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MULTISCALE SIMULATION OF ORGANIC HETEROJUNCTION LIGHT
HARVESTING DEVICES

1. Introduction and Motivation. Organic PhotoVoltaic (OPV) devices are usually built
by combining a high electronic affinity material (acceptor) with a low electronic affinity ma-
terial (donor) into a heterojunction structure which may be either highly disordered as is the 
case, for example, of bulk heterojunction devices, or rather orderly arranged as is the case 
of bilayer or nanostructured devices (Coakley and McGehee 2004, Mayer, Scully, Hardin, 
Rowell and McGehee 2007). For the latter two classes of devices it is especially important, 
in order to properly model the device behaviour, to correctly account for charge generation-
recombination phenomena occurring at the interface between the two constituent materials 
as well as for the nanodipoles associated with charge transfer states which are localized at 
the same interface. In this direction, a lot of effort has been devoted to developing mathe-
matical models for the simulation of OPV devices that combine a continuum representation 
of charge transport and diffusion of excited states in bulk materials with an ad-hoc descrip-
tion of phenomena occurring at the interfaces (Barker, Ramsdale and Greenham 2003, Ruh-
staller, Beierlein, Riel, Karg, Scott and Riess 2003, Williams and Walker 2008, Hwang, 
McNeill and Greenham 2009, Hausermann, Knapp, Moos, Reinke, Flatz and Ruhstaller 
2009, Christ, Kettlitz, Valouch, Zufle, G artner, P unke a nd L emmer 2 009, d e Falco, Sacco 
and Verri 2010, de Falco, Iacchetti, Binda, Natali, Sacco and Verri 2011, Neukom, Züfle and 
Ruhstaller 2012, Brinkman 2013, Brinkman, Fellner, Markowich and Wolfram 2013). In our 
recent work (de Falco, Porro, Sacco and Verri 2012) we pursued the same goal by means 
of a multiscale approach, resulting in a model consisting of a coupled system of nonlinear 
Partial and Ordinary Differential Equations (PDEs/ODEs). For the solution of this model we 
also proposed a numerical solution algorithm based on Rothe’s method and variable-order 
BDF formulas for time discretization, a Newton linearization and exponentially fitted finite 
elements for spatial discretization, which was applied to the simulation of nanostructured Or-
ganic Solar Cells (OSCs).
In the present paper we adapt and extend the model and methods of (de Falco et al. 2012) 
to the study of the Light Harvesting Capacitor (LHC) introduced in (Garbugli, Porro, Roiati, 
Rizzo, Gigli, Petrozza and Lanzani 2012) which is a device exploiting an approach to convert



FIG. 2.1. Scheme of the LHC device and its working principles.

light energy into electrical energy without generating a steady state charge carrier current
through the organic semiconductor materials.
A brief outline of the article is as follows. In Sect. 2 we illustrate the structure and the working
principles of the LHC, while in Sects. 3 and 4 we describe the mathematical model. In par-
ticular, Sect. 3 deals with the PDE model of a generic donor-acceptor heterostructure while
in Sect. 4 we specialize the boundary conditions to the case of the LHC and describe the
lumped model used to treat the external circuit. Sect. 5 is devoted to a short description of
the computational schemes adopted for model numerical approximation. Sect. 6 contains a
description of the performed numerical simulations, a discussion of the obtained results and
a list of possible future research perspectives.

2. Light Harvesting Capacitor. The simplest configuration of a LHC, a stack of lay-
ers of different materials sandwiched between two electrodes, is schematically represented in
Fig. 2.1. Its photoactive compound is made of a double layer of electron donor (D) and accep-
tor (A) materials, e.g. copper phthalocyanine (CuPc) or metal-free phthalocyanine (H2Pc) and
buckminsterfullerene (C60) or 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI),
each having a thickness of the order of the exciton diffusion length, few tenths of nanometers.
The D-A bilayer is sandwiched between two external layers of optically transparent insulator
which confine free charges in the D-A region. Top and bottom electrodes are typically made
of indium tin oxide or gold.
The sequence of phenomena that determine the working principles of a LHC are reported in
the flowchart of Fig. 2.2. Similarly to what occurs in an OSC, under illumination upon pho-
ton absorption, excited states called excitons are formed. These states, which consist in an
electron-hole pair and hence have zero net charge, can migrate under the action of diffusive
forces towards the material interface before undergoing into decay, typically with character-
istic times of few nanoseconds. At the interface between the donor and acceptor materials,
the excitons are trapped and form more stable states called bonded pairs. Due to the different
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FIG. 2.2. Flowchart of the phenomena occurring in the active layer of a LHC. 



electronic affinity of the materials, the electron and hole parts of the bonded pairs localize on
the acceptor and donor sides of the interface, forming a surface distribution of dipoles. These
interface states can then dissociate into free charges that can migrate in the materials by diffu-
sion events and electric field driven drift. Still each of these couples of charges that were used
to be bonded together can be seen as a dipole with a larger length, because the insulator layers
prevent charge extraction from the electrodes and force the carriers to stay in the D-A bilayer.
As a result of this process a macroscopic polarization is induced by the coherent sum of the
photoinduced oriented nanodipoles, due to the particular ordered planar structure of the de-
vice. As a consequence, the capacitor plates that sandwich in between the polarized medium,
allow harvesting the electrochemical potential stored in the collective charge separated state,
giving rise to a transient current in the external circuit that can be used to generate power
through a load resistance. In this manner one can convert light energy into electrical energy
without generating a steady state charge carrier current through the active layer, maintaining
at the same time internal quantum efficiency high since no transport issues have to be faced.
When illumination is stopped, the polarization decays causing a second transient current flow,
in opposite direction, through the external load, hence allowing for further energy extraction.
In principle, since charge transport is not an issue, it would be beneficial for the device per-
formace to stack a large number of layers in order to fully exploit the available amount of
energy in the incident light, possibly using different materials in each layer of the stack to
cover the largest possible radiation spectrum (Garbugli et al. 2012).

3. Mathematical Model. In this section we illustrate the PDE/ODE mathematical
model accounting for excitation phenomena, interface charge state evolution and photogen-
erated charge transport occurring in the bulk of a LHC device like that of Fig. 2.1. The model
was introduced in (de Falco et al. 2012) and represents a multi-dimensional generalization of
the 1D formulation proposed in (Barker et al. 2003).
Throughout the section, we denote by Ω an open subset of Rd, d = 1, 2, 3, that represents the
geometrical model of the bulk of a generic heterostructure OPV device. The boundary of the
domain is ∂Ω and ν is the unit outward normal vector over ∂Ω. Fig. 3.1 shows an example of
the computational domain Ω in the 2D case.
The device structure is divided into two open disjoint subregions, Ωn and Ωp, representing the
domains occupied by the acceptor and donor phases, respectively, with ΓC and ΓA denoting
the cathode and anode contacts, respectively. The acceptor and donor regions are separated
by a regular surface Γ, representing an intermixing interface region, on which a unit normal
vector νΓ is defined, oriented from Ωp into Ωn. For any function f : Ω → R, the jump of f
across Γ is defined as [[f ]] := fn − fp, fn and fp being the traces of f on Γ from the interior
of Ωn and Ωp, respectively.
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FIG. 3.1. Geometry of an OPV device and mathematical notation. 



From now on, the problem dependent variables X , n and p denote the volumetric densities of
excitons, electrons and holes in the device, respectively, while P and ϕ are the areal density
of bonded pairs and the electric potential, respectively.
Excitation phenomena occurring in the bulk as a consequence of light absorption are de-
scribed by the parabolic problem:

∂X

∂t
+∇ · JX = G− X

τX
in Ω \ Γ,

JX = −DX∇X in Ω \ Γ,

[[X]] = 0 on Γ,

[[−νΓ · JX ]] = ηkrecP −
2H

τdiss
X on Γ,

−κX ν · JX + αXX = βX on ΓC ∪ ΓA,

X(x, 0) = 0 ∀x ∈ Ω.

(3.1a)

The first two equations in (3.1a) represent the time rate of change of exciton number density
in the bulk of the LHC due to the balance between net diffusive flux (∇·JX ), sources (optical
generation rate, G) and sinks (decay rate, −X/τX ). The first interface equation ( [[X]] = 0)
expresses exciton density continuity across the surface Γ. The second interface equation has
the same meaning as the first two equations in (3.1a) and expresses the balance between the
net exciton diffusive flux across the active layer thickness ( [[−νΓ · JX ]]), sources (exciton
production due to interface state recombination events, ηkrecP ) and sinks (rate of transition
from exciton to bonded pair state,−2HX/τdiss). We note that this latter transition is assumed
to be instantaneous in other studies (Barker et al. 2003, Williams and Walker 2008, Williams
2008). Finally, the last two equations in (3.1a) are boundary and initial conditions in the
device. The boundary conditions express once again a balance at the two contacts between
injection current flux and net recombination phenomena. The initial condition simply states
that before switching the device into the on state, the bulk is completely depleted of excitons.
The evolution of bonded pairs at the material interface, accounting for the dissociation and
decay events involving excitons and free charge carriers, is described by the ODE:

∂P

∂t
=

2H

τdiss
X + 2Hγnp− (kdiss + krec)P on Γ,

P (x, 0) = 0 ∀x ∈ Γ.

(3.1b)

The first equation in (3.1b) represents the time rate of change of polaron number density in the
active layer thickness due to the balance between sources (exciton dissociation, 2HX/τdiss,
and bimolecular recombination, 2Hγnp) and sinks (polaron dissociation and recombination,
− (kdiss + krec)P ). The initial condition is the same as that for excitons.
Transport of photogenerated electrons in the acceptor domain Ωn is described by the parabolic
problem: 

∂n

∂t
+∇ · Jn = 0 in Ωn,

Jn = −Dn∇n+ µnn∇ϕ in Ωn,

−νΓ · Jn = −kdissP + 2Hγnp on Γ,

−κn ν · Jn + αnn = βn on ΓC,

n(x, 0) = 0 ∀x ∈ Ω.

(3.1c)



The first two equations in (3.1c) represent the classical continuity equation for electrons in the
drift-diffusion model. The boundary condition at the cathode electrode has the same meaning
as that for excitons and a similar comment applies to the interface condition across Γ and to
the initial condition. A parabolic problem completely similar to (3.1c) describes hole transport
in the donor domain Ωp.
The dependence of the electric potential and field on the space charge density in the device is
described by the Poisson problem:

∇ ·D = −q n in Ωn,

∇ ·D = +q p in Ωp,

D = −ε∇ϕ in Ω,

[[−νΓ ·D]] = 0 on Γ,

[[ϕ]] = −qdP
ε∗

on Γ,

−κϕ ν ·D + αϕϕ = βϕ on ΓC ∪ ΓA,

(3.1d)

where D is the electric displacement vector and q is the elementary charge. System (3.1d)
expresses Gauss’ law in differential form in the various regions of the device, with proper
coupling interface conditions across the interface Γ. The first of these conditions is the usual
compatibility condition for the displacement vector arising in Maxwell’s equation theory,
while the second condition is a novel contribution of the present model compared to that
proposed in (de Falco et al. 2012). The jump term for the electric potential at the D-A interface
Γ accounts for the effect of the dipoles of the bonded pairs and physically represents the
voltage drop across a capacitor with a surface charge qP on its plates and capacitance per unit
area ε∗/d, d being the electron-hole separation length in the bonded pairs and ε∗ being the
harmonic average of the values of the dielectric permittivity on the two sides of the interface.
The form of the boundary conditions on ΓA and ΓC depends on the specific configuration of
the external circuit connected to the device.
System (3.1) is completed by periodic boundary conditions on Γn ∪ Γp. A list of the model
parameters with their corresponding physical meaning is reported in Table 3.1.
We notice that the dissociation and recombination processes occurring at the donor-acceptor
interface Γ are dealt with by the nonlinear transmission conditions (3.1a)3 and (3.1c)2, whose
dependence on the local electric field magnitude and orientation is contained in the bonded
pair dissociation rate constant kdiss. This latter coefficient is modeled according to the ap-
proach proposed in (de Falco et al. 2012), which in the present 1D setting turns out to coincide
with that of (Barker et al. 2003).
For the physical models of the remaining coefficients in system (3.1) we refer to (Barker et
al. 2003, Gill 1972, Horowitz 1998). In particular, for the carrier mobilities, we neglect the
effect of energetic disorder, so that they can be assumed to depend only on the electric field
magnitude, according to the Poole-Frenkel model. As for diffusivities, in the computations of
Sect. 6, Einstein relations

Dn = (KBT/q)µn, Dp = (KBT/q)µp (3.2)

are assumed to hold, although the proposed multiscale formulation remains unchanged if such 
an assumption is removed. In (3.2), KB is Boltzmann’s constant and T is the absolute tem-
perature.
Regarding the bimolecular recombination rate constant γ the Langevin-type relation pre-
sented in (Barker et al. 2003) is used with a small modification motivated by the fact that



TABLE 3.1
Model parameters.

Symbol Parameter
µi, Di Mobility and diffusivity of species i, i = X,n, p
G Exciton generation rate
τX , τdiss Exciton decay and dissociation times
krec, kdiss Bonded pair recombination and dissociation rate constants
γ Electron-hole recombination rate constant
η Singlet exciton fraction
H Active layer thickness
ε Dielectric permittivity

the original model has been observed to lead to a systematic overestimation of the amount of
recombination occurring at the interface. Therefore, we employed the following expression

γ = ζ
qµmin

3ε∗
, (3.3)

where µmin denotes the minimum of the carrier mobilities at the interface. In (3.3) we intro-
duced the non-dimensional fitting parameter ζ  which in Sect. 6 was set to ζ  = .3 to correctly 
capture the off-state transient behaviour of the device. The physical understanding of this 
overestimation of the recombination term is as of yet not complete and deserves further in-
vestigation.

Other modeling approaches similar to that of the present article, but applied to OSCs, have 
been proposed in the recent literature. In (Hausermann et al. 2009, Hwang et al. 2009, Christ 
et al. 2009) a drift-diffusion analysis of bulk-heterojunction OSCs is carried out, including 
dissociation of charge-transfer exciton, transient photocurrent simulations and a sensitivity 
analysis. In (Neukom et al. 2012) a model parameter fitting f or O SCs i s p erformed using 
multiple experimental data sets and a thorough parameter correlation analysis.

4. Application to the LHC. Fig. 4.1 illustrates a schematical representation of the LHC
of Fig. 2.1, where the geometrical notation used for the bulk region is in accordance with that 
used in Sect. 3. The quantities CC and CA are the geometric capacitances of the dielectric 
layers in contact with cathode and anode respectively, R is the resistive load connected to the 
device and the voltage source VBI represents the device built-in potential due to the difference 
in the work functions of the contact materials. Given the planar structure of the device shown 
in Fig. 2.1, the simulations discussed in Sect. 6 are performed in the 1D geometry schemat-
ically represented in Fig. 4.2. We assume the cathode to be in the origin of the reference 
system and with Lox,l and Lox,r we refer to the thicknesses of the left and right dielectric 
layers while with Lacc and Ldon we denote those of the acceptor and donor materials, respec-
tively.

The presence of the insulating layers and of the external circuit depicted in Fig. 4.1 is ac-



FIG. 4.1. Circuit representation of a LHC.
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FIG. 4.2. 1D computational domain for the LHC simulation.

counted for in the model (3.1) by the following set of boundary conditions:

−ν · JX = 0 on ΓC ∪ ΓA,

−ν · Jn = 0 on ΓC,

−ν · Jp = 0 on ΓA,

−ν ·D =
CC

S
(vC − ϕ) on ΓC,

−ν ·D =
CA

S

(
vA − ϕ

)
=
CA

S

(
v′A + VBI − ϕ

)
on ΓA,

v′A − vC

R
=
CA

S

∂

∂t

(
ϕA − vA

)
=
CC

S

∂

∂t

(
vC − ϕC

)

(4.1)

where S is the cross-sectional area of the LHC in the plane perpendicular to the x-axis in
Fig. 4.2. Conditions (4.1)1-(4.1)3 state that at the interfaces with the insulating layers no exci-
ton quenching occurs and that free charges are confined in the D-A region. Conditions (4.1)4-
(4.1)5, instead, represent the conservation of the normal component of the displacement field
at ΓC and ΓA while Kirchhoff’s law (4.1)6 closes the system by introducing the coupling with
the external circuit. The boundary conditions (4.1) fit into the general framework of (3.1) upon
setting: 

αX = βX = 0, κX = 1 on ΓC ∪ ΓA,

αn = βn = 0, κn = 1 on ΓC,

αp = βp = 0, κp = 1 on ΓA,

αϕ =
CC

S
, βϕ = vC

CC

S
, κϕ = 1 on ΓC,

αϕ =
CA

S A

CA

S
, κϕ = 1 on ΓA.

(4.2)

, βϕ = (v′ + VBI) 



We conclude this section by describing the model for the exciton generation rate term G.
Since light absorption is a crucial aspect of the working principles of a LHC, especially in the
configuration where several D-A bilayers are stacked, it is mandatory to adopt an appropriate
model which takes into account progressive absorption in the materials. For this reason we
consider the Beer-Lambert model which, under the hypothesis that light hits the device from
the cathode, in the considered computational domain of Fig. 4.2 reads:

G(x, t) =

{
αaccI0(t) e−αacc(x−Lox,l) x ∈ Ωn

αdonIΓ(t) e−αdon(x−Lox,l−Lacc) x ∈ Ωp
(4.3)

where αacc and αdon are the absorption coefficients of t he( acceptor a nd onor materials, I0(t)d)
is the photon incidence rate per area and IΓ(t) = I0(t) 1 − e−αaccLacc is the value of I0 at 
the interface Γ at time t.
It should be noted that more complex optical models are available in the literature for the 
simulation of light-harvesting organic semiconductor devices, e.g. those based on the transfer 
matrix approach (Hausermann et al. 2009, Hwang et al. 2009, Christ et al. 2009). Nevertheless 
in the current work we do not intend to investigate in detail such aspect and we consider the 
Beer-Lambert model to be accurate enough for our scope, leaving the inclusion of such feature 
for future activities.

5. Numerical Methods. System linearization (by a quasi-Newton method) and approx-
imation are carried out by adapting the approach used in (de Falco et al. 2010) and in (de Falco 
et al. 2012) to which we refer for all implementation details. Time advancing is treated using 
Rothe’s method and adaptive BDF formulas, while the exponentially fitted Galerkin finite el-
ement method studied in (Gatti, Micheletti and Sacco 1998) is used for spatial discretization. 
The interface conditions at the donor-acceptor interface are taken care of by means of the 
substructuring techniques described in (Hughes, Engel, Mazzei and Larson 2000).

6. Numerical simulation results. We start our numerical study with a validation of the
predictions of the proposed model by comparison with experimental measurements carried 
out on a prototype LHC device presented in (Garbugli et al. 2012). Such a device consists 
of a multilayer structure of ITO/PMMA (100 nm)/PTCBI (40 nm)/H2Pc (20 nm)/PMMA 
(100 nm)/Gold and a load of resistance R = 1 MΩ is connected to the electrodes. The device 
is illuminated from the ITO side with a monochromatic source at 632 nm with 40 mW cm−2

power density for 40 ms and then the light is switched off letting the system evolve to a rest 
state. The output measure of the experiment is the photogenerated current that flows in the 
external circuit across the load. The choice of gold as the material for the reflective electrode 
has been made to minimize the effects due to a built-in voltage resulting from different elec-
trode materials. For this reason, from now on we assume gold to have the same work function 
as ITO and hence VBI = 0 V. Other geometrical parameters and material properties of the 
simulated device are listed in Table 6. Since some of these values are known just up to a cer-
tain level of uncertainty, some fitting operations have been performed in order to better match 
the experimental measures with the simulation results.
Fig. 6.1 shows the measured current for the LHC studied in (Garbugli et al. 2012) (blue solid 
line), the illumination input signal (black dotted line) and the simulated dynamics obtained 
with the model proposed in this work (red). We notice an excellent agreement between simu-
lation and measurements, in particular, both the positive and negative current peaks following 
the light turn on-off switching are accurately captured, with similar intensities and character-
istic times.
In order to investigate in more detail the inner working principles of the LHC we proceed in 
the following by discussing in detail the evolution of the quantities that appear in model (3.1)-



TABLE 6.1
Model parameters obtained after the fitting procedure.

Parameter Symbol Unit Fitted Value
Device Area S mm2 25
Load R Ω 106

PTCBI relative permittivity ε - 4.5
H2PC relative permittivity ε - 4
PMMA relative permittivity ε - 4
PTCBI zero-field mobility µn,0 cm2 V−1 s−1 10−5

H2PC zero-field mobility µp,0 cm2 V−1 s−1 10−5

PTCBI field-dependence mobility parame-
ter

γn cm1/2 V−1/2 10−3

H2PC field-dependence mobility parame-
ter

γp cm1/2 V−1/2 10−3

Exciton diffusivity DX cm2 s−1 10−3

Active layer half-thickness H m 10−9

Dipole length d m 2 · 10−9

Exciton life time τX s 10−9

Exciton dissociation time τdiss s 10−12

Bonded pair dissociation zero-field rate
constant

kdiss,0 s−1 107

Bonded pair recombination rate constant krec s−1 105

Singlet exciton fraction ηX - 0.25
PTCBI absorption parameter αn cm−1 0
H2PC absorption parameter αp cm−1 2 · 105
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FIG. 6.1. Experimental data vs. numerical results.

(4.1) during both the switching on and off transients. In this task, for a more efficient presen-
tations of cause-and-effect relationships, we present the obtained results following the same
order of the conceptual scheme of Fig. 2.2.
In Fig. 6.2 we report a sequence of exciton density profiles in the donor side of the device and
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FIG. 6.2. Computed exciton density in the donor at t = 1 ps, 10 ps, 40 ps (left) and at t = 1 ps, 10 ps, 40 ps, 
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in a few nanometers of the acceptor closest to the material interface. Since both exciton decay 
(τX ) and bonded pair transition (τdiss) characteristic times are very small, exciton dynamics 
show very fast transients. In the very first p icoseconds o f t he s imulation, e xciton density 
clearly resembles the exponential profile of the Beer-Lambert generation term, except for the 
region close to the interface, where the excited states are rapidly captured, forming the charge 
transfer states. At later time levels, diffusion and decay phenomena play a more important 
role and in just about 10 ns a stationary regime is reached, in which excitons show a smooth 
profile, see Fig. 6.2 (right).
Since the time scales of the various phenomena occurring during the transients are spread 
over a wide range, in Fig. 6.1 the current appears to switch instantaneously from zero to a 
positive value and it is not possible to appreciate its fast dynamics. In order to better analyze 
this latter, in Fig. 6.3 we show a log-plot of the computed photovoltage v′ − vC = Ri, 
where i is the current that flows i n t he external l oad R , a s a  f unction o f t ime. T he u se of 
log-scale for the time clarifies t he f act t hat t he p hotovoltage ( and h ence t he c urrent) rises 
up in a finite time of the order of some hundreds of microseconds, with a smooth transition 
from the rest state. Moreover this characteristic time scale (highlighted with the dotted line) 
coincides with that of the bonded pairs dynamics also reported in Fig. 6.3 with the red line. In 
fact, the photovoltage is a result of the generation of bonded pairs and free carriers and when 
these latter reach an equilibrium, it cannot increase anymore. Since in the considered case 
the resistive load is relatively big, the external circuit dynamics is quite slow and does not 
interfere with the developed photovoltage. For longer time scales, the displacement current 
starts to play a major role in reducing the photovoltage, by giving rise to an electric field 
which acts against that generated by the bonded pairs and the free charges in the donor and 
acceptor phases.
In Fig. 6.4 we report the computed electron and hole densities in both the acceptor and donor 
material at selected time levels. As we already pointed out, the characteristic time scale of the 
evolution of charge carriers is remarkably different from that of excitons, hence the selected
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FIG. 6.3. Semilogarthimic plot of the computed photovoltage and comparison with charge transfer states dy-
namics at the interface.

time steps are of the order of microseconds instead of picoseconds. Results show that in
the early stages after light switching on, charge carriers tend to migrate from the interface
towards the bulk materials under the action of pure diffusion forces, since there is no built-in
electric field and free charge densities are too low to determine significant fields. Nevertheless
when this charge displacement grows in magnitude, it generates an electric field directed from
the donor side to the acceptor one that tends to balance the diffusion effects and to inhibit
charge transport away from the interface. As a result of this process, high densities of charge
carriers are built-up at the donor-acceptor interface and this in turn enhances the probability
of bimolecular recombination events which balance the bonded pair dissociation flux, leading
to a stationary situation. For longer times, of the order of the circuit time scale, this steady
state configuration undergoes very few modifications by the slight changes in the electric field
due to the charge rearrangement on the external electrodes.
To conclude this section we briefly analyze the switching off dynamics of the device. When
the incident photon flow is interrupted, the exciton population in the acceptor suddenly drops
to almost zero, so that bonded pair formation and recombination are no longer balanced pro-
cesses. Hence, bonded pair interface density starts to decrease and in this chain of events
also a net flux from the free charge state to interface bonded state occurs. In Fig. 6.5 we
report the free charge carriers densities for several time levels after the light switching off
time. The obtained profiles are qualitatively similar to those observed during the illumination
period but the characteristic time scale is several times longer. A possible motivation is the
fact that electron-hole recombination is a bimolecular process and hence slower than bonded
pair dissociation, which is a monomolecular event, up to electric field dependence effects. As
a matter of fact, even if at equilibrium they have the same characteristic rate, when charge
carrier densities are reduced, also the recombination characteristic rate is reduced since it
depends on them. As a result the discharge process is slower and the displacement current
flowing in the external circuit has a longer characteristic time, see Fig. 6.1.

7. Conclusions and Future Work. In the present article, we have proposed a refine-
ment of the model introduced in (Garbugli et al. 2012) for the mathematical and numer-
ical investigation of the dynamical performance of a LHC. The considered formulation 
is
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an extension of the PDE/ODE system described in (de Falco et al. 2010, de Falco et al. 
2011, de Falco et al. 2012).
Simulation results show remarkable agreement with experimentally measured current tran-
sients in the device. Moreover, the new enhanced model allows for better insight on the 
microscopic phenomena which affect the external LHC performance but cannot be directly 
measured or accurately represented by resorting to a lumped description as in (Garbugli et al.



2012). In particular, the analysis of the obtained results permits to distinguish the wide range
of different time scales at which the above mentioned phenomena occur.
However several aspects have not been addressed yet in this work and need to be investigated
in the ongoing research activity. Among all we intend to:

1. further validate the model over a larger number of measurements and a wider set of
different experiments, in order to strengthen the fitting of the parameters;

2. carry out a sensitivity analysis of the model with respect to its many parameters as
well as a parameter correlation analysis, in the same spirit as in (Hausermann et al.
2009, Neukom et al. 2012, de Vries, Badinski, Janssen and Coehoorn 2013);

3. use the predictive power of the model to characterize the maximum potential effi-
ciency of novel LHC devices and to provide indications on the design of device and
external circuit for the tuning of the energy conversion efficiency;

4. include in the physical models of the PDE/ODE coefficients higher-order phenom-
ena such as energetic disorder (Pasveer, Cottaar, Tanase, Coehoorn, Bobbert, Blom,
De Leeuw and Michels 2005, Knapp, Häusermann, Schwarzenbach and Ruhstaller
2010, Coehoorn and Bobbert 2012, Maddalena, de Falco, Caironi and Natali 2014)
and more complex bimolecular recombination processes involving charge trapping
states (Koster, Mihailetchi and Blom 2006, Kuik, Koster, Wetzelaer and Blom 2011);
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