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I. INTRODUCTION

C RYSTAL oscillators are currently employed in a huge
number of electronic applications including consumer

and industrial electronics, research and metrology as well as 
military and aerospace [1]. As fundamental blocks of many 
communication systems, crystal oscillators can provide timing 
signals for channel selection and frequency translation. In 
digital electronics, they are widely employed to generate syn-
chronization clock signals.
Even though crystal oscillators are designed to be highly 

stable, the accuracy of their response can be deteriorated by 
random noise sources and deterministic interferences. The 
latter, in particular, refer to “well defined signals” which are 
caused by unwanted effects such as electromagnetic interfer-
ences (EMI), crosstalk or power supply line fluctuations [2],
[3]. In today’s high-frequency integrated circuits, deterministic 
interferences have become a major concern. The deterioration 
of the oscillator response due to deterministic signals is com-
monly described by timing jitter, i.e., the deviation of the actual 
output waveform from the ideal one at time axis.
Predicting the timing jitter induced by potential determin-

istic interferences, i.e., deterministic jitter, is  a  difficult issue.

Manuscript received May 30, 2013; revised August 28, 2013; accepted 
September 19, 2013. Date of publication December 20, 2013; date of current 
version March 25, 2014. This work was supported in part by Progetto Roberto 
Rocca MIT-Polimi. This paper was recommended by Associate Editor S. 
Gondi.
P. Maffezzoni is with the Dipartimento di Elettronica e Informazione, Po-

litecnico di Milano, I20133, Milan, Italy (e-mail:pmaffezz@elet.polimi.it).
Z. Zhang and L. Daniel are with the Department of Electrical Engineering 

and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 
02139 USA (e-mail: z_zhang,luca@mit.edu).

Deterministic jitter is, in fact, the result of a complex interfer-
ence mechanism that involves both phase-modulation (PM) and
amplitude-modulation (AM) of the oscillator response. Further-
more, the response susceptibility to interferences may change
dramatically depending on the injection point and the frequency
of the interfering signal. Exploring such a multifaceted behavior
via repeated transistor-level CAD simulations is too time con-
suming, especially because of the high- of crystal oscillators
[4], [5]. In fact, high- oscillators exhibit very long transient
responses before reaching the steady-states.
Unfortunately, such repeated simulations normally give little

insight about the complex interference mechanisms. A much
more effective approach is to build a proper macromodel to de-
scribe the oscillator response. In the last two decades, exten-
sive techniques for oscillators macromodeling have been inves-
tigated since the seminal paper of Kaertner [6].
The key feature of such an approach is the introduction of

a “phase variable” which allows separating the effects of PM
from those due to AM. In [6], a compact equation (i.e., a scalar
differential equation) for the phase variable was derived. Due to
its simplicity, this phase macromodel has been adopted by many
authors to study oscillator phase noise [7]–[9], as well as to in-
vestigate the complex phase-synchronization effects [10]–[16].
However, in [6] no compact equation was provided for the am-
plitude variable. Instead, the amplitude variable was described
by a convolution integral, which is difficult to use in practice.
To address this issue, in this paper, we first complete the math-
ematical derivation in [6] to find simplified compact equations
for the amplitude variable. We show how the proposed macro-
model can be solved analytically to find the phase and ampli-
tude responses to harmonic interferences as well as to derive
the associated deterministic jitter in closed form. The proposed
analytical solution highlights the macromodel parameters that
mainly affect deterministic jitter mechanism. It also shows the
key role played by amplitude modulation effects.
As a second contribution, we show how the macromodel can

be employed in behavioral simulations to efficiently calculate
the deterministic jitter caused by the interfering signal. The pro-
posedmethodology can be applied to any crystal oscillator. Sim-
ulations and numerical results are presented for a Pierce crystal
oscillator.
The remainder of this paper is organized as follows: in

Section II, we illustrate the timing jitter mechanism as a result
of PM and AM effects. In Section III, we derive a compact
equation that governs the amplitude variable. Such a macro-
model is used in Section IV to find the closed-form expressions
for the phase and amplitude responses and for the related timing
jitter. In Section V, the proposed jitter analysis is applied to
a Pierce crystal oscillator, and some numerical simulation
results are provided to verify the efficiency and accuracy of our



proposed approach. The fundamentals of Floquet theory and 
computational details are reviewed in the Appendix.

II. OSCILLATOR MACROMODEL AND TIMING JITTER

The ideal noiseless crystal oscillator can be described by a set 
of ordinary differential equations (ODE):

(1)

where are the vector of circuit variables
and their time derivative respectively, is a
vector-valued nonlinear function and is time. A well designed
crystal oscillator admits a stable -periodic steady-state re-
sponse (frequency ) which corresponds
to a limit cycle in the phase space. The limit cycle repre-
sents the ideal response, i.e the oscillator response in absence
of any noise and interferences. When a small-amplitude inter-
fering signal is injected into the oscillator, its equation
is modified to

(2)

where (which depends on variables ) is the vector that
inserts signal into circuit equations.
According to [6], the solution to the perturbed (2) can

be split in the two terms

(3)

where the variable is a time shift to the unperturbed re-
sponse . The first term in (3) accounts for the response vari-
ation tangent to the limit cycle (i.e., the tangential component)
and thus is related to PM. The second variable provides
the variation component transversal to the orbit (i.e., transversal
component) and thus is related to AM.
Timing jitter is evaluated by considering one element of the

state vector (3), i.e., , as the output variable of the
oscillator. For the output variable, (3) reduces to

(4)

where and are the corresponding
vector elements.
We are interested in the time points where the output vari-

able waveform crosses a given threshold with a posi-
tive slope, as depicted in Fig. 1. Two consecutive crossing times
and define the value of the perturbed period

over the th cycle. In the presence of an interference,
will differ from the ideal value . The standard deviation

of the period values gives the timing jitter .
We analyze first the case where AM effects are negligible,

i.e., in (4) , and thus the perturbed response
is a purely time-shifted version of the ideal one, as portrayed in
Fig. 1 (top). In this case, crossing time points and are
decided (along with the condition on the slope sign) according
to

(5)

Fig. 1. Timing jitter measures the variations of the crossing times of the per-
turbed response with respect to those of the ideal response . Top:
with PM effect only; bottom: with both PM and AM effects.

and thus, due to the -periodicity of waveform , they sat-
isfy the following relation

(6)

During the -th cycle, the period of the perturbed response is

(7)

As we will see in Section IV, in the presence of an harmonic
interference, the waveform oscillates with (angular) fre-
quency and thus, in view of (7), the fluctuations of
the perturbed period are well approximated by

(8)

We proceed to consider the case where both PM and AM
effects are significant, as shown in Fig. 1 (bottom). In this case,
relation (5) is modified to

(9)

The extra jitter due to AM, denoted as , enters time relation-
ship (6) as follows1

(10)

Since in (10) , the first term on the right hand side
of (9) is well approximated by

(11)

The error introduced by this approximation is of the order of
and thus it is negligible compared to . Thus, plugging

1Note that with both PM and AM effects, the perturbed period obtained from
(10) reads .



(11) into (9) and exploiting the -periodicity of and of
, we obtain

(12)

In Section IV, it will be proven that, for a harmonic interference,
the amplitude waveform takes the form

(13)

where is a -periodic function (i.e., an element of a Flo-
quet eigenvector) while is a slowly-varying coefficient os-
cillating with frequency . In this case, using the ap-
proximation and the periodicity of , the
numerator of (12) can be simplified to

(14)

With this simplification, AM-induced period variation (12) is
estimated by

(15)

where is the ratio of
over at the crossing time point , which is almost constant
over all cycles. From (15), we see that to minimize the AM-in-
duced jitter the threshold value should be selected to max-
imize the time slope of the ideal response at the crossing
point.

III. PHASE AND AMPLITUDE EQUATIONS

In this section, we first review the scalar ODE that governs
the phase variable. After that, for the first time, we provide a
similar compact model for the amplitude variable.

A. Review of Phase Model

Substituting the perturbed solution (3) into (2) and neglecting
the higher-order terms in , , , we get

(16)
where

(17)

is a scaled time, “ ” denotes derivative with respect to variable
and

(18)

is the Jacobian of function computed along the stable orbit.

Starting from (16), Kaertner in [6] proposed the following
scalar equation for the phase variable

(19)

where

(20)

is a scalar -periodic function that projects the external signal
along the first left Floquet eigenvector whose definition is
reviewed in Appendix A.

B. Amplitude Model

Now, we derive similar equations for the amplitude variable.
We first observe that the amplitude variation in (3) can be ex-
panded as follows

(21)

where is the th right Floquet eigenvector, as described in
Appendix A, and

(22)

is an unknown scalar function of time. To find the ODE that
governs , we multiply the left-hand side of (16) by
with . By exploiting the biorthogonality condition

, we obtain

(23)

According to (21) and (63), the left-hand side of (23) can be
converted to

(24)

Similarly, using (62), (21) and (63), the right-hand side of (23)
is rewritten as

(25)
where is the th Floquet exponent described in Appendix A.
Then, equating (24) to (25) and reordering we find

(26)

where the term is zero, i.e.,

(27)



with defined in (63). Finally, using (22), (26) can be
rewritten as

(28)

with

(29)

being the scalar -periodic function obtained by projecting the
external signal onto the th Floquet eigenvector .
Once the Floquet eigenvalues/eigenvectors are calculated, as

described in Appendix B, the response to an interfering signal
can be determined efficiently by two steps. First we inte-

grate the scalar ODE (19) to obtain ; next we integrate the
scalar linear ODE (28) to compute 2 for . In
practice, the above mentioned procedures can be further sim-
plified after observing (as will be shown in Section IV) that
the magnitude of variables is inversely proportional to
the real part (in module) of the corresponding Floquet expo-
nent . Therefore, if Floquet exponents are ordered
in the way that , only the very first func-
tions need to be calculated. In addition, for those oscilla-
tors with highly stable limit cycles, as it is commonly the case
for crystal oscillators, Floquet exponents are purely real [18]
(e.g., see Table II).

IV. CRYSTAL OSCILLATORS COMPACT MACROMODEL

Further insights about deterministic jitter in crystal oscillators
can be gained by considering the following macromodel

(30)

where and are the right and left eigenvectors corre-
sponding to the Floquet exponent , respectively, which domi-
nates the AM response. The phase and amplitude variables ,

are found by integrating the following scalar ODEs

(31)

where the projection functions , with are -pe-
riodic and admit the Fourier expansions

(32)

with .
In the remainder of this section, we will exploit this compact

macromodel to evaluate analytically the phase and amplitude
responses to a harmonic interference of the type

(33)

where the frequency of the interference

(34)

2In the case is complex, (28) is integrated in the complex field.

is expressed in terms of its detuning from the
nearest th harmonic .

A. Phase Response

Substituting (33) and (32) (with ) in the first equation
of (31), we find that the average behavior of the time derivative
of is dominated by the slowly-varying term which arises
for

(35)

Introducing the angle

(36)

and using the notation

(37)

(35) can be rewritten as

(38)

which is identical to the (9) b) discussed by Adler in [17] (in that
reference, variable is denoted as ). Under the condition

(39)

the differential (38) admits the following closed-form solution
[17]

(40)
and then from (36), we get

(41)

The term in (40) grows linearly with
time and passes through the values at which the
tangent at the right-hand side becomes . At the same time
instants must also be while it assumes
values different from during the time
intervals. This means that can be written as the superpo-
sition of a term that varies linearly with time with the average
slope

(42)

where denotes the time averaging operator, and of a bounded
periodic function [17]. To a first order approximation, in
(41) can be replaced with its linearly varying component

(43)



where we have imposed the initial condition . Then,
substituting (43) into the right-hand-side of (35), we find

(44)

The PM-induced period fluctuations (8) are thus given by the
samples of the following sinusoidal waveform

(45)

Since , the sampling interval is much
shorter than . As a result, the timing jitter corresponds
to the effective value of the sine wave, as follows

(46)

In a similar way, we can employ (43) to evaluate the fre-
quency of the perturbed response. First, we observe that the
ideal response can always be written as

where is a generic -periodic function of its argument.
Next, from the first of (30) (and considering only PM effect),
the perturbed output takes the form

(47)

where

(48)

is the perturbed angular frequency.
We conclude that for a harmonic interference of frequency
close to , the resulting phase response and timing jitter

depend on the ratio of over parameter . Parameter de-
fined in (37), in turn, is determined by the amplitude of the in-
terference and of the th harmonic component of projecting
function .
As an example, in Fig. 2 we plot the waveforms cal-

culated with expression (40) for the fixed value
and three different detunings: (i) , (ii)
and (iii) . These values lead to the three scenarios
described below.
(i) Injection locking. In the limit case , from
(42), we have and thus from (48) we find

. This means that the fre-
quency of the perturbed oscillator is locked to the inter-
ference frequency divided by . In this case, waveform

, as well as waveform shown in Fig. 2(i),
varies linearly in time, implying that the period varia-
tion (45) is constant and the timing jitter is zero. In
fact, injection locking occurs also for smaller frequency
detunings (please note that this case corre-
sponds to and is not covered by (40)). The crit-
ical case corresponds to the maximum detuning
for which injection locking occurs which is commonly re-
ferred to as lock range [17]. We conclude that as long as
the interference frequency falls within the lock range the
PM-induced jitter is zero.

Fig. 2. for the three cases (i), (ii), and (iii).

Fig. 3. for the cases (ii) and (iii).

(ii) Strong pulling. For slightly greater than 1, from (48) we
have . The th harmonic component of
the perturbed response is pulled towards the interference
frequency without locking as shown in Fig. 4. In this case,
waveform has a large oscillating component su-
perimposed to the linearly varying term , as
shown in Fig. 2(ii).

(iii) Weak pulling. For , from (48), we
find and , i.e., the fundamental
and harmonic frequencies of the oscillator are not (sig-
nificantly) affected by the interference. In this case, wave-
form has a small-amplitude oscillation superim-
posed to the linearly varying term as shown
in Fig. 2(iii).

Furthermore, in both cases (ii) and (iii), the time derivative
waveforms plotted in Fig. 3 fluctuate between the
peak values as correctly predicted by (45).We conclude that
when falls outside the lock range, the PM-induced timing
jitter is well estimated by (46) and its value is indepen-
dent of the detuning value.

B. Amplitude Response

From the second term of (31) we know that can be con-
sidered as the output of a linear system, shown in Fig. 5, with im-
pulse response , (with being the



Fig. 4. Effect of PM on the output spectrum: the th harmonic component
moves from the ideal frequency to towards the interference fre-
quency .

Fig. 5. Linear system for the computation of the amplitude response. The
system is driven by a periodically-time-varying input which depends
on phase variable .

ideal step function), when driven by the following periodically
time-varying input

(49)

From (33) with , (32) with , and
(43), we obtain that this input signal is dominated by the
slowly varying harmonic

(50)

Hence, replacing the second term of (31) with the averaged input
(50) and solving the resulting equation, we obtain

(51)
The corresponding time derivative reads

(52)
with

(53)

The AM-induced period fluctuations are finally obtained by
inserting time derivative (52) into (15), i.e.,

(54)

At this stage it is instructive to investigate the amplitude
responses corresponding to the three scenarios discussed in
Section IV-A. In Case (i) of injection locking, we have
and thus , meaning that the AM-induced period
fluctuation (54) is zero. In this scenario, is constant
and thus the amplitude modulation

(55)

oscillates exactly at the same frequency as
in (47). The total perturbed response is thus

locked to with both AM-induced and PM-induced jitter
being zero.3

By contrast, in Cases (ii) and (iii) of strong and weak pulling,
respectively, the AM-induced period fluctuation (54) is non zero
and should be added to the PM-induced fluctuation (45). Over
each cycle, the total period variation is thus the sum of the two
sine waveforms

(56)

with defined in (42) and

(57)

To further investigate how the total jitter depends on the inter-
ference frequency, we consider an example with realistic param-
eter values , , , ,

and in (34). In Fig. 6 we report the
total jitter, i.e., the effective value of (56), as a function of the
frequency detuning . The magnitude of the period fluctua-
tion due to the PM effect, i.e., first part in the right-hand side of
(56), and the corresponding timing jitter are both independent
of frequency detuning . Conversely, the magnitude and the
phase of the period fluctuation induced by the AM effect, i.e.,
the second term on the right-hand side of (56), grows with .
As a result, the total timing jitter exhibits maximum/minimal
values when or, equivalently, .

V. NUMERICAL RESULTS

As an application, we study the Pierce crystal oscillator
shown in Fig. 7 with the parameters collected in Table I.
We adopt Spice 3 MOS models with parameter values:

, , ,
. Numerical simulations are performed in

3It is worth noting here that the result in (55), whose correctness is confirmed
by transistor-level simulations, is due to the form of the amplitude equation in
(31). In fact, in (31) the input term (49) is weighted by the phase-modulated

function. If this phase modulation were not included in the am-
plitude equation, the solution of this later (in the injection locking case) would
give a nonconstant and a wrong nonzero AM-induced jitter.



Fig. 6. Total jitter (solid line), PM-induced jitter (dashed line).

TABLE I
PARAMETERS OF THE PIERCE OSCILLATOR.

TABLE II
FLOQUET EXPONENTS.

Fig. 7. Pierce crystal oscillator: , , and are the parameters of the
crystal model. An interference signal is injected by the voltage source .

the time-domain simulator Simulation-LABoratory (S-LAB)
[19], [20] and verified with SpectreRF.

Fig. 8. Simulation results from envelope following.

Fig. 9. Ideal steady-state response : obtained with envelope (solid line),
obtained with SpectreRF (square).

With the envelope-following algorithm [19], which is shortly
reviewed in Appendix B, we simulate the time response of the
free-running oscillator till the periodic steady state (PSS) is
reached. We select the voltage across capacitor as the output
variable the envelope of which is shown in Fig. 8.
Fig. 9 reports the (ideal) steady-state oscillatory response
over one cycle and compares it with that from SpectreRF

simulation. The two waveforms match very well. The oscil-
lating angular frequency is and the
period is .
Next, using the computational method described in

Appendix A, we calculate the Floquet exponents/eigen-
functions along the stable orbit. Table II reports the Floquet
exponents. From this table, we see that Floquet exponents are
purely real and that dominates the amplitude
response.
From the computed output-related elements of the first

two right Floquet eigenvectors and , we de-
rive that for the threshold value , the ratio

.
As an interfering signal, we consider the voltage source

inserted in series with the crystal quartz, as shown in Fig. 7,
which represents a typical example of EMI [3]. The interfering
signal is of the type (33) with amplitude and
varying frequency . Fig. 10 shows the first two projecting
functions and associated with this interference:



Fig. 10. Waveforms of and associated with interference .

Fig. 11. Perturbed response for .

both waveforms are dominated by the first harmonic com-
ponent. Based on the theory developed in Section IV, we
conclude that the interfering signal will induce significant jitter
effects when its frequency is close to the fundamental
frequency, i.e., in (34). For the interference amplitude

, the lock range should be .
After that we sweep the value of the interference frequency
in a frequency interval centered at . At each frequency point,
we simulate the macromodel given by (19) and (28). In fact,
ODE (28) only needs to be integrated for , 3 since
is about two orders of magnitude smaller than and thus it
can be neglected. Each simulation costs less than one second
and allows us to efficiently derive the associated perturbed re-
sponse . Fig. 11 shows
the perturbed response simulated with the compact macromodel
for . This interference frequency
falls outside the lock range and corresponds to a strong pulling
scenario. Fig. 12 reports the perturbed responses over a cycle
around , which are computed by using our pro-
posed macromodel and by detailed transistor-level simulation
in SpectreRF, respectively. The two curves match excellently
and exhibit a significant amplitude modulation effect.
It is worth noting that under the injection pulling regime the

oscillator response is not periodic and its detailed simulation
with SpectreRF aimed at finding the distribution of the per-
turbed period values is very time consuming. In fact, a great

Fig. 12. Perturbed response over one working cycle: proposed macro-
model (solid line), SpectreRF (square). The ideal response (dashed line).

Fig. 13. Deterministic jitter versus interference frequency.

number of cycles have to be simulated and, in each cycle, a
tiny time step is required to accurately calculate the threshold
crossing time point. For this reason, SpectreRF simulations
were employed only for the purpose of verification for a few
values of .
For each perturbed response simulated with our

compact macromodel, we calculate a sequence of threshold
crossing time points and then compute the resulting timing
jitter. Fig. 13 shows the computed total timing jitter and its
component due to the PM effect only. The following observa-
tions are in order. As long as falls within the lock range, the
deterministic timing jitter is zero. Outside the lock range, the
PM-induced jitter is almost constant and does not depend on
. For the parameters ,

and interference amplitude , the analytical
expression (46) yields which matches excel-
lently with the PM-induced jitter shown in Fig. 12. Besides,
the dependence of the total jitter on the interference frequency
fully confirms the theoretical explanation of the AM and PM
effects interaction provided in Section IV: the total jitter has
maximum/minimum values for .
The impact of AM to the total jitter depends on in an

asymmetric way. To further explore this point, Fig. 14 reports
the histogram distribution of period values for the two inter-
ference frequency values: (a) and
(b) , respectively. In Case (a) with



Fig. 14. Distribution of perturbed period in the cases (a) and (b).

, the AM-induced period fluctuations tend to partly
compensate the PM-induced ones. In Case (b) the AM-induced
fluctuations add to the PM-induced ones, resulting in a wider
period distribution and thus greater timing jitter.

VI. CONCLUSION

In this paper, the mechanism underlying deterministic timing
jitter in crystal oscillators has been investigated. A variational
compact macromodel has been proposed, which is able to in-
clude both phase and amplitude modulation effects. Starting
from this macromodel, a closed-form expression for the timing
jitter has been developed in the case of harmonic interferences.
We have explored how the timing jitter depends on the fre-
quency of the injected interference. We have also described
how the parameters in our macromodel, i.e., the dominant Flo-
quet exponents/eigenvectors, can be computed in a time domain
simulator. We have further shown how the macromodel can
be employed for numerically efficient behavioral simulations.
Our proposed analysis methodology has been tested by a Pierce
crystal oscillator.

APPENDIX A
FLOQUET THEORY OF LINEAR TIME-PERIODIC ODES

The small perturbation to the original PSS solution
of the nonlinear autonomous ODE (1) can be studied

by linearizing the ODE around the PSS solution and then ap-
plying Floquet theory. Linearization yields the following linear
time-periodic ODE

(58)

This linearized system admits independent solutions

(59)

where the -periodic vector is the th right-side Floquet
eigenvector and the corresponding Floquet exponent.

Similarly, the adjoint differential equation

(60)

admits the set of independent solutions

(61)

where vector is the left-side Floquet eigenvector. By in-
serting (61) into (60), we find

(62)

Floquet eigenvectors satisfy biorthogonality condition

(63)

in addition, we can choose

(64)

For a stable limit cycle, the first Floquet exponent is
while the other exponents , with have negative real
parts.

APPENDIX B
COMPUTATIONAL ASPECTS

The numerical computation of Floquet exponents/eigenvec-
tors relies on a two-step procedure. First, the PSS solution of
a free-running crystal oscillator is determined. Next, the linear
time-varying systems (58) and (60) are formed and solved in
time. These steps are reviewed below.

Calculating the Steady-State Response of Crystal Os-
cillators: Several periodic steady-state simulation techniques
have been presented in the literature [22]. From a simulation
point of view, crystal oscillators have high quality factors and
tend to exhibit very long transient responses before reaching the
steady-state regime. This can significantly degradate the numer-
ical efficiency and robustness of PSS simulators. To overcome
the limitation, Envelope-Following Method (EFM) is applied in
our implementation [19], [22].

Floquet Parameters Computation: Once that the peri-
odic steady-state solution has been computed over one period

, the linear time-varying system (58) can be formed.
The period is discretized at consecutive time points

with and where
is the local time step. When numerically integrated in time, the
variational system (58) at time is discretized, for instance,
by adopting Backward Euler formula

(65)



where , leading to

(66)

The state transition matrix from to is obtained as

(67)

Hence the transition matrix over the whole period, i.e., the mon-
odromy matrix, can be computed by the following matrix-by-
matrix products

(68)

The monodromy matrix is related to Floquet eigenvalue/eigen-
vector through the following expansion

(69)

thus from an eigenvalue and eigenvector expansion of
matrix and its transpose, we can get and the eigenvectors

and at the initial point . The waveforms of
and over the whole period are then recovered by

integrating (58) forward and (60) backward, respectively. This
results in the following recursive computations

(70)

and

(71)

from which we can get the results of and at a set of
time points in the whole period.
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