
unstable node for c ≥ f ′(). Thus, if we want to find monotone traveling waves we will
have to ask that c ≥ f ′() (while no requirements need to be done on f ′(), apart from its
negative sign). Notice, however, that we can state results about () without differentiability
assumptions; see Sections  and .
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We will study the features of the set of the admissible speeds for () for different classes
of reaction terms, and provide, in some cases, a way of computing the critical speed. We
shall see that our problem presents both similarities and differences with respect to the
FKPP equation. The most significant feature, in particular, is the appearance here of a
singularity (see Section ) which makes the model more delicate to deal with than in the
classical case, requiring some restrictions which are peculiar of () in order to find a regu-
lar solution. Indeed, elementary arguments show that a classical solution not always exists
already for c = , and one should in principle admit discontinuous solutions which satisfy
the equation in a suitable weak sense, as was observed, e.g., in [, ]. We remark that recent
efforts have been devoted to the study of periodic and Dirichlet boundary value problems
associated with (), in the case when c = , leading to some interesting results (see, e.g.,
the works [, –]). Moreover, it has been recently seen that, contrary to the classical
case, models similar to the one taken into account in the present paper may display the
existence of discontinuous traveling wave solutions. We refer the reader to the works [,
], in presence of more general operators, in relation with the so-called porous medium
equation. Although we will not deal with discontinuous solutions, in Section  we shall
refer to discontinuous steady states.

The plan of the paper is as follows. In Section , we will explicitly obtain the first order
reduction for () (for a similar procedure, see for instance []) and state some elementary
lemmas which will find application from there on. Section  is devoted to the study of the
admissible speeds. Referring to the sign of f (u) in [, ], we will mainly take into account
the following three model cases: f always positive (‘type A’), f positive in an open left
neighborhood of  and  else (‘type B’), f positive in a left neighborhood of  and negative in
the complementary open neighborhood of  (‘type C’). This terminology was introduced
in [], but these shapes of the reaction term were already considered in []. We will
see that the picture for type C functions can be extended to a quite general setting. In
Section  we will briefly discuss a different perspective on equation (), interpreting it as a
quasilinear version of a damped pendulum when f (u) = B sin u. In this context, the critical
speed assumes the meaning of a critical damping and we will be able to recover, with
some differences, the usual picture already present in the classical case, in the case that an
additional torque is applied to the pendulum as well. Finally, in Section  we will discuss the
relationships between the appearance of discontinuous steady states (i.e., discontinuous
solutions to () for c = ) and the nonexistence of right moving traveling waves, inspired
by the work [].

The figures appearing in the paper have been drawn using the open source software
available at the web address []; we warn the reader that the numerical method used for
the simulations, also in view of the presence of a singularity in the considered equation, is
quite sensitive to the initial data and may display some problems for certain values of the
parameters.

2 Traveling waves: the first order model
We are looking for monotone solutions to the boundary value problem

⎧⎨
⎩

(P(u′))′ – cu′ + f (u) = ,

u(–∞) = , u(+∞) = ,
()
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where

P(v) =
v√

 + v
.

In view of the monotonicity of u(t), we can write t as a function of u and change variables
by setting φ(u) = P(u′(t(u))) and v(u) = P–(φ(u)), leading to the equation

d
du

Q
(
v(u)

)
– cv(u) + f (u) = ,

where Q(v) is the primitive of vP′(v) satisfying Q() = . Explicitly,

Q(v) =  –
√

 + v
, ()

so that

R = Q– ⇒ R(y) =
√

y( – y)
 – y

,  ≤ y < .

Hence, we obtain the first order equation

y′ = cR(y) – f (u),

where the differentiation is done with respect to the independent variable u. Taking into
account the boundary conditions, we thus want to study

⎧⎨
⎩

y′ = c
√

y(–y)
–y – f (u),

y() =  = y(),
()

searching for the values of c yielding a positive solution on ], [ (the so-called admissible
speeds); they will be obtained by shooting backward the solution to

⎧⎨
⎩

y′ = c
√

y(–y)
–y – f (u),

y() = ,
()

and making it intersect, for suitable value(s) of c, with a solution to

⎧⎨
⎩

y′ = c
√

y(–y)
–y – f (u),

y() = .
()

Observe indeed that, in view of the fact that R(y) = (
√

y( – y))/( – y) is increasing in [, [,
the solution to () is unique; for fixed c, we denote it by y–

c,f (u).
Different forms of the reaction term f will be considered. However, we will always as-

sume that
⎧⎨
⎩

f : [, ] →R is continuous, with f () =  = f ();

there exists u ∈ [, [ such that f (u) =  and f (u) >  in ]u, [;
(f)
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(without the last requirement, no positive solutions to () could exist, as will be clear also
from Lemmas . and . below). If u = , then the positivity of f yields the necessary
condition c > , as can be seen directly integrating the differential equation in (). It will
thus be natural to focus on positive speeds, as we will do henceforth.

Remark . We observe that the solutions to () are recovered, up to time translations,
by solving the Cauchy problem

⎧⎨
⎩

u′(t) =
√

y(u(t))(–y(u(t)))
–y(u(t)) ,

u() = 
 ,

similar to [, Proposition .].

Remark . The solution to the above Cauchy problem is defined in the whole real line
and takes values in ], [ provided that f satisfies the conditions

(i) there exists k >  such that f (u) ≤ ku for every u ∈ [, ],
(ii) there exists l >  such that f (u) ≤ l( – u) for every u ∈ [, ]

(see [, ]). The traveling wave profile is then a true heteroclinic connection from  to
, otherwise we may speak of heteroclinics that are degenerate (in the sense that they have
a constant tail).

Thus problem () embodies (). When we refer to admissible speeds, we have () in
mind; anyway the existence of solutions to () in practice depends on condition (i) (see
Proposition . below).

Remark . If one wished to search for decreasing solutions, namely u′(t(u)) < , the
model to be considered would be the same, but the variable v in () would be negative.
This would lead to the Cauchy problem

⎧⎨
⎩

y′ = –c
√

y(–y)
–y – f (u),

y() = , y(u) ≥ .

In this case, wishing to look at solutions which are decreasing in t, arriving at a certain
point u with  derivative, one should shoot forward from u.

2.1 Preliminary lemmas
In this subsection, we present some preliminary lemmas for the Cauchy problems () and
(). They mainly follow from elementary and well-known facts about subsolutions and
supersolutions, but for the sake of simplicity we prefer to prove them explicitly in our
particular case.

The first lemma concerns some general considerations about the solution y–
c,f (u), for c,

f fixed.

Lemma . Let f satisfy (f). Then, for every c > ,

y–
c,f (u) <  for every u ∈ [, ], ()
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and

y–
c,f (u) >  for every u ∈ ]u, ]. ()

Proof We first prove (). Assume by contradiction that there exists ū ∈ [, [ such that

lim sup
u→ū+

y–
c,f (u) = ;

since y–
c,f is continuous and y–

c,f () = , we can assume, without loss of generality, that

y–
c,f (u) <  for u > ū.

Then, using the differential equation in (), we would be able to construct a sequence
an → ū with the contradictory properties (y–

c,f )′(an) ≤  and

lim
n→∞

(
y–

c,f
)′(an) = +∞.

We now observe that z(u) ≡  is a lower solution for () in [u, ], so that y–
c,f (u) ≥  for

every u ∈ [u, ]. On the other hand, if there existed u ∈ ]u, ] with y–
c,f (u) = , then the

differential equation in () would yield (y–
c,f )′(u) < , implying that y–

c,f is decreasing in a
neighborhood of u, a contradiction. Hence, () is proved. �

With the following two lemmas, we now take into account some monotonicity issues for
y–

c,f (u) with respect to c and f .

Lemma . Let  < c < c. Then, with the above notation, we have

y–
c,f (u) ≥ y–

c,f (u) for every u ∈ ], [

and

y–
c,f (u) > y–

c,f (u) for every u ∈ ]u, [.

If y–
c,f (u) > , in particular, then y–

c,f (u) > y–
c,f (u).

Proof Assume first that there exists a point u∗ ∈ ], [ such that y–
c,f (u∗) < y–

c,f (u∗); by
continuity, the inequality can be extended to some maximal interval I = [u∗, u+[, being
y–

c,f (u+) = y–
c,f (u+). By the strict monotonicity of R(y) we have, for u ∈ I ,

 ≤ y–
c,f (u) – y–

c,f
(
u+)

+ y–
c,f

(
u+)

– y–
c,f (u) ≤ c

∫ u+

u
R
(
y–

c,f (τ )
)

– R
(
y–

c,f (τ )
)

dτ < ,

a contradiction. Thus, y–
c,f (u) ≤ y–

c,f (u) for every u ∈ ], [.
On the other hand, if there existed u′ ∈ ]u, [ such that  < y–

c,f (u′) = y–
c,f (u′) (recall that,

in ]u, [, the solution to () is strictly positive), then, since c < c, using the differential
equation in () we would have (y–

c,f )′(u) – (y–
c,f )′(u) <  in a neighborhood of u′, which is

impossible because y–
c,f (u) – y–

c,f (u) ≥  for every u ∈ ]u, [. This gives the conclusion for
the case y–

c,f (u) > , as well. �
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If u = , this yields in particular a strict monotonicity of the solutions, with respect to
the constant c, along the open interval ], [.

Lemma . Let c ≥  be fixed and f, f satisfy (f), f ≥ f in [û, ] with f(u) > f(u) for every
u ∈ [û, ũ[ (where  < û < ũ ≤ ). Then, y–

c,f (u) ≥ y–
c,f (u) ∀u ∈ [û, ] and

y–
c,f (u) > y–

c,f (u) for every u ∈ [û, ũ[.

Proof The proof is similar to the one of the previous lemma. Indeed, if there existed a
point u∗ ∈ [û, [ such that y–

c,f (u∗) < y–
c,f (u∗), one could find again an interval I = [u∗, u+[

such that y–
c,f (u+) = y–

c,f (u+) and y–
c,f < y–

c,f on I . By the strict monotonicity of R(y) it would
then be, for u ∈ I ,

 ≤ y–
c,f (u) – y–

c,f

(
u+)

+ y–
c,f

(
u+)

– y–
c,f (u)

=
∫ u+

u

(
f(u) – f(u)

)
du + c

∫ u+

u
R
(
y–

c,f (τ )
)

– R
(
y–

c,f (τ )
)

dτ < ,

yielding a contradiction. Hence, y–
c,f (u) ≥ y–

c,f (u) for every u ∈ [û, [.
On the other hand, if there existed v ∈ [û, ũ[ such that y–

c,f (v) = y–
c,f (v), we would have

(y–
c,f )′(v) < (y–

c,f )′(v) which is impossible. �

We finally analyze the behavior of the maximum of y–
c,f (u), in dependence of a small c.

Lemma . The limit M := limc→+ maxu∈[u,] y–
c,f (u) exists. Moreover, we have

M = min

{∫ 

u

f (u) du, 
}

.

Proof Assume first that
∫ 

u
f (u) du ≥  and suppose, by contradiction, that there exist δ > 

and a decreasing sequence cn → + such that maxu∈[u,] y–
cn ,f (u) ≤  – δ for every n (we

know that this sequence has a limit since it is monotone in view of the previous lemmas;
moreover, such a limit is less than or equal to  in view of ()). Let tn ∈ [u, ] be the
point where y–

cn ,f reaches its maximum and observe that tn is bounded away from , since
y–

cn ,f () =  for every n and y–
,f reaches its maximum in u (recall that cn → +). Moreover,

tn �= u for every n, since either y–
cn ,f (u) =  or (y–

cn ,f )′(u) > . Since (y–
cn ,f )′(tn) = , we have

f (tn) = cn

√
y–

cn ,f (tn)( – y–
cn ,f (tn))

 – y–
cn ,f (tn)

,

from which, as tn converges, up to subsequences, to a certain t, we deduce f (t) = . It
follows that t = u, and in view of

∫ 

tn

[
f (u) – cn

√
y–

cn ,f (u)( – y–
cn ,f (u))

 – y–
cn ,f (u)

]
du = y–

cn ,f (tn) ≤  – δ ()

we infer, for n → +∞, that
∫ 

u
f (u) du ≤  – δ, contrary to the assumption.
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In the case when
∫ 

u
f (u) du < , we argue analogously to obtain that M ≥ ∫ 

u
f (u) du,

assuming at the beginning that y–
cn ,f (tn) ≤ ∫ 

u
f (u) du–δ. For the reverse inequality, we first

observe that M <  since y–
cn ,f (tn) < maxu∈[u,] y–

,f (u) <  (in view of Lemma .) and then
reason as in (). �

The last lemma concerns the solutions shot forward from .

Lemma . Assume that there exists u ∈ ], ] with f (u) >  for u ∈ ], u[ and f (u) = .
Let y+

c,f (u) be a (forward) solution to (). Then,

max
u∈[,u]

y+
c,f (u) →  for c → +

(where it is understood that y+
c,f is replaced with  if it takes negative values, in order for

the equation in () to make sense).

Proof By contradiction, if there existed δ >  and, given cn → +, an interval [t–
n , t+

n ] ⊂
[, u] such that y+

cn ,f (t–
n ) = δ/, y+

cn ,f (t+
n ) = δ, and δ/ < y+

cn ,f (u) < δ for every u ∈ ]t–
n , t+

n [, one
would have, for a suitable H > ,

δ/ = y+
cn ,f

(
t+
n
)

– y+
cn ,f

(
t–
n
)

= cn

∫ t+
n

t–
n

√
ycn ,f (u)( – ycn ,f (u))

 – ycn ,f (u)
du –

∫ t+
n

t–
n

f (u) du

≤ cn

√
δ( – δ/)

 – δ

(
t+
n – t–

n
)

– H ,

which gives a contradiction for n → +∞. �

3 Traveling waves: the admissible speeds
We now turn to the search for solutions to (), under some classical assumptions on f .

3.1 f of type A
As a first case, we will assume that the reaction term f is of type A. Precisely, we define

A =
{

f ∈ C
(
[, ]

) | f () = f () =  and f (u) >  for every u ∈ ], [
}

.

In this case, Lemmas ., ., and . hold with u = , so that, in particular, y–
c,f is positive

in ], [.
Under some mild assumptions on f , we first give a lower bound for the admissible

speeds.

Lemma . Let k := f ′() exist and let y(u) be a solution to (), with y(u) >  in a right
neighborhood of . Then, c ≥ 

√
f ′().

Proof The proof is the same as the one in [], but we recall it for the reader’s convenience.
Let y(u) be positive for u ∈ ], û[; then, (

√
y(u))′ is defined, and

l := lim sup
u→+

(√
y(u)

)′ ≥ 
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since y() =  and y(u) >  in ], û[. However,

(√
y(u)

)′ =



√

y(u)
y′(u) =



√

y(u)

[
c
√

y(u)( – y(u))
 – y(u)

– f (u)
]

=



[
c
√

( – y(u))
 – y(u)

–
f (u)

u
u√
y(u)

]

and, taking the upper limit for u → + at both sides, having y() = , we obtain

l ≤ 


[√
c – lim inf

u→+

f (u)
u

u√
y(u)

]
.

We can assume f ′() > , otherwise the statement is trivially satisfied, as c > . It follows
that

l ≤ 


[√
c – k


l

]
,

whence l >  and

l –
√

cl + k ≤ ,

implying the desired bound on c. �

From Lemmas . and ., if c is sufficiently small so that

max
u∈[,]

y+
c,f (u) < max

u∈[,]
y–

c,f (u),

where y+
c,f is any solution to (), it follows that y–

c,f () >  and no solutions to () can appear.
Referring to the lemmas in Section ., this simple observation allows one to realize that, in
the case when u > , there exists a maximal c∗ >  such that, for every  < c < c∗, y–

c,f (u) >
 (as we will see, c∗ takes the name of critical speed). As a consequence, if in Lemma .
we have c < c and c is sufficiently small, y–

c,f (u) > y–
c,f (u).

Given a reaction term f belonging to a quite large subset of A, the following proposition
relates the corresponding set of the admissible speeds to some bound on f .

Proposition . Let f ∈ A and assume that there exists M >  such that the following
estimate holds:

f (u) ≤ Mu√
 – min{M, }u

,

for every u ∈ [, ]. Then, for every

c ∈ [
√

M, +∞[,

problem () has a solution.
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Proof Let us fix c ≥ 
√

M and consider the (backward) Cauchy problem (), which has
the unique global, positive solution y–

c,f (u) in ], [. If y–
c,f () =  we are done, so we assume

 < y–
c,f () (< ).

Let us consider the (forward) Cauchy problem (); we construct a positive lower solution
by using the solutions to

⎧⎨
⎩

y′ = β

√
y(–y)
–y ,

y() = ,
()

in dependence of β > . Problem () has the solution

z(u) =  –
√

 – βu,

for u ∈ [, uβ [, where uβ = /β ; we thus want to choose β in such a way that z(u) solves the
differential inequality

w′ ≤ cR(w) – f (u)

in a right neighborhood of u = . Computing explicitly R(z(u)), we obtain

R
(
z(u)

)
=

√
( –

√
 – βu)( +

√
 – βu)√

 – βu
=

βu√
 – βu

,

so that z(u) will solve

w′ ≤ cR(w) –
Mu√

 – βu

if and only if

βu√
 – βu

≤ βcu√
 – βu

–
Mu√

 – βu
.

It follows that β must solve the inequality

β – βc + M ≤ ,

which, in view of the choice of c (namely c ≥ 
√

M), has at least a solution. We choose

β =
c +

√
c – M


and observe that c ≥ 
√

M implies that

β ≥ √
M ≥ √

min{M, }.
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For every u ∈ ], uβ [, we thus have

Mu√
 – min{M, }u

≤ Mu√
 – βu

,

so that

z′ ≤ cR(z) –
Mu√

 – βu
≤ cR(z) – f (u), z() = ,

for u ∈ ], uβ [. This means that z(u) is a positive lower solution to () in the interval ], uβ [.
As a consequence, there exists a solution y+

c,f (u) to () which satisfies

y+
c,f (u) ≥ z(u) >  for every u ∈ ], uβ [. ()

Now consider two cases.
If y+

c,f (u) blows up at a finite time u∞ ∈ ], [, then there exists û ∈ ], u∞[ such that
y+

c,f (û) > maxu∈[,] y–
c,f (u). Since y+

c,f is of class C and the graph of y–
c,f (u) disconnects the

square [, ] in the (u, y)-plane, this implies that y+
c,f (ū) = y–

c,f (ū) for some ū ∈ ], û[, which
is impossible by uniqueness.

If y+
c,f (u) is globally defined in [, ], the same happens for z(u); then, recalling (), y+

c,f (u)
is always strictly positive in ], [. Thus, either y+

c,f () =  and we are done, or we can argue
similarly as in the previous case to deduce that y+

c,f (ū) = y–
c,f (ū) at some point ū ∈ ], [,

which is impossible by uniqueness. This concludes the proof. �

It is worth observing that, differently from the classical and the Minkowski case, in our
setting the family of functions giving the bound on f may be unbounded on [, ]. We
explicitly remark, moreover, that in order to perform the previous proof it is essential
that y–

c,f (u) disconnects the square [, ] in the (u, y)-plane, thus forming a kind of barrier
which has to be crossed by the forward solution y+

c,f (u) (also this point is different from
the classical case).

As an example, given M > , if f ∈A is given by

f (u) =
Mu√
 – u

()

in a neighborhood of u = , then every c ≥ 
√

f ′() is admissible for our problem (since
f ′() = M in this case).

We now focus on some characterizations of the so-called critical speed - i.e., the value
c∗ such that every c ≥ c∗ is admissible - for functions of type A. In the previous example
(), for instance, we have c∗ = 

√
M.

We will proceed sketchily, since the method used is the same as in []. We first observe
that

lim
y→+

R(y)√y
=

√
, ()
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so that, setting E(y) =
∫ y




R(z) dz =
√

y( – y), we have

lim
y→+

E(y)
R(y)

= .

Moreover, since by () the solutions to () satisfy, in a neighborhood of u = ,

y′ ≤ c(
√

 + ε)
√

y,

we deduce that y(u) ≤ ku in a neighborhood of , where k >  is a suitable constant.
These two facts are sufficient to prove the validity of the following proposition, just as in
[, Proposition .].

Proposition . Let f satisfy (f) and let f ′() exist. If y(u) is a solution to the differen-
tial equation in () such that y() =  and y(u) >  in a right neighborhood of , then the
quantity

E(y)′() =
d

du
E
(
y(u)

)|u=

exists and is a root of the equation x – cx + f ′() = .

To characterize the critical speed, we now need the following analog of [, Lemma .].

Proposition . Fix ε >  small. Let η >  be sufficiently small and  < A < B < /η,  ≤
a < b, 

√
b < c < c <

√
A

+ε
be constants such that

a ≤ f (u)
u

≤ b for every u ∈ ],η]

and

A – c
√

A + b <  < B – c
√

B + a for every c ∈ [c, c].

Then, decreasing η if necessary, for every c ∈ [c, c] there exists a unique solution y(u) to
() such that Au ≤ y(u) ≤ Bu for every u ∈ [,η].

The only difference, making a comparison with [, Lemma .], is that we have to pose
the further requirement B < /η to ensure that y(u) stays bounded away from the barrier
y = . The proof exploits the Banach-Caccioppoli theorem applied on the space

E =
{

y ∈ C
(
[, ]

) | Au ≤ y(u) ≤ Bu for every u ∈ [,η]
}

,

endowed with the norm ‖y‖ = sup<t≤η
y(t)

t . Indeed, thanks to (), the operator T defined
by

Ty(t) = c
∫ t


R
(
y(u)

)
du –

∫ t


f (u) du
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maps E into itself and, shrinking η if necessary (in dependence of ε), for every u ∈ [,η]
and y, z ∈ E the following holds:

∣∣T(
y(u)

)
– T

(
z(u)

)∣∣ ≤ c
√


A

( + ε)u‖y – z‖,

implying that T is a contraction if c <
√

A
+ε

.
At this point, denoting by

λ–(c) ≤ λ+(c)

the roots of the equation x – cx + f ′() = , we have the following.

Proposition . Under the previous assumptions on f (u), let c be an admissible speed for
() and y(u) be the corresponding solution. We have:

• if c = c∗, then

E(y)′() = λ+(c);

• if c > c∗, then

E(y)′() = λ–(c).

The proof goes as the one for [, Proposition .], with minor changes.
We finally give some examples of exact solutions in the case when f ∈A has some special

form (taking inspiration from [, ]).
() By analogy with the classical Fisher equation and [, Example ], let

f (u) =
u( – u)√

 – βu( –
√

u)
,

with β > . An explicit computation shows that

y(u) =  –
√

 – βu( –
√

u)

is a solution for β = / and c = /
√

. In this case, f ′() = ; since

f (u) ≤ u√
 – u

,

in view of Lemma . and Proposition . we conclude that c∗ = . Hence, the
solution found does not correspond to a critical speed, as it is possible to see also
using Proposition .:

E(y)′() =
d

du

√
βu( –

√
u)|u= =

√
β =

√
/ = λ–(/

√
).
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() By analogy with the Zeldovich equation, if

f (u) =
u( – u)√

 – β(u – u)
,

we find a solution of the form

y(u) =  –
√

 – β
(
u – u

)

for β = / and c = /
√

. In this case, f ′() = , and since

E(y)′() =
d

du
√

β
(
u – u)|u= =

√
β = /

√
 = λ+(/

√
),

we conclude that c = /
√

 is the critical speed. Notice that, in this case, the bound

f (u) ≤ βu√
 – βu

for every u ∈ [, ] would provide only a rougher estimate of c∗ via Proposition ..

3.2 f of type B
We now take into account other forms of the reaction term f ; in this subsection, in par-
ticular, we will assume that f (u) is of type B in [, ]. For the sake of simplicity, we define

B =

{
f ∈ C

(
[, ]

) ∣∣∣∣ f () = f () =  and there exists θ ∈ ], [ s.t.
f (u) =  for u ∈ [, θ ], f (u) >  for u ∈ ]θ , [

}
.

In this setting, we have the following result, similar to the ones in the classical and in the
Minkowski case (see also []).

Proposition . Let f ∈ B. Then there exists  < c∗ < /θ such that () has a solution if
and only if c = c∗.

Proof In the interval [, θ ], the positive solution to () is unique; we denote it by y+
c,f and

observe that its explicit expression is given by y+
c,f (u) =  –

√
 – cu, so that

y+
c,f (θ ) =  –

√
 – cθ.

On the other hand, the unique solution to

⎧⎨
⎩

y′ = c
√

y(–y)
–y ,

y() = ,

given explicitly by ȳ(u) =  –
√

 – c(u – ), is a subsolution for () in ]θ , [, so that, for
c > ,

y–
c,f (θ ) ≥ ȳ(θ ) =  –

√
 – c(θ – ) > .
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To obtain a solution to our original problem, we need y+
c,f (θ ) = y–

c,f (θ ). However, y+
c,f (θ ) and

y–
c,f (θ ) depend continuously on c (the first in view of its explicit expression, the second by

the standard theory of ODEs); moreover, if c increases from  to /θ , then y+
c,f (θ ) strictly

increases from  to  (spanning all the possible values strictly included), while y–
c,f (θ ) is

nonincreasing, as given by Lemma .. This is sufficient to conclude the existence of at
least one admissible speed c∗ (for which y+

c∗ ,f (θ ) = y–
c∗ ,f (θ )), in view of the intermediate

value theorem.
The fact that c∗ is unique follows easily: taking c′ �= c, in view of the explicit expression

of y+
c,f (u) and Lemma ., we have either

y+
c′ ,f (θ ) < y+

c∗ ,f (θ ) = y–
c∗ ,f (θ ) ≤ y–

c′ ,f (θ )

(if c′ < c∗) or

y+
c′ ,f (θ ) > y+

c∗ ,f (θ ) = y–
c∗ ,f (θ ) ≥ y–

c′ ,f (θ )

(if c′ > c∗), so that y–
c′ ,f (θ ) �= y+

c′ ,f (θ ). �

Similar to the classical case, the lower bound for the admissible speeds of a function f
of type A can be reconstructed starting from a sequence of increasing approximations of
type B. Precisely, we have the following proposition.

Proposition . Let f ∈ A with finite critical speed c∗ and let fn ∈ B such that fn ↗ f
pointwise. Then,

cn := c∗(fn) ↗ c∗(f ).

Before going into the details of the proof, let us explicitly state that, if θn >  is the greatest
zero of fn on [, [, we assume that θn is strictly decreasing and fn ≤ fn+.

Proof The proof is similar to the one for the classical case. We divide it in four steps. To fix
the notation, denote by yc,f , y–

c,f , y+
c,f the solutions to (), (), (), respectively; for briefness,

we write yn, y+
n , y–

n to denote ycn ,fn , y+
cn ,fn , y–

cn ,fn .
Step : c∗(fn) is increasing.
For every n, we have

y′
n =

cn
√

yn( – yn)
 – yn

– fn ≥ cn
√

yn( – yn)
 – yn

– fn+.

Hence, since fn(u) < fn+(u) in some interval [θn, θn + δn[, Lemma . ensures that

y+
cn ,fn+ (θn) ≤ y+

n(θn) = y–
n(θn) < y–

cn ,fn+ (θn).

Thus, in view of Lemma . and the previous remarks, we have cn+ > cn.
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Step : for every n, c∗(fn) ≤ c∗(f ).
Reasoning as in Step , the fact that, for every n, f (u) > fn(u) for every u ∈ ], θn[ implies

that, for every n,

y+
cn ,f (θn) ≤ y+

n(θn) = y–
n(θn) < y–

cn ,f (θn),

so that cn cannot be admissible for f .
From Step  and Step , it follows that cn converges.
Step : there exists  < H <  such that ‖yn‖∞ ≤ H for every n.
Observing that yn(u) <  for every t, assume by contradiction that there exists (un)n, with

un ∈ [, ], such that

yn(un) = ‖yn‖∞ → .

It follows that y′
n(un) = , so that

cn
√

yn(un)( – yn(un))
 – yn(un)

= fn(un).

The contradiction follows from the fact that the left-hand side goes to +∞, since cn >  is
increasing, while the right-hand side is bounded.

Step : c∗(fn) ↗ c∗(f ).
By contradiction, assume that there exists ĉ < c∗(f ) such that c∗(fn) → ĉ. From

y′
n =

cn
√

yn( – yn)
 – yn

– fn, yn() =  = yn(), ()

and Step , we deduce that yn is a bounded sequence in C([, ]). By the Arzelà-Ascoli
theorem, there exists y ∈ C([, ]) such that yn → y uniformly in [, ]. Passing to the limit
in (), we get

y′ =
ĉ
√

y( – y)
 – y

– f , y() =  = y(),

so that ĉ ≥ c∗(f ). �

3.3 f of type C
Another typical form of the reaction term, besides the ones already presented, is the so-
called type C. Explicitly, we define

C =

{
f ∈ C

(
[, ]

) ∣∣∣∣ f () = f () =  and there exists θ ∈ ], [ s.t.
f (u) <  for u ∈ ], θ [, f (u) >  for u ∈ ]θ , [

}
.

In this case, the solution y+
c,f shot from the left is unique, as can be proved, with minor

changes, in the same way as [, Theorem .]. Therefore, we have the following counter-
part of Lemma ..
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Lemma . Let  < c < c. Then, the following holds:

y+
c,f (u) ≥ y+

c,f (u) for every u ∈ ], [ s.t. y+
c,f (u) < 

and

y+
c,f (u) > y+

c,f (u) for every u ∈ ], θ [ s.t. y+
c,f (u) < .

If  < y+
c,f (θ ) < , in particular, then y+

c,f (θ ) > y+
c,f (θ ).

The proof is analogous to the one of Lemma ., and for this reason we will omit it.
In the classical case, the behavior of functions of type B or type C with respect to the

admissible speeds does not change. We are now going to see that, for the curvature case,
the situation is somehow different, due to the fact that the ‘barrier’ {y = } has to be avoided
in order to obtain a classical solution to our problem.

Proposition . Let f ∈ C . Then there exists a positive admissible speed for f if and only
if the two following conditions simultaneously hold:

∫ 


f (u) du >  ()

and

∫ 


f –(u) du < , ()

where f –(t) = max{–f (t), }. If this is true, the admissible speed is unique.

Proof
() We first show that, if () is violated, then every solution shot from the left blows up

at a finite time. This is an easy consequence of the fact that, for every c ≥ ,

y′ =
c
√

y( – y)
 – y

– f (u) ≥ –f (u),

so that

z(u) =
∫ u


–f (s) ds

is a subsolution from the left. Lemma . now ensures that

y+
c,f (u) > z(u) for every u ∈ ], θ [ s.t. z(u) < ,

and since
∫ 

 f –(u) du ≥ , this shows that y+
c,f (u) reaches the value  in a finite time,

so that no regular solutions to () will exist.



Garrione and Sanchez Boundary Value Problems  (2015) 2015:45 Page 18 of 31

() Second, we show that if () is violated, then no positive speeds will be admissible
for our problem. Without loss of generality, we can assume that

∫ 
 f –(u) du < . Set

c =  and consider y+
,f (θ ), y–

,f (θ ). It is clear that, since
∫ 

 f +(u) du ≤ ∫ 
 f –(u) du,

y+
,f (θ ) =

∫ θ


–f (u) du ≥ y–

,f (θ ) =
∫ 

θ

f (u) du.

If we now increase c, from y–
,f (θ ) >  we infer, using Lemma ., that for c >  small

we have

y+
c,f (θ ) ≥ y+

,f (θ ) ≥ y–
,f (θ ) > y–

c,f (θ ).

Hence, using again Lemma ., the two curves cannot meet for any value of c > 
and our problem does not have a solution.

() We finally show that if () and () hold, then there exists a unique admissible
speed for f . To this aim, we focus again on y+

c,f (θ ) and y–
c,f (θ ).

Case .
∫ 
θ

f (u) du < . Setting η =
∫ 

 f (u) du, from Lemma ., together with the
observation after Lemma ., y–

c,f (θ ) and y+
c,f (θ ) are close respectively to

∫ 

θ

f (u) du =
∫ θ


–f (u) du + η and

∫ θ


–f (u) du

for c >  small. Since for c large enough y+
c,f (θ ) reaches the value , the result follows

from continuity and monotonicity.
Case .

∫ 
θ

f (u) du ≥ . Let  > ξ ≥ θ be such that
∫ 
ξ

f (u) du = .
In order to apply the continuity argument, we claim that given any number a < ,

there exists γ >  such that the inequality y–
c,f (θ ) ≥ a holds whenever  < c < γ . In

fact, choose ε such that

 –
√

ε > a.

By continuous dependence, there exists c >  such that if  < c < c then
y–

c,f (ξ ) ≥  –
√

ε for some ξ > ξ. The solution to

w′ = cR(w), w(ξ ) =  –
√

ε

is wc(s) =  –
√

 – (k – cs) with k = cξ +
√

 – ε. Hence

wc(θ ) =  –
√

 –
(
c(ξ – θ ) +

√
 – ε

),

so that lim infc→ wc(θ ) ≥  –
√

ε. On the other hand, since f >  on ]θ , [, the graph
of the solution y–

c,f stays above the graph of wc in ]θ , ξ [. Hence the claim follows and
the proof is complete.

�

The picture highlighted in Proposition . is preserved up to changes in f on a neigh-
borhood of θ , as shown by the following result of perturbative type.



Garrione and Sanchez Boundary Value Problems  (2015) 2015:45 Page 19 of 31

Proposition . Let f be of type C with η =
∫ 

 f (u) du > , and
∫ 

 f +(u) du < . Let
G > ‖f ‖∞ be a given number. Take δ < 

G min{η,
∫ 

 f –(u) du} and let f̂ be any continu-
ous function that coincides with f in ], θ – δ[∪ ]θ + δ, [, and satisfies |f̂ (z)| ≤ G

 for every
z ∈ [θ – δ, θ + δ]. Then there exists a unique admissible speed for

⎧⎨
⎩

y′ = c
√

y(–y)
–y – f̂ (u),

y() =  = y().

Proof Consider y+
,f̂

and y–
,f̂

. With the above notation, we have

∣∣y+
,f̂

(θ ) – y+
,f (θ )

∣∣ =
∣∣∣∣
∫ θ



(
f̂ (u) – f (u)

)
du

∣∣∣∣ ≤ δG

and, similarly,

∣∣y–
,f̂ (θ ) – y–

,f (θ )
∣∣ =

∣∣∣∣
∫ 

θ

(
f̂ (u) – f (u)

)
du

∣∣∣∣ ≤ δG.

Therefore, by our choice of δ, we have

 < y+
,f (θ ) – δG < y+

,f̂
(θ ) < y+

,f (θ ) +
η


= y–

,f (θ ) –
η


< y–

,f̂ (θ ).

Hence, for c >  sufficiently small we obtain

 < y+
c,f̂

(θ ) < y–
c,f̂ (θ ) < ,

where we have used the arguments of Lemma . and Proposition ., Step , Case . We
can now repeat the previous reasonings to infer the existence of an admissible speed. The
uniqueness follows again from Lemmas . and .. �

It may be remarked that the two assumptions of Proposition . are satisfied for f̂ . In-
deed, under the previous conditions we have

∣∣∣∣
∫ 



(
f (u) – f̂ (u)

)
du

∣∣∣∣ < η,

so that, in particular,
∫ 

 f̂ (u) du >
∫ 

 f (u) du – η = ; on the other hand, f̂ –(u) =  for u ∈
]θ + δ, [, and in view of the choice of δ,

∫ θ+δ


f̂ –(u) du <

∫ θ–δ


f –(u) du + η =

∫ 

θ

f +(u) du –
∫ θ

θ–δ

f –(u) du < .

Turning to more general types of reaction, let us further observe that it suffices that there
exists  < u′

 ≤ u such that f (u) <  for every u ∈ ], u′
[, with f (u′

) =  (i.e., f is negative in
a neighborhood of ) for the admissible speed (if any) to be unique, as it is possible to see
with the usual monotonicity argument applied focusing on y+

c,f (u′
), y–

c,f (u′
). However, in
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Figure 1 The solution to () for f as in (), with c = 0.0083516.

this case it is not sufficient that () and () hold in order to have existence of an admissible
speed, as the following example shows. Take

f (u) = u(u – .)(. – u)(. – u)( – u); ()

in this case,
∫ 

 f (u) du = . and () is shown to hold quite easily. However, we
see that, for c ≥ c̄ = ., the solution shot from the right vanishes in the interior of
[, ], while y–

c,f () >  (see Figure ) for c < ..
Indeed, the problem is that, on varying of c, y–

c,f could vanish in ], [ before the equality
y+

c,f (u′
) = y–

c,f (u′
) has been obtained. Of course, the situation is determined by the interplay

between the intervals of positivity and negativity of f and the corresponding values of the
integral function: the farther it is from , the better. In the next paragraph we will briefly
go through a possible result in presence of more general reaction terms; as will easily be
realized, a general analysis is far from being feasible.

3.4 Remarks on more general reaction terms
We briefly review a couple of situations for more general reaction terms.

Let f ∈ C([, ]) satisfy (f) and denote by  = θ < θ < θ < · · · < θr– < θr =  its zeros
(r ≥ ). Write Ij = ]θj–, θj[, j = , . . . , r and denote by F, F the two integrals

F(u) =
∫ u


f (τ ) dτ , F(u) =

∫ 

u
f (τ ) dτ .

We first assume that each θj is simple, namely f changes sign crossing θj, j = , . . . , r – . For
such a reaction term, in order for solutions to () (with c > ) to exist, some conditions are
necessary:

(a)

∫
Ij

f –(u) du <  ()

for every j = , . . . , r.
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Indeed, if it were not the case, the solution y–
c,f (u) would vanish in ], [, since,

assuming that
∫

Ij′
f –(u) du ≥  for a certain j′, the solution to

⎧⎨
⎩

z′ = –f (t),

z(θj′ ) = y–
c,f (θj′ ) < 

would be a (backward) supersolution for our problem, vanishing in a certain point
of Ij′ .

Condition () is necessary also in order to avoid that the solutions y+
c,f shot

forward touch the barrier y =  (both in the case f is positive in a neighborhood of ,
shooting from θ, and if f is negative in a neighborhood of , shooting from θ).
According to the terminology of Section  below, we are avoiding the appearance of
discontinuous steady states.

(b)

F(u) >  for every u ∈ [, ].

In particular, a necessary condition is that
∫ 

 f (u) du > .
These conditions are not sufficient, in general, for the existence of an admissible speed.
Nevertheless, we can prove the existence of an admissible speed for a quite general class
of functions generalizing type C.

Proposition . Let f satisfy the assumptions above, with f (u) <  on I. Assume that
t ∈ ], [, t ∈ ], θr–] are such that

F(t) <  for every t ∈ ], t[ and F(t) = min
t∈[,t]

F(t), ()

and

F(t) = min
t∈[t,θr–]

F(t). ()

If t ≥ t, then there exists a unique admissible speed for f .

Proof We focus on y+
c,f (t), y–

c,f (t). In view of the sign assumption in (), for every c ≥ 
we have that

y+
c,f (u) > 

for every u ∈ ], t], since for c =  we have a positive subsolution, and the solution shot
from the left is unique thanks to the sign assumption in a right neighborhood of . On the
other hand, the positivity of

∫ 
 f (u) du guarantees that, for every t ∈ ], [,

y–
,f (t) =

∫ 

t
f (u) du > –

∫ t


f (u) du = y+

,f (t). ()

Increasing the value of c, we can conclude using the standard monotonicity and contin-
uous dependence argument for t = t if we are able to ensure that y+

c,f does not reach the
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barrier y =  in ], t[ and y–
c,f does not vanish in ]t, [ (notice that, in any case, y–

c,f (u) can-
not vanish for u ∈ ]θr–, [, as a direct consequence of the sign of the derivative). However,
() gives, for every u ∈ ], t[

y+
c,f (t) – y+

c,f (u) =
∫ t

u
c

√
y+

c,f (τ )( – y+
c,f (τ ))

 – y+
c,f (τ )

dτ –
∫ t

u
f (τ ) dτ

≥ F(u) – F(t) > . ()

Similarly, assumption () allows to claim that, for every u ∈ ]t, θr–[,

y–
c,f (t) – y–

c,f (u) =
∫ u

t

f (τ ) dτ – c
∫ u

t

√
y–

c,f (τ )( – y–
c,f (τ ))

 – y–
c,f (τ )

dτ ≤ F(t) – F(u) < . ()

The statement now follows noticing that, in view of (), y–
,f (u) > y+

,f (u) for every u ∈
[t, t]. Hence, using Lemmas . and ., on growing of c >  we can invoke the usual
continuous dependence and monotonicity argument thanks to () and (), which guar-
antee that both y+

c,f cannot reach  and y–
c,f cannot vanish without crossing each other. �

As an example, we can take f given by (see Figure )

f (u) = u(u – .)(u – .)(u – .)( – u); ()

the plots of f (u), F(u), and F(u) are represented in Figure .
Choosing t, t in a sufficiently small neighborhood of  (for instance t = t = .),

all the assumptions of Proposition . are satisfied. The numerical simulations show the

Figure 2 The function defined in ().

Figure 3 The primitives F0(u) (on the left) and F1(u) (on the right).
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Figure 4 The solution to () for f as in (), with c = 0.020464.

existence of an admissible speed which is approximately equal to ., as shown in
Figure .

On the other hand, a comment on the situation where f is non-negative and has a multi-
ple zero in ], [ may be of interest. In this case, the usual monotonicity argument does not
work and other kinds of phenomena are possible, in principle. For instance, given α ∈ ], [
consider the function

f (u) = u( – u)(u – α). ()

For this reaction term, the solution shot from the right (which is unique) is always non-
negative (since  is a subsolution) and may vanish only in α or in . We have the following
picture:

• for small values of c, we have y–
c,f (α) > , y–

c,f () > ;
• for large values of c, the situation, restricted to [α, ], is similar to the type A case, so

that we have a heteroclinic connection between  and α.
Thus, the admissible speeds for a connection between  and  (if any) form a bounded
interval [c, c[, open on the right, while the connections between  and α appear for
c ∈ [c, +∞[. Also, at least for c ≥ c, there appear connections between α and , as well
(otherwise the solution shot from α would intersect the one shot from , which is impossi-
ble). It is clear that the possibility of having a connection between  and  is strictly related
to the position of α. In particular, if, with the same notation as before,

F(α) ≈ ,

i.e., α ≈ , then it is likely that we will not have a connection between  and , since, as
c increases, y–

c,f (α) will approach  faster than y–
c,f (). This is the case, for instance, when

α = .: the simulations show that, passing from c = . to c = .,
we have min{y–

c,f (), y–
c,f (α)} >  and y–

c,f (α) =  (see Figures  and ).
Just to make the ‘opposite’ example, if α = ., e.g., we expect the existence of admissible

speeds for a connection between  and , and indeed the numerical simulations show an
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Figure 5 The solution to () for f as in (), with α = 0.9, and c = 0.063031568.

Figure 6 The solution to () for f as in (), with α = 0.9, and c = 0.063031569.

interval of such admissible speeds approximately equal to [., .[, threshold from
which on there exist connections between  and . (see Figures , , and ).

Our equation seems to be quite sensitive to large values of the parameter, so that the
reliability of the simulations should be considered with caution.

The variety of configurations which may appear suggests that a general analysis is far
from being feasible without the expense of heavy assumptions.

4 A mechanical interpretation: a quasilinear damped pendulum
In this section we give a motivation to the second order equation () and the problem ()
that does not come from ().

To this end, notice that, taking f as a sinusoidal function, the equation

(
u′

√
 + u′

)′
– cu′ + B sin u =  ()
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Figure 7 The solution to () for f as in (), with α = 0.1, and c = 0.366.

Figure 8 The solution to () for f as in (), with α = 0.1, and c = 0.419: from this value of c on, the
solution y–

c,f starts vanishing at α.

can be seen to describe the motion of a quasilinear pendulum with constant damping,
where the mean curvature operator is used to define acceleration; in the undamped case,
() has been recently studied by several authors [, , , ]. The results obtained in
the previous sections can be reinterpreted in this direction, the admissible speeds cor-
responding to suitable values of the damping that lead to the existence of a monotone
motion between two equilibria. Throughout the paragraph, the word branch refers to the
first order model associated with ().

In fact, we will take into account a slightly more general equation, admitting the presence
of an external constant torque D >  and considering, as usual, a positive damping. This
leads to the following quasilinear pendulum equation:

(
u′

√
 + u′

)′
+ Au′ + B sin u – D = , A, B, D > . ()
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Figure 9 The rising of a connection between 0.1 and 1, for f as in (), with α = 0.1, and c = 0.419.

Let us just remark that the ‘bridge’ between this problem and the corresponding one with
positive parameter c is given, at the first order level, by introducing new variables, say
z(u) = y(k – u), so that the equilibria are reversed.

A numerical approach to the analogous classical pendulum equation was proposed in
[].

In a π-period, we can isolate, in general, a stable equilibrium and an unstable one,
which repeat themselves by π-periodicity:

uS = arcsin
D
B

∈ [,π/], uU = π – arcsin
D
B

∈ [π/,π ].

If D > B, no equilibrium exists; indeed, the torque is high enough for the motion to be a
rotation. Of course, the solution to the first order model can reach the threshold  in a
finite time (for instance if the torque is sufficiently high). On the other hand, if D = B then
the two equilibria collapse into the unique unstable one ū = π/. This is similar to a type
A setting, with reversed signs: in particular, there exists a value A∗ >  such that for every
A ≥ A∗ the solutions to () are increasing heteroclinics between π/ and π/, otherwise
they are rotations which globally exist forward in time.

Now consider the dynamics for smaller values of the torque (D < B), taking into ac-
count the existence of solutions going monotonically to an equilibrium and (without loss
of generality because of periodicity) restricting our interest to the intervals [uS, uS + π ]
or [uU , uU + π ].

Assume first D =  and consider the solutions starting from (or arriving at) the unstable
equilibrium. A first difference, compared with the classical damped pendulum equation
u′′ + Au′ + B sin u = , is that the (unique) solution ȳ(u) to the associated first order model,
approaching uU in an increasing way as t → +∞, may not be global. In fact, on the one
hand the first order problem (where y = u′)

⎧⎨
⎩

y′ = –(A√y + B sin u),

y(π ) = , y(u) >  for u �= π ,
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has the nonnegative lower solution y(u) = B( + cos u), so that ȳ(u) is always defined and
increasing and corresponds to a rotation type motion. On the other hand, the presence of
the singularity for y =  makes the curvature case slightly different: indeed, we always have
backward and forward local existence and uniqueness for

⎧⎨
⎩

y′ = –A
√

y(–y)
–y – B sin u,

y(π ) = , y(u) >  for u �= π ,
()

where y = Q(u′) (since, respectively, – sin u is negative in a left neighborhood of π , and
–AR(y) is monotone decreasing), but the solution ŷ(u) to () blows up in a finite backward
time. This is easily seen in view of the fact that ŷ(u) is always positive, so that, for every
integer k,

y–
–A,f

(
–(k + )π

)
– y–

–A,f
(
–(k – )π

)
=

∫ –(k–)π

–(k+)π
A

√
y–

–A,f ( – y–
–A,f )

 – y–
–A,f

du;

since y–
–A,f (–π ) =: αc > , the value of ŷ(u) increases by a quantity which is bounded away

from  as u decreases by a multiple of π , eventually reaching .
Looking forward in time, on the contrary, the existence and uniqueness for () ensure

that there is an increasing solution starting at π for t → –∞, whose behavior is determined
by the value of A (taken into account that y(u) = B + B cos u is a forward upper solution
which vanishes at u = π ). In particular, there exists a value A∗ >  such that

• if A ≥ A∗, then the solution is an increasing connection between π and π ;
• if A < A∗, then the solution oscillates around the stable equilibrium π , since by strict

monotonicity it vanishes before reaching π (for c =  one has y,f (π ) = ).
More generally, we have the following counterpart of Proposition ..

Proposition . Let D ≥ . There exists A∗
D >  such that the problem

⎧⎨
⎩

y′ = –A
√

y(–y)
–y – B sin u + D,

y(uU ) =  = y(uS + π ), y(u) >  for u ∈ ]uU , uS + π [,

has a solution if and only if A ≥ A∗
D.

It turns out that

the critical value A∗
D assumes the meaning of a threshold damping,

discriminating between different kinds of motions. In the preceding considerations we
have A∗ = A∗

. Via an analogue of Lemma . and Proposition ., the fact that sin u ≤ u ≤
u/( – u) implies that A∗

 = 
√

B.
It may be added that, in the absence of torque, for A ≥ A∗

 the motion that starts from
a rest position at u ∈ ]π , π [ ends monotonically at π as time goes to infinity. On the
other hand, if A < A∗

 such motions approach π in an oscillatory manner.
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In a similar way, the characterization of the possible motions for D >  is now clear:
(a) If A < A∗

D, then
• the branch shot forward from uU , which does not reach the threshold  in view of the

sign of the derivative and stays over the connection yA∗
D

by monotonicity (thus
existing globally) is either a positive, rotational motion (if A is small: the torque wins
over damping), or it vanishes at some point inside the interval ]uS + π , uU + π [,
being an oscillation around the stable equilibrium uS + π ;

• the branch shot backward from uS + π vanishes before reaching uU , thus giving rise
to an oscillatory type motion (the less the value of the damping, the nearer the
vanishing point will be to uS + π ).

(b) If A ≥ A∗
D, the damping is too high to climb over uS + π , and, on the other hand, the

solution to the first order model cannot stop out of the equilibrium, so that we find the
already mentioned increasing connections between uU and uS + π .

5 Discontinuous steady states
In [], the existence of traveling waves for reaction terms of type C was related with the
appearance of discontinuous steady states. In this last section, we want to briefly look at
our first order model from this perspective.

As a first trivial remark, notice that if we restricted our attention to continuous steady
states, i.e., classical solutions to

⎧⎨
⎩

y′ = –f (u),

y() =  = y(),
()

taking values strictly between  and , then they can obviously exist if and only if∫ 
 f (u) du = , so the problem is immediately solved in this case (hence excluding the cases

f ∈A and f ∈ B). On the other hand, the cases f ∈A and f ∈ B are dropped out also from
the search for discontinuous steady states in any reasonable sense, since in the first situ-
ation the solution from the left goes negative, while in the second it remains constantly
zero for a certain time interval. Therefore we restrict our interest to type C functions.

Of course, the solutions to y′ = –f (u) from the left and from the right are unique.

Definition . Let f ∈ C . We will say that y(u) is a discontinuous steady state for () if
there exist θ < θ ∈ ], [, with θ ≤ θ and θ ≥ θ , such that y is defined and continuous in
[, θ] ∪ [θ, ], y(u) satisfies () in [, θ[∪ ]θ, ] and y(θ) = y(θ) = . If such conditions
are verified for θ = θ, we will say that y(u) is a border steady state.

The definition corresponds to heteroclinic connections between  and  which ‘break’
at some time instant; with the notation of the previous section, this means that both y+

,f
and y–

,f reach the value  in a finite time. For a border steady state, coming back to the
second order model, we would have a continuous heteroclinic connection between  and
 having infinite derivative in a point.

Indeed, it is worth observing that the adequate variational setting for the second order
equation

(
u′

√
 + u′

)′
= –f (u) ()
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is the space of bounded variation functions. As observed in [, Remark .], a discontinu-
ous steady state is a weak solution (in the BV -sense) to (), according to [, Definition .].
In such a kind of solution, a subshock appears: since y(u) =  – /

√
 + u′(t(u)), whenever

y(u) =  we have u′(t(u)) = +∞. Of course, the subshock solution will be defined up to an
interval, at whose endpoints the derivative (which is infinite) must have the same sign in
order for the speed of the subshock to be  (via an analogous of the Rankine-Hugoniot
condition). If one dropped this requirement, there could be other kinds of solutions solv-
ing () almost everywhere, not fulfilling anyway any condition at the jump. We will not
investigate further the existence of such pseudo-solutions.

We now show the validity of the following proposition, agreeing with [].

Proposition . If f ∈ C , there occurs one and only one of the following alternatives:
() there exists a discontinuous steady state for ();
() there exists an admissible speed c ∈R for ().

Proof As usual, we write f (u) = f +(u) – f –(u), with f +(u) = max{f (u), } and f –(u) =
max{–f (u), }.

Assume first that
∫ 

 f (u) du > , namely
∫ 

 f +(u) du >
∫ 

 f –(u) du.
Case :

∫ 
 f –(u) du < . Then, as we have seen, there exists a unique positive admissible

speed. Also, no discontinuous steady states appear, since the solution y+
,f shot from the

left cannot reach .
Case :

∫ 
 f –(u) du ≥ . As we have seen, no traveling waves with positive speed appear.

On the other hand, the integral of f + is strictly greater than , so that there exist θ <
θ with y+

,f (θ) =  = y–
,f (θ), yielding the discontinuous steady state. Finally, no traveling

waves with negative speed are possible, as well, since by monotonicity y–
c,f would reach the

threshold  all the same in a finite time.
Suppose next that

∫ 
 f (u) du < , so that

∫ 
 f +(u) du <

∫ 
 f –(u) du. Setting g(u) = –f (–u)

one has g ∈ C ,
∫ 

 g(u) du = –
∫ 

 f (u) du >  and

∫ 


g+(u) du =

∫ 


f –(u) du >

∫ 


f +(u) du =

∫ 


g–(u) du,

so that we are led back to the previous arguments. In particular, if
∫ 

 f +(u) du ≥ , a dis-
continuous steady state appears. Otherwise there exists a positive admissible speed for g ,
i.e., a solution with c = c >  to

(
u′

√
 + u′

)′
– cu′ – f ( – u) = ;

setting w =  – u, it follows that –c is a negative admissible speed for the existence of an
increasing solution to the original problem

(
w′

√
 + w′

)′
– cw′ + f (w) = .

Finally, assume
∫ 

 f (u) du = , i.e.,
∫ 

 f –(u) du =
∫ 

 f +(u) du.
Case :

∫ 
 f –(u) du < . A continuous steady state (or a traveling wave with c = ) appears.
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Case :
∫ 

 f –(u) du ≥ . We have a border steady state (if equality holds) or a discontin-
uous one (if the inequality is strict). �

Let us give, as an example, the case when

f (u) = –βu(u – α)(u – ),

for α ∈ ], [ and β �= , treated extensively in [] (notice that the notation used therein has
the opposite sign both in the equation and in the function). For such a choice, it is

∫ 


f (u) du =

 – α


,

∫ 


f –(u) du =

( – α)α


,

∫ 


f +(u) du =

 – α + α – α


.

We are going to recover the already known picture for this kind of function. As a prelimi-
nary observation, notice that if α = /, namely

∫ 
 f (u) du = , then we have a continuous

steady state if β (–α)α

 = β –α+α–α

 < , or a discontinuous one if this condition is vi-
olated. We now turn to the other cases:

() α < /. In this setting, we have
∫ 

 f (u) du > , so that two possibilities can occur:
• if β (–α)α

 < , we use the first part of the proof of Proposition ., Case , to infer the
existence of a traveling wave with positive speed;

• if β (–α)α

 ≥ , we find a discontinuous steady state as a consequence of Case  in the
first part of the proof of Proposition ..

() α > /. We now have
∫ 

 f (u) du < , so that the following situations are easily shown
to hold as a consequence of the second part of the proof of Proposition .:

• if β –α+α–α

 < , we find a traveling wave with negative speed;
• if β –α+α–α

 ≥ , then a discontinuous steady state emerges.
This picture perfectly agrees with [, Section . and Figure ].

We finally remark that, in the case of a more general type of reaction like the one dis-
cussed in Section ., nonexistence of discontinuous steady states together with nonexis-
tence of admissible speeds could occur, since the solution shot from the right can vanish
before the admissible speed has been reached.
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