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Multi-Fidelity Control of Aeroelastic Systems:

An Immersion And Invariance Approach

Andrea Mannarino∗ and Paolo Mantegazza†

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Italy

This paper deals with the active suppression of aerodynamically driven limit cycle flut-

ters. Because of the significant dependence of such outcomes upon flight conditions, an

adaptive solution is selected. The related task is accomplished through an Immersion and

Invariance (I&I) controller coupled to a sliding mode observer. To simplify its tuning while

satisfying robust stability conditions the design of the controller includes attenuating linear

filters. The effect of using different fidelity approximations for the aerodynamic subsys-

tem is verified on three different test cases, adopting reduced order models to design their

controllers, including the dynamics of sensors and saturating actuators. The resulting ac-

tive systems are subsequently verified against diverse nonlinear high fidelity aerodynamics,

flight conditions and structural parameters.

Nomenclature

βc Control input

ψ Controller regressor

χ̂ Uncertain parameter vector

λ, cs, μ, γCon, σ, bd Controller design parameters

Ar, Br, Cr, Dr Reduced order matrices of the nonlinear aerodynamics

fa Aerodynamic forces scaled by the dynamic pressure q∞

Ma, Ca, Ka Aerodynamic quasi-steady approximation matrices

Ms, Cs, Ks Structural mass, damping and stiffness matrices

q Servo-elasto-mechanical degrees of freedom

Q, R, Qs, γObs Observer design parameters
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†Professor, Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy.

1 of 30

American Institute of Aeronautics and Astronautics



qs Structural degrees of freedom

xa Aerodynamic state

z Off-the-manifold variable

ω Circular frequency

φ(v) Neural network activation function

ξ Generalized damping ratio

b Wing semi-chord

c Wing chord

h, θ, β Plunge, pitch and flap degrees of freedom

Jββ Flap moment of inertia

Jθθ Airfoil/wing moment of inertia

k =
ωb

V∞
Reduced frequency

m Airfoil/wing mass

Na Number of aerodynamic state

s Control design target

Shβ Flap static unbalance

Shθ Airfoil/wing static unbalance

V∞ Flight speed

VF,OL Open loop flutter speed

xh Hinge position

ystarta , yenda Aileron span bounds

I. Introduction

The improvement of aircraft performances through active control is a well established research and in-

dustrial topic and it is likely that adaptive control systems will further enhance future airplanes stability and

maneuverability [1,2]. Their development demands a comprehensive approach to appropriately deal with op-

timized designs, covering the whole spectrum of problems integrating flight mechanics and aeroservoelasticity,

e.g.: flutter, control effectiveness and divergence, maneuver and gust loads, buffeting, flight performances [3].

Until the more recent decades, a somewhat inadequate computational power has restricted the ordinary study

of aeroservoelastic systems to linear(ized) subsonic and supersonic flight regimes [4]. Nowadays, advances

in computers technology and Computational Fluid Dynamics (CFD) allow to adequately evaluate nonlin-

ear unsteady loads for inviscid and viscous flows. Therefore, the adoption of CFD-based aeroservoelastic

analyses is becoming more and more viable [5], thus allowing to better deal with transonic flows and strong
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oscillating shocks. The full control of these, possibly dangerous, nonlinear events is of utmost importance

in avoiding unacceptable self-induced oscillations, instabilities, limit cycles, ride-quality deterioration and

fatigue failures [3]. Different approaches to the active control of aeroelastic systems can be found in the liter-

ature, to cite a few: classical LQG design [6], robust H∞ framework [7], input limiting [8,9], immersion and

invariance [10], indirect adaption [11], adaptive neural networks, both static and recurrent [12–14]. Within

such efforts, it is worth mentioning the comprehensive Benchmark Active Control Technology (BACT) re-

search project, conducted at NASA Langley Research Center with the objective of measuring and archiving

unsteady aerodynamics data in transonic flow. It has allowed to study, record, and experimentally validate

a wide variety of active flutter suppression designs, such as: classical and minimax [15], robust H∞ and

μ−synthesis [7], robust passification [16] and neural networks [12].

Given that aeroelastic systems change their stability with flight conditions, an efficient controller must

work properly over the whole flight envelope of interest. To achieve such a result, two different approaches

can be considered, i.e. scheduled and adaptive control. While the former requires many designs, covering

a set of flight conditions adequate to insure a stable and smooth scheduling, the latter, once designed and

verified for a relatively few peculiar cases, should be capable to adapt even to unforeseen conditions, with

the likely added advantage of a reduced design effort.

In such a view this work adopts an Immersion and Invariance (I&I) approach [10, 17–22] for stabilising

an aeroelastic system beyond its flutter speed. The related theory and a large number of applications to

mechanical and aerospace systems, including airplanes trajectory tracking, can be found in [17, 18], while

applications to spacecraft systems are referred in [19], where the concept of filter embedment is introduced

for the first time. The adoption of an I&I methodology to relatively simple aeroelastic systems is considered

in [10,21,22], where, assuming ideal actuators and the availability of the full state, both single and multiple

input controllers are developed.

Here active flutter suppressors will be designed on realistic, linear and nonlinear, reduced order models,

including sensors and actuators, the latter saturating in position, speed, and torque, verifying them afterward

through high fidelity, CFD-based, simulations of the aerodynamic sub-system. Then, even if an I&I state

observer formulation could be devised [17], a somewhat simpler and robust sliding mode scheme will be

preferred for the implementation of the so designed controller.

The whole procedure will be verified through three test cases. At first the control of a simple pitching

and plunging typical section, with a NACA 64A010 airfoil, is considered. This case is characterized by

highly nonlinear unsteady aerodynamic loads, producing significant shock motions and a strong limit cy-

cle oscillation, with a relatively high frequency. Moreover it allows to verify the importance of adequately

modeling the dynamics of the adopted sensors and actuators. The second case considers the, already men-
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tioned, Benchmark Active Control Technology (BACT) wing, with its fully validated models and data [7,15].

Because of its mild and low frequency flutter oscillations, it admits a linearized quasi-steady aerodynamic

approximation for the design phase. Its model is also of the typical section kind but, being a true wing,

the related high fidelity CFD verifications will provide a way to adequately check possible three dimensional

effects. The third and final test considers the flexible Goland wing [23], with an added trailing edge control

surface to make it possible its active flutter suppression. The related aerodynamics is quite simple, i.e an

experimentally validated nonlinear quasi-steady strip theory [24]. Nevertheless, by providing a more complex

three dimensional case with distributed elasticity, it allows to verify the proposed I&I controller on a more

realistic system, characterized by a significant number of degrees of freedom.

The contribution of this paper lies in the development of a somewhat general approach to the adaptive

stabilisation of nonlinear aeroelastic systems, considering high fidelity aerodynamics and saturating actu-

ators. Moreover, the adoption of a time continuous nonlinear observer, along with the simulation of its

digitalized implementation, addresses possible applications to even more realistic aeroelastic problems.

II. Aeroservoelastic models

An aeroservoelastic system is typically composed by three interconnected parts: structure, aerodynamics

and control, and, depending on specific analysis and design needs, different model fidelities can be used in the

various stages of its development. Following a standard approach, a generic linear(ized) structural model,

can be discretizated into the classical multi-degrees of freedom scheme:

Msq̈s +Csq̇s +Ksqs = q∞fa +TT
βmβ (1)

where: Ms, Cs, Ks are the structural mass, damping and stiffness matrices, qs the generalized struc-

tural coordinates, whose physical meaning is determined by the assumed discretization and fa the external

generalized aerodynamic forces, scaled by the asymptotic dynamic pressure q∞.

To explain the term TT
βmβ in the above formula, it is remarked that the driving degree of freedom of

any control surface is typically embedded in qs, so to be easily interfaced to the aerodynamic subsystem in

the very same way as any other structural motion. Therefore, control surface rotations, β, will be defined

by β = Tβqs, Tβ being an appropriate linking kinematic matrix, so that the generalized hinge moments,

mh, associated to the external control moments, mβ , will be given by mh = TT
βmβ .

After defining with D(v) the diagonal matrix associated to a vector v, we assume that a set of position
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servos, commanding β to βc, can be adequately modeled as:

ẍact +D(2ξactωact)ẋact +D(ω2
act)xact = D(ω2

act)βc mβ = D(kβ)(xact −Tβqs)

|xact| ≤ xactmax
|ẋact| ≤ ẋactmax

|mβ | ≤mβmax

(2)

with ξact and ω
2
act defining the actuator bandwidth, kβ an assumed acceptable low frequency residualization

of their dynamic compliance, the ’max’ suffixed terms indicating the related (symmetric) saturation values.

In view of the need of modeling only the transfer function of accelerometer based measures, the related

acceleration output, at assigned locations, will be given by a = Taq̈s, Ta being a suitable displacement

interpolation matrix. Therefore, the related transducer dynamics (sensor, compensation, antialiasing filter)

is approximated through:

ẍsens +D(2ξsensωsens)ẋsens +D(ω2
sens)xsens = D(ω2

sens)a = D(ω2
sens)Taq̈s (3)

Finally, taking for granted its stability, a generic formulation of a linear-nonlinear unsteady aerodynamic

subsystem is written as:

ẋa = fxa (xa,qs, q̇s) fa = fa (xa,qs, q̇s) (4)

where xa is the aerodynamic state, which can be either a physical entity, as in the case of a raw CFD model,

or a generically abstract reduced order state.

Defining the extended servo-elasto-mechanical degrees of freedom q = [qs xact xsens]
T and the corre-

sponding state x = [q q̇]T = [qs xact xsens q̇s ẋact ẋsens]
T
, putting together all of what above, we are led to

the following nonlinear, strictly proper, state space formulation:

⎧⎪⎪⎨
⎪⎪⎩
ẋ = Ax+Bcβc + q∞Ba fa (xa,qs, q̇s) +Bsusat ẋa = fxa (xa,qs, q̇s)

y = Cyx

(5)

where y is a linear measure output and the other terms are defined through the following intermediate

vectors and matricesa:

sβ = linsat(kβ , linsat(1,xact)− β) sact = linsat(2ξactωact, ẋact) + linsat(ωact
2,xact) (6)

M =

⎡
⎢⎢⎢⎢⎢⎣

Ms 0 0

0 I 0

−D(ω2
sens)Ta 0 I

⎤
⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎣

Cs 0 0

0 D(2ξactωact) 0

0 0 D(2ξsensωsens)

⎤
⎥⎥⎥⎥⎥⎦

usat =

⎧⎪⎨
⎪⎩

sβ

sact

⎫⎪⎬
⎪⎭ (7)

alinsat(a, v) =: a v if |v| ≤ vmax; a vmax if v > vmax;−a vmax if v < −vmax; the vector case must be intended component by
component.
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K =

⎡
⎢⎢⎢⎢⎢⎣

(Ks +TT
βD(kβ)Tβ) −TT

βD(kβ) 0

0 D(ω2
act) 0

0 0 D(ω2
sens)

⎤
⎥⎥⎥⎥⎥⎦

Baq =

⎡
⎢⎢⎢⎢⎢⎣

I

0

0

⎤
⎥⎥⎥⎥⎥⎦

Bcq =

⎡
⎢⎢⎢⎢⎢⎣

TT
βD(kβ)

0

0

⎤
⎥⎥⎥⎥⎥⎦

Bsq =

⎡
⎢⎢⎢⎢⎢⎣

I 0

0 I

0 0

⎤
⎥⎥⎥⎥⎥⎦

(8)

so that it is possible to set the following final compacted elements of Eq. 5:

A =

⎡
⎢⎣ 0 I

−M−1K −M−1C

⎤
⎥⎦ Ba =

⎡
⎢⎣ 0

M−1Baq

⎤
⎥⎦ Bc =

⎡
⎢⎣ 0

M−1Bcq

⎤
⎥⎦ Bs =

⎡
⎢⎣ 0

M−1Bsq

⎤
⎥⎦ (9)

Cy =

[
0 0 I 0 0 0

]
(10)

It should be remarked that when high fidelity aerodynamic models are taken into account, xa can be very

large, so that the system size can be limited substantially only by using a reduced order aerodynamics.

Therefore, whenever a high fidelity aerodynamic implies tens to hundreds of thousands states, the controller

design will be based on a significantly more favourable ROM size.

III. Detailing the Adopted Aerodynamic Models

This work takes into account three different fidelity levels for the nonlinear aerodynamic sub-system: high

fidelity CFD formulations, nonlinear reduced order models and linear-nonlinear quasi-steady approximations,

which are briefly described below.

III.A. High fidelity CFD representation

The aerodynamic sub-system is modeled by a cell centered Finite-Volume (FV) scheme, using the aero-

dynamic code AeroFoam, developed at Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di

Milano [25]. AeroFoam is a density-based compressible Unsteady Euler/Reynolds-Averaged-Navier-Stokes

(URANS-RANS) solver, the Euler option being selected in this work. Among its features there is an aeroe-

lastic interfacing scheme, based on a Moving Least Squares (MLS) interpolation strategy, providing all the

needed functionalities to set the appropriate aerodynamic boundary conditions imposed by a deforming

structure, while driving a connected hierarchical mesh deformation within an Arbitrary Lagrangian Eulerian

(ALE) formulation. An extended illustration of its aeroelastic capabilities can be found in [26]. In this work

any of AeroFoam aerodynamic formulations can be synthesized in the form of Eq. 4, with xa being the

physical state associated to the FV cell centers, i.e. density, momentum, energy and the turbulence model

own state. The generalized aerodynamic loads are computed through the integration of the pressure and

viscous stresses on the body surface [25]. The high number of states (from tens of thousands to millions)
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required for an accurate approximation implies highly time demanding CFD-based analyses. Consequently,

such simulations are mostly restricted to the verification phases of a design.

III.B. Reduced Order Models Through Recurrent Neural Networks

For classical linear(ized) flows, mostly based on the solution of an integral equation, linear identification

methods can be exploited to provide a reduced order state space representation, see [27] and references

therein. Even when the flow is nonlinear, e.g. Euler-based CFD codes, linear load identification methods

can be adopted for small motions around a steady trimmed solution [28]. Nevertheless, when the structural

system undergoes large enough motions, causing significant changes of the flow field, e.g. moving shocks, an

unsteady, nonlinear aerodynamic model of the type previously described is required. As already remarked,

it can provide a high level of fidelity only at the cost of a significantly fine discretization, with the related

demand of computational power and time consuming simulations. This fact limits its applicability to control

designs, sensitivity studies and system optimization, for which a Reduced Order Model (ROM) is almost

compulsory [29]. Different approaches for the determination of nonlinear aerodynamic ROMs are available

in the literature, e.g. Proper Orthogonal Decomposition [28, 30], Volterra series [31, 32] and Kriging-based

surrogate models [33].

In this work it has been chosen to exploit a Continuous Time Recurrent Neural Network (CTRNN) [34].

After defining the structural only state with xs = [qs q̇s]
T, the related stable aerodynamic ROM can be

appropriately defined with the following ordinary differential equations:

ẋa = Arφ (xa) +Brxs fa = Crφ (xa) +Drxs (11)

where φ : R
Na → R

Na is a function vector whose elements are hyperbolic tangent functions, i.e. φi(x) =

tanhx. The matrices Ar, Br, Cr, Dr contain the network synaptic weights, which are tuned through a

sequential training procedure based on an optimization scheme organized in two levels. The first, which

initializes the coefficients, is based on a Genetic Algorithm minimizing a quadratic cost function of the

identification error: F =
1

2

∑Nt

i=1 ||fa,ROM(ti)− fa,CFD(ti)||2, where Nt is the number of training samples

considered. A good compromise between an acceptable accuracy at the end of this phase and its compu-

tational time can be achieved by setting the probability of mutation approximately at 0.15, along with a

maximum of 150 generations. The range of values within which the synaptic weights are allowed to vary

is [−10, 10]. Instead, starting from the best population resulting from the initialization phase, the second

training level exploit the Levenberg-Marquardt algorithm, for the same cost function, eventually driving the

identification error to a desired converged precision at a faster pace.

The training signals are generated within the previously described CFD solver. Sequences of ramps are
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considered for all the structural degrees of freedom, choosing the time length of each ramp in relation to

a set of reduced frequencies that must be excited to obtain a sufficiently accurate ROM. The time length

any ramp, Δr, is related to the reduced frequency of interest through the relation Δr =
2π c

V∞ k
. In practice,

different training sequences are considered, starting from filtered smooth ramp signals and ending with

barely blended ramps. Because of the presence of both steady-state and transient responses, this approach

has proved capable of improving the learning capability of the CTRNN for an aeroelastically coupled fine

CFD grid, as exemplified in Figure 1.
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−0.15

−0.1

−0.05

0
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(a) Smoothed ramp sequence.
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q 1 [−
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(b) Slightly blended ramp sequence.

Figure 1: Sample of the signals used in the training phase of a neural network based ROM.

III.C. Quasi-Steady Approximation

In the case of low frequency structural motions, i.e. for reduced frequencies somewhat smaller than 0.1, the

aerodynamic response to structurally imposed boundary conditions can be retained sufficiently fast to make

it acceptable a quasy steady residualization of fa within a limited range of low reduced frequencies [35, 36].

Within such an assumption, the generalized aerodynamic forces can be approximated in the following way:

fa (qs, q̇s, q̈s) =

(
c

2V∞

)2

Maq̈s +
c

2V∞
Caq̇s +Kaqs + fanl

(qs, q̇s) (12)

the nonlinear term, fanl , introducing any appropriate non linear quasi-steady correction. Sometimes, the

values used in the above rough approximation can be improved and tuned to match available experimental

data, as in the case of the following BACT and Goland wing [37,38] applications.
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IV. Control Methodology

IV.A. Immersion and Invariance adaptive controller

Controllers based on the Immersion and Invariance (I&I) into stable manifolds are a somewhat novel concept.

The related theory can be found in [17], while some applications to aeroelastic systems are reported in

[10, 21, 22]. The filter embedment approach adopted here can be found in [19, 20]. The basic I&I idea is to

achieve a stabilisation by immersing the plant dynamics into a stable target system, possibly described by

a reduced number of states. Then, by introducing appropriate adaptive terms in the related controller, it is

possible to achieve the invariance of the manifold containing such a target [18].

In this work the target system will be represented by:

s = ˙̃y + λỹ (13)

λ being a positive tunable design parameter and ỹ the controlled target performance, which can be any linear

combination of the system state components. Anticipating that only the displacement at a key point of the

structure will be taken into account in this work, we can write:

ỹ = Hx =

[
Hq 0

]⎧⎪⎨
⎪⎩
q

q̇

⎫⎪⎬
⎪⎭ = Hqq (14)

with H and Hq defining the appropriate single line target output matrix, specified on a case by case basis

to define the desired ỹ. It must be remarked that, since we aim at a stabilization through a single control

input, a multi components target will result in a singular controller. It would nevertheless be possible to take

into account any additional performance of interest, but, as shown in [22], the number of control input must

be increased accordingly. Since the performance dynamics must be asymptotically stable over the manifold

s = 0, it is sufficient to develop a control law driving s to the origin. By differentiating Eq. 13, the dynamics

of s is driven by the following equation:

ṡ = ¨̃y + λ ˙̃y (15)

where the required ỹ derivatives are explicitly defined through:

˙̃y = HAx+ q∞HBafa +HBsusat +HBcβc = HAx = Hqq̇

¨̃y = HA2x+ q∞HABafa +HABsusat +HABcβc

(16)

The omission of the terms containing Ba, Bs and Bc in the first equation above can be trivially inferred by

9 of 30

American Institute of Aeronautics and Astronautics



looking at their definitions against that of H. Therefore Eq. 15 becomes:

ṡ = HA2x+ q∞HABafa +HABsusat +HABcβc + λHqq̇

= xTα+ q∞fTa ω + uT
satγ + bβc + λHqq̇

(17)

with: α =
(
HA2

)T
, ω = (HABa)

T
, γ = (HABs)

T
and b = HABc, being unknown constant parameters,

except for the sign of b, which is assumed as known. Then, after defining the positive design parameter cs,

an asymptotically stable manifold is enforced by adding and subtracting the term css to Eq. 15, obtaining:

ṡ = xTα+ q∞fTa ω + uT
satγ + bβc + λHqq̇+ css− css

= −css+ b
[
βc + xTb−1α+ q∞fTa b

−1ω + uT
satb

−1γ + b−1 (λHqq̇+ css)
] (18)

After defining the following vectors:

χ̂ =

[
b−1α b−1ω b−1γ b−1

]T
ψ =

[
x q∞fa (xa,qs, q̇s) usat (λHqq̇+ css)

]T
(19)

Eq. 18 can be written in the following compacted form:

ṡ = −css+ b
(
βc +ψ

Tχ̂
)

(20)

In order to somewhat simplify the I&I design procedure presented in Ref. [17], s = Hq (q̇+ λq), ψ and βc

are low pass filtered and attenuated [19–21] in accordance with the following equations:

a) ṡf = −μsf +Hq (q̇+ λq) b) ψ̇f = −μψf +ψ c) β̇c,f = −μβc,f + βc (21)

where μ is a further positive design parameter. Given that the proposed linear filters are asymptotically

stable, it can be shown [21] that the following ordinary differential equation is satisfied asymptotically:

ṡf = −cssf + b
(
βc,f +ψT

f χ̂
)

(22)

Since χ̂ is unknown, I&I approximates it through the aid of shaping terms which will force the stable manifold

to be invariant. Within such a view, we define the off-the-manifold variable z [17]:

z = (χ+ δ)− χ̂ (23)

with δ(sf ,ψf ) being a yet to be chosen shaping function, so that, defining a control law of the form

βc,f = −ψT
f (z+ χ̂), it is possible to cancel the unknown constant parameter vector χ̂ of Eq. 22, which

becomes:

ṡf = −cssf − bψT
f z (24)
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As a side note we remark that for δ = 0 Eq. 23 recovers the classical formulation of a certainty-equivalent

adaptive controller [39]. Because of Eq. 23 we have also βc,f = −ψT
f (χ+ δ), so that, recalling Eq. 21 b)

and ˙̂χ = 0, β̇c,f = μψT
f (χ+ δ) − ψT (χ+ δ) − ψT

f ż. Therefore, using Eq. 21 c) we can write our control

law βc = μβc,f + β̇c,f as:

a) βc = −ψT (χ+ δ)−ψT
f ż or b) βc = −ψT (χ+ δ)−ψT

f

(
χ̇+ δ̇

)
(25)

thus making βc,f useless.

In view of ensuring the asymptotic stability of z we take its time derivative:

ż = χ̇+
∂δ

∂sf
ṡf +

∂δ

∂ψf

ψ̇f = χ̇+
∂δ

∂sf

(
−cssf − bψT

f z
)
+

∂δ

∂ψf

ψ̇f (26)

so that, imposing the following adaptive definition of χ:

χ̇ = cssf
∂δ

∂sf
− ∂δ

∂ψf

ψ̇f (27)

the dynamics of z is given by:

ż = − ∂δ

∂sf
bψT

f z (28)

Defining Vz =
1

2
zTz we have:

V̇z = zTż = −zT ∂δ

∂sf
bψT

f z (29)

which, after setting
∂δ

∂sf
= γConsign (b)ψf , γCon being a positive design parameter, becomes:

V̇z = zTż = −γCon |b| zTψfψ
T
f z = −γCon |b| ||ψT

f z||2 (30)

thus ending with:

ż = −γCon |b|ψfψ
T
f z (31)

Therefore, z = 0 is an uniformly stable equilibrium point, with z ∈ L∞(0,∞). Moreover, integrating V̇z we

obtain:

Vz(∞)− Vz(0) = −γCon |b|
∫ ∞

0

||ψT
f z||2 dt (32)

and consequently ||ψT
f z|| ∈ L2(0,∞). Finally, integrating

∂δ

∂sf
with respect to sf we can determine the

expression of the shaping function:

δ = γCon sign (b) sfψf (33)
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along with the time derivatives needed to complete Eq. 27 and Eq. 25 b), i.e.:

χ̇ =
[−ψ +ψf (cs + μ)

]
γCon sign (b) sf (34)

χ̇+ δ̇ = γCon sign (b)ψ
T
f ψf [Hq (q̇+ λq) + (cs − μ)sf ] (35)

We can then proceed and verify the stability of sf by defining the following Lyapunov function Vs =
1

2
s2f ,

whereas, evaluating its time derivative and using Young’s inequality, we have:

V̇s = sf ṡf = −css2f − b sf ψT
f z ≤ −css2f + |b| |sf | ||ψT

f z||

≤ −css2f +
cs
2
|sf |2 + |b|

2cs
||ψT

f z||2 ≤ −
1

2
css

2
f +

|b|
2cs
||ψT

f z||2
(36)

Therefore, since ||ψT
f z|| ∈ L2 (0,∞), we have also sf ∈ L2 (0,∞), thus proving the asymptotic stability of

sf . To demonstrate the asymptotic stability of the whole control system, we resort to a third Lyapunov

function: W (sf , z) = Vs + Vz, so that, being:

Ẇ ≤ −cs
2
s2f −

(
γCon − 1

2cs

)
|b| ||ψT

f z||2 (37)

it can be inferred that the pair (sf , z) ∈ L∞(0,∞), if γCon ≥ 1/(2cs). In practice, the following inequality

will be imposed:

2csγCon ≥ bd (38)

with bd being an assigned design bound. Given that the linear filters in Eq. 21 are all asymptotically stable,

if sf is bounded also s is and, consequently, ỹ. Then, the whole state will be bounded and, since W is

uniformly continuous, the convergence toward the origin can be proved by using Barbalat’s lemma [39].

Putting together Eqs. 21, a) and b), Eq. 34, modified as shortly explained, finishing Eq. 25 by using Eq.

35, it is now possible to resume the nonlinear adaptive compensator and its control command:

ṡf = −μsf+Hq (q̇o + λqo) ψ̇f = −μψf+ψo χ̇ = −σχ+γCon sign (b) sf
[−ψo +ψf (cs + μ)

]
(39)

βc = −ψT (χ+ δ)− γCon sign (b)ψ
T
f ψf [Hq (q̇o + λqo) + (cs − μ)sf ] (40)

where the suffix o indicates that the related quantities are computed using the values that will be provided

by the sliding observer described in the following paragraph. As anticipated above we remark that the last

of the Eqs. 39 has been modified, with respect to its parent Eq. 34, by adding an appropriate proportional

feedback −σχ, σ > 0 being a new design parameter. Such a change is an often used fix [40] aimed at

avoiding a possible long term drift associated to pure integrations of the kind of Eq. 34, eventually hindering

the previously demonstrated convergence and stability properties [41] because of unmodeled dynamics and
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disturbances. The stability improvement brought in by −σχ can be found in [40–42]. It is then possible

to tune σ so to provide an acceptable trade-off between the nominal adaption performances and a sizeable

robustness gain against the mentioned uncertainties and disturbances. It is further remarked, as reported

in [21], that the so designed controller has the interesting feature that, defining the manifold Ω as:

Ω =
{(
ψf , z

)
: ψT

f z = 0
}

(41)

the closed loop system is confined within Ω, with ṡf = −cssf on Ω. Such a result could also have been

obtained through the deterministic control law βc,f = −ψT
f χ, with χ known. Therefore, thanks the inclu-

sion of the additional shaping term δ, it follows that an I&I based controller asymptotically recovers the

performances of a deterministic controller.

Under the constraint of Eq. 38, the meaning of the four design parameters λ, cs, μ and γCon should

be quite clear: λ drives the performance to zero when the target manifold is reached, cs modulates the

convergence toward the stable manifold, μ determines the filtering level of the controller and γCon modulates

the control effort.

IV.B. Sliding Mode Observer

The previously described I&I controller requires the availability of the system state for its implementation.

Thanks to the assumed smooth monotonic nonlinearities of the models here employed, a separation principle

can be exploited [43], so any observer based implementation can be carried out without regard to the

controller design. Moreover, since the significant differences between the design and verification models

may cause system instabilities and performance degradation, it has then been decided to resort to a robust

sliding mode observer. At first the method of reference [44] was successfully adopted. Nevertheless, while

practicing with its design, it appeared that the resulting observer did not change significantly the aerodynamic

eigenvalues, thus suggesting that the related reduced order aerodynamic state was more detectable than

observable. So, after verifying that it provided equivalent results, a simpler scheme was chosen. It allows the

direct use of a CTRNN based stable aerodynamic ROM without the need of any linearization and, recalling

Eq. 5, has the form:

⎧⎪⎪⎨
⎪⎪⎩
ẋo = Axo + LObseo +Bc βc +Bsusato + q∞Ba fa (xao ,qso , q̇so) + vs

ẋao
= fxa

(xao
,qso , q̇so)

(42)

where vs is the to be designed sliding contribution, eo = y − Cyxo the output error, xo and xao are,

respectively, the observed servo-elasto-mechanical and aerodynamic state, with the observed structural gen-

eralized coordinates, qso and q̇so , being just the related partitions of xo. The observation gain LObs is
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computed through a standard linear optimal asymptotic Kalman observer, designed through the solution of

the algebraic Riccati equation:

⎧⎪⎪⎨
⎪⎪⎩
AΛ+ΛAT −ΛCT

y R
−1CyΛ+Q = 0

LObs = −ΛCT
y R

−1

(43)

with Q being a positive semi-definite design covariance of the system disturbances and R a positive definite

design covariance related to measurement noise.

To determine vs we resort to the dynamics of the state observation error, e(t) = x− xo:

ė = (A− LObsCy) e− vs +Bζζ (44)

with ζ being a overall disturbance vector, summing up all the disturbances and uncertainties of the system.

The discontinuous switching vector vs(t) of Eq. 42 is then determined by satisfying the stability condition

associated to the Lyapunov function VObs = eTTe, for which we have:

V̇Obs = ėTTe+ eTTė = −eT
(
(A− LObsCy)

T
T+T (A− LObsCy)

)
e− 2vT

s Te+ 2ζTBT
ζTe (45)

Therefore, after assigning an appropriate positive-definite matrix Qs and solving the following Lyapunov

equation:

(A− LObsCy)
T
T+T (A− LObsCy) +Qs = 0 (46)

the sliding vector is designed to be

vs(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−γObs

Te

||Te|| if ||e|| �= 0

0 if ||e|| = 0

(47)

so that, proceeding with Eq. 45 we have:

V̇Obs ≤ −eTQse− 2γObs||Te||+ 2||Te||||Bζζ|| ≤ −eTQse− 2λmax (T)
(
γObs − ζ̄

) ||e|| < 0 (48)

where λmax (T) is the maximum eigenvalue of T and ζ̄ = sup (||Bζζ||) the estimated worst disturbance

level. Since e is not available, it is computed by pseudo inverting the relation eo = Cye, obtaining e =

CT
y

(
CyC

T
y

)−1
eo, which, because of the structure of our Cy, becomes the simpler e = [0 0 xsens 0 0 0]T.

As it is well known [44], the switching term aims at inducing a sliding motion in the state error space

So = {e ∈ R
n : Cye = 0}, driving it to zero in a finite time. Despite the presence of modeling uncertainties,

first and foremost, but not only, the approximations implied in fa, such a behavior can be achieved through
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an appropriate tuning of Qs, γObs and ζ̄.

Figure 2 presents a few results obtained when the proposed observer is applied to an aerodynamically

nonlinear typical section case, to be shown later. It evidences that an appropriate, rather easy, tuning

of the observer design parameters results in a fast and accurate estimation of the systems state. In fact,

because of the filtering action of the integration, the state error will be significantly smaller than that of the

reconstructed acceleration. A digital implementation of the just presented observer is found in the following

paragraph.
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Figure 2: Sample results of the sliding mode observer.

V. A Few Design Simulations

Apart from a specific change to the actuator bandwidth of the first test case, the parameters shared

by all the accelerometers and actuators of the following applications are summarized in Table 1. The

ξ ω0 [rad/s] βmax [deg] β̇max [deg/s] mβmax
[Nm]

Actuator 0.56 65 15 40 Steady aero-mβ at β = βmax

Sensors 1.0 190

Table 1: Actuator and sensors parameters

accelerometer parameters are mostly dictated by the assumption of a second order anti-aliasing filter for the

digital implementation, whose bandwidth is significantly below the one of the related sensor. Instead, plau-

sible values for the actuators have been derived from the experimental data of [45], albeit with a bandwidth

scaled down to 65 [rad/s], from 165, to take into account both a more easily achievable value and a more

challenging controller design. The values of the actuator compliances have been found to be not critical over

a sensible range of values and eventually set as reported in Table 2.

The design of the controllers could have been carried out either interactively or through a numerical op-

NACA 64A010 BACT Goland wing

kβ [Nm] 7 · 104 1.6 · 104 105

Table 2: Actuator compliances adopted for the three test cases.
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timization which, because of the relatively low system order and smooth dependence on a small number of

parameters, could have been based on an efficient gradient free optimizer, e.g. [46]. Eventually, the former

option has been preferred. In fact, it requires no further coding and can be easily guided by following a

simple heuristic procedure, based on the previously hinted physical understanding of the design parameters.

The filter parameter μ is typically chosen in relation to the maximum frequency of the open loop system

response, estimated by Fourier transforming a few time histories. Then, after verifying that a tentative

cs = 1 can be a suitable choice, γCon is computed accordingly to Eq. 38, followed by a few analyses carried

out by maintaining λ = 1 while determining appropriately the values of cs and γCon leading to a reasonable

maximum control effort, eventually increasing λ until a desired settling time is achieved. On the other hand

the observer demonstrated to work rather well with Q = I, R = 0.1 I and Qs = 10I, along with a first guess

of 0.1 for γObs, followed by an open loop observer tuning, driven by the satisfaction of Eq. 48, until a fairly

small estimation error is obtained. Furthermore bd = 2 and σ = 2 proved sufficient to achieve an adequate

level of robustness and remained a common choice for all the following tests. Moreover, to assure the sys-

tem adaptivity and stability over a wide range of operating conditions, the controller parameters are tuned

considering various flight speed, at least 25% greater than the open loop linearized flutter speed, combined

with different type of simulations, such as the response to large initial conditions, to input pulses, eventu-

ally evaluating the controller adaption speed when its compensator is switched off-on during a simulation.

Because of the simplified structure assumed for the observed ROM aerodynamic state, also an extensive set

of verifications has been carried out by markedly biasing and randomly disturbing high fidelity generalized

forces applied to the structure, so to simulate significantly different forces with respect to those used for

tuning the control system. The results obtained were quite satisfactory, without any instability, contained

control activity, with no significant saturation, except for the speed of the actuators. A sample result related

to the following typical section, for fa = fabias
+ fanom

(1+4 r(t)), is shown in Figure 3. The related terms are:

the bias term, fabias
, set at the steady aeroelastic solution for θ = 5 [deg], fanom the nominal force provided

by AeroFoam, r(t) a random normal time variation with a unit standard deviation. As it can be noticed, the

aerodynamic uncertainties introduce a persistent disturbance in closed loop, deteriorating the convergence

to the target dynamics. However, such a convergence is eventually recovered during the simulations, verify-

ing the capability of the control system to withstand large model uncertainties. All the tuned designs and

verifications have been determined by using an explicit Runge-Kutta integrator with adaptive step control,

providing a precision adequate to allow avoiding an exact matching of saturation/desaturation time instants.

Moreover a realistic digital implementation of the proposed controller has been taken into account. Through

some preliminary continuous designs, it has been possible to verify that the sampled behavior of the con-

tinuous sliding observer and I&I compensator could be adequately matched at a frequency of 200 [Hz], the
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Figure 3: Effect of an uncertain aerodynamic model on the closed loop dynamics.

related discretization being based on a fix step Runge-Kutta-Heun integration scheme. To correctly simulate

such a digitalization there is the need to care for the processing delay (input-calculation-output), associated

to the chosen data acquisition system and control computer. Among the many carried out, Figure 4 shows a

sample of the simulations comparing the controlled responses of the continuous and digitalized observer, at

200 [Hz] with a 60% (3 ms) processing delay. However, despite the many successful verifications obtained
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Figure 4: Comparison of a continuous and digital controller implementation.

with the mentioned implementation parameters, all the following simulations will be based on the same

200 [Hz] sampling rate mated to a somewhat more conservative 30% (1.5 ms) processing delay.

In concluding this illustration of the features common to all the following test cases, it should be remarked

that, for each of them, a vast set of simulations has been carried out against: varied ROM and finely

discretized aerodynamic models, system disturbances and measurement noise, a ±20% change of most of the

structural parameters. Nevertheless, for sake of brevity, only samples of the related results will be presented,

trying to blend them in a way providing as a complete as possible picture of some interesting findings of this

work.
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V.A. NACA 64A010 typical wing section

This example has been chosen for two main reasons: it shows the ability of an I&I controller to stabilise the

response of a significantly nonlinear system and demonstrates the importance of a correct modeling in the

design phase.

It is related to a plunging and pitching typical section, featuring a NACA 64A010 airfoil, with a trailing

edge flap, at sea level and M∞ = 0.8 [47, 48], whose structural data are found in the Appendix. It is a

kind of benchmark characterized by a significantly complex unsteady nonlinear aerodynamic behavior [47],

producing an ample limit cycle having a frequency in excess of 10 [Hz], which cannot be matched by an

overly simplified aerodynamic approximation.

For such a reason a reference high fidelity AeroFoam-Euler approximation of 12000 two dimensional cells,

i.e. 48000 unknowns, will be used as the base for its validation. Moreover, because of its relatively high

frequency limit cycle, it has not been possible to design a well working controller with an actuator bandwidth

below 80 [rad/s]. After remarking that the servo-elastic subsystem will add just 12 states (6-structural, 2-

actuator and 4-sensors), it should be clear that the overall system size is dominated by a huge number of

aerodynamic states, which is unsuitable for the design of any active controller.

There is then the need to resort to a CTRNN based ROM, so the previously presented training procedure

has been adopted, with kmax = 1.

It converged to an acceptable ROM with only four aerodynamic states, see Figures 5a and 5b. Even-
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Figure 5: Sample results of a neural network training.

tually, the resulting nonlinear aeroservoelastic model has sixteeen states and develops a limit cycle beyond

a numerically estimated linearized flutter velocity VF,OL = 193 [m/s]. Figure 6 compares some trends of the

ROM limit cycle parameters against their high fidelity counterparts. From such a comparison it is possible

to infer a good amplitude match mated to somewhat differing frequencies, a discrepancy which could be cor-

rected by using a larger order ROM. Nevertheless, in view of verifying the robustness of the to be designed

I&I controller, such a imprecise low order ROM has been kept as it is.
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Figure 6: ROM vs. high fidelity CFD for pitch amplitudes trends.

To achieve good adaptive performances against pulse perturbations applied through the flap, different

flight speeds, up to 25% of VF,OL, are taken into account to tune the controller parameters. The target

performance, Eq. 14, is the (linearized) vertical displacement at the leading edge of the typical section, so

that, being q = [h θ β xact xsens1 xsens2 ]
T we have Hq = [1 lLE 0 0 0 0], where lLE is the

distance between the elastic center of the airfoil and its leading edge.

Carrying out the design with the interactive procedure previously described the control parameters of

Table 3 are obtained: Using both the design ROM and high fidelity CFD, it is possible to show a few

γObs λ cs μ γCon 2csγCon

0.5 50 30 750 0.04 2.4 > bd

Table 3: Controller parameters: typical section.

simulations illustrating the effectiveness of the obtained controller, implemented through its sixteen states

sliding observer. At first, Figure 7 depicts a sample response of the controlled typical section to an input

pulse applied at the design point. A significant random disturbance, having a maximum amplitude of

1.5 [deg], has been applied to the control surface, so showing the controller insensitivity to disturbances.

Then a few high fidelity responses at the off-design condition of V∞ = 255 [m/s] are presented in Figure

8, where the controller is switched on after t = 4 [s], when the limit cycle is fully developed. Spillover

effects over the larger aerodynamic model have not been found in any of the verifications carried out. Some

samples of the flow field during the limit cycle suppression are depicted in Figure 9, showing a significant

shock oscillation amplitudes of the order of 23% of the chord. The controller appropriately cancels the large

disturbance command applied by the control, eventually driving such a amplitude down to 2% of the chord.

Nevertheless, despite the good results obtained, it can be useful to remark that the robustness of an I&I

controller can result in being inadequate against excessively simplified design models, e.g. unmodeled sensor

and actuator dynamics. For example, if we totally neglect those dynamics, a design at V∞ = 211 [m/s] will
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(a) Response to large initial condition on h.
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(b) Related control effort.

Figure 7: Input pulse response of the design model, V∞ = 211 [m/s].
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(a) Pitch response.
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(b) Related control effort.

Figure 8: High fidelity response to off-on control, V∞ = 255 [m/s].

(a) Front position of the shock during
the limit cycle.

(b) Rear position of the shock during
the limit cycle.

(c) Stabilized position.

Figure 9: Various phases during the limit cycle oscillation suppression.

provide good performances with the parameters of Table 4, both for the reduced order and high fidelity CFD

models, a sample of the surface rotation being depicted in Figure 10a.

Instead, by verifying the very same controller after accounting for its digital implementation and the

very same actuator adopted in the previous design, we can see, Figure 10b, that it results in a rather violent

instability. As witnessed by Figure 10c, something similar, albeit with a somewhat softer appearance, applies

also after accounting for just the previously used sensor dynamics, even if its 25 [Hz] bandwidth is well in
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γObs λ cs μ γCon 2csγCon

0.5 50 30 125 0.1 6 > bd

Table 4: Controller parameters: ideal typical section, no sensor-actuator dynamics.

excess of the limit cycle frequency. Such outcomes clearly point out the need of taking into account any

significant realization delay from the very inception of a design procedure.
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(a) Ideal control surface deflection.
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(b) Ideal design response, after
modeling the actuator.
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(c) Ideal design response, after
modeling the accelerometers.

Figure 10: Effects of omitting sensors and actuator dynamics in the design.

V.B. BACT wing model

As is has been already hinted at in the introduction, the Benchmark Active Controls Technology (BACT)

project is part of NASA Langley Research Center’s Benchmark Models Program for studying transonic

aeroservoelastic phenomena. Therefore, it is a well known, easy to use, detailed and fully validated aeroser-

voelastic model [7,15,37], which has become an often referred benchmark application for verifying nonlinear

aerodynamic analyses and active controls design methods. It is an elastically constrained rigid rectangu-

lar wing model, with NACA 0012 sections, equipped with a trailing-edge control surface and upper and

lower-surface spoilers, which can be controlled independently through well performing hydraulic actuators.

Its dynamic behavior is very similar to a classical typical section but, because of its low aspect ratio, it

displays a not so simple three-dimensional transonic flow. However, it has been shown, e.g. [15], that the

related nonlinear aerodynamic behavior is mild enough to produce slowly growing limit cycle oscillations,

which can be verified only through high fidelity CFD validations [49]. Because of the above remark, the

literature related to the design of active controllers for the BACT wing presents many instances of effective,

experimentally validated, applications of linear design techniques [7, 12, 15,16].

In such a view the fully linear model, i.e. aerodynamics included, proposed in [37] will be used to design

an I&I controller, to be verified against fully nonlinear CFD simulations afterward. Moreover, it should

be remarked that in view of a quite small flutter reduced frequency, kF ≈ 0.05, such a model adopts also

a highly simplified quasi-steady linearized unsteady aerodynamic approximation, i.e. as for Eq. 12 with
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fanl
(xs) = 0. Then, to ascertain a correct adoption of its data, the related design model, which has the

same 12 state as the previous NACA64010 typical section, but without any added aerodynamic state, has

been subjected to a few simple flutter calculations. A sample result, at Mach M∞ = 0.77 in heavy gas

R12 [37], a value that will be used also for all the following nonlinear verifications, shows a predicted flutter

speed of VF,OL = 108.58 [m/s], only 1.3% more than the corresponding test value. Once more, targeting the

tip leading edge motion, the controller is designed to stabilise the wing up to a speed 35% higher than the

original linear flutter point, against pulse perturbations applied through the aileron. Carrying out the usual

interactive design procedure the control parameters of Table 5 are obtained. A sample of the results to an

γObs λ cs μ γCon 2csγCon

0.01 50 30 30 0.4 24 > bd

Table 5: Controller parameters: BACT wing.

input pulse with an amplitude of 5 [deg] obtained during the design phase is shown in Figure 11. An efficient
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(a) Plunge output.
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(b) Related control effort.

Figure 11: Response of the design model to a sizeable input pulse.

stabilisation with a limited control effort, even at a flight speed 20% greater than the open-loop flutter

speed, is worth being pointed out. It should be remarked also that, differently from other references [17,19],

a value γCon ∼ 5 has been verified to be a limiting stability bound, whereas higher values invariably produce

an unstable controller.

The verification model consists of an FV discretization, whose fineness has been determined on the

base of a steady-state convergence analysis, resulting in a mesh of 103040 cells (515200 aerodynamic state

components). As already mentioned, the control robustness has been also verified against inertia and stiffness

changes. A sample of such verifications, associated to a 20% increase of both bending and torsional stiffnesses

at 135 [m/s], is shown in Figure 12, for an initial condition rather far away from the possible uncontrolled

LCO and superimposing an initial strong aileron pulse to a random command. The adaption capability of

the controller to appreciable changes of the nominal design should appear clearly, even in front of a significant
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Figure 12: High fidelity response, BACT test case.

nonlinear aerodynamic behavior associated to a large shock motion, spanning 20% of the wing chord during

the initial part of the transient.

V.C. Goland wing

The Goland wing is a test case, found in the classical aeroelastic literature [23], which can exhibit both

structural, wing and wing+store aerodynamic nonlinearities [24], of which only the one related to the aero-

dynamics of the clean wing will be considered here. The related geometry, aerodynamic, inertia and structural

data, taken from [23], can be found in the Appendix. A proper modal basis, including the free rigid rotation

of the here added trailing edge control surface, will be used to model the linear structure. The required 30

lower modes have been obtained through a 50 beams Finite Element (FE) discretization. In such a way the

matrices Ms, Cs, and Ks will be diagonal, while, recalling that β = Tβqs, M, C and K will be coupled

through the sensors and actuator dynamics, see Eqs. 7 and 8. It might also be worth pointing out that that

each modal column of Tβ is just the trivial difference between the rotation, θ, of the section at which the

aileron is driven and the corresponding absolute modal rotation of the aileron itself.

This example considers a very simple aerodynamic model, i.e. a quasi-steady strip theory, linear in

the design phase, nonlinear for the verifications. In fact, since a linear flutter analysis shows a bending-

torsional flutter having a reduced frequency of only 0.01, similarly to the BACT wing, the adoption of such

an approximation should be justifiable. Instead, in view of its somewhat low aspect ratio, a few, legitimate,

doubts can be cast on the strip theory, which appears nonetheless to be used in other Goland based literature

instances [24, 38]. That is likely because it is sufficiently adequate for a simpler qualitative demonstration

of some nonlinear aerodynamic phenomena. In such a view, a span wise Schrenk’s [50] correction is applied

and the resulting model is exploited to verify how the proposed single input I&I controller can stabilize the

nonlinear response of a test case closer to a real wing. So, calling x and y the chord and span wise running
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coordinates and s the wing span, we have:

CL(y) = 2π

[
1

4s
+

1

2

√
1− (y/s)2

]
(αeff + τ W (y)β)

CM (y) = 2π (xCA − xEA)

[
1

4s
+

1

2

√
1− (y/s)2

]
(αeff + τ W (y)β)

CMh
(y) = CMh,αα+ CMh,ββ W (y) = 1 for ystarta ≤ y ≤ yenda , 0 elsewhere

(49)

the coefficients CL,β = 1.25 [1/rad] and CM,β = −1.85 [1/rad], are estimated from thin airfoil theory, as well

as τ = 0.33, which is nonetheless decreased to 0.23 to penalize the 3D aileron efficiency. The angle of attack

is defined as α(y) = θ(y) +
ḣ(y)

V∞
+ d3/4θ̇, being θ the wing torsional rotation, h the vertical displacement of

the elastic axis, positive downward and d3/4 the well known backward distance of the 3/4 chord point from

the elastic axis.

In the verification stage an aerodynamic nonlinearity is taken into account by simply replacing α with the

experimentally tuned αeff = α− 10.26α3, valid for α up to ±11 [deg] [38].
Using the above approximation to calculate the generalized modal aerodynamic forces, the resulting linear

terms will provide the matrices Ca and Ka, with Ma = 0, while the quadratic and cubic terms will be

gathered in fanl
.

Exploiting the previously presented modeling elements the design of the control parameters will proceed

with 5 normal modes, including the rigid relative aileron rotation, for a total of 16 states (10-structure,

4-sensors, 2-actuator). Then the verification phase will be carried out on a refined model including many

more modes and the above non linear correction of the angle of attack. Such an approach is similar to the

one taken for the BACT wing, with the exception that the verification phase will not be based on high

fidelity CFD simulations. In fact the aim of this example is directed to verifying the application of an I&I

design to a servo-structural system a bit closer to a somewhat more realistic system. Because of such an

assumption a more complex and complete modelling tool will likely not affect significantly the whole ROM

based design and its high fidelity verifications.

A preliminary flutter analysis has been carried out for determining the stability of the aeroservoelastic

system. The estimated flutter speed was found to be VF,OL = 38 [m/s].

So, once more, the target performance ỹ is chosen to be the usual vertical displacement at the leading

edge of the wing tip, thus synthesizing bending and torsion effects into a single variable. The needed

single line target matrix Hq can be determined after calling: qm the modes amplitudes vector, Thtip the

modes displacements at tip leading edge and defining q = [qT
m xact xsens1 xsens2 ]

T, so that we have

Hq =
[
Thtip 0 0 0

]
.

The controller can then be designed to stabilize the wing up to a speed 40% higher than the original linear

flutter speed, in front of pulse perturbations introduced by the aileron. So, carrying out the interactive design
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procedure, the control parameters of Table 5 are obtained. A sample of an almost converged design iteration

γObs λ cs μ γCon 2csγCon

0.1 20 10 120 0.2 4 > bd

Table 6: Controller parameters: Goland wing.

is shown in Figure 13 for the application of a 5 [deg] aileron deflection for 0.2 [s]. The controller robustness
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(a) Vertical displacement at the wing tip.
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Figure 13: Design model response to a sizeable aileron pulse.

verification against modal spillover and model uncertainties will be based on model with 30 vibration modes,

i.e. 60 structural states, 6 sensor-actuator states and the nonlinear aerodynamic model. Figure 14 shows a

sample of the obtained results for the response to a large initial condition with a random distrurbance of

2 [deg] commanded by the control surface, at a flow speed 30 % in excess of the open-loop flutter speed. To

prove the fast adaptivity of the proposed controller, the control action is switched on after the limit cycle is

fully developed. It should come to little surprise that for such a speed and disturbances the initial control
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(a) Wing tip rotation.
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(b) Related aileron deflection.

Figure 14: Quasi-steady nonlinear aerodynamic verification to off-on control.

effort is quite significant. Nevertheless it can be verified that related response evidences again the robustness

of the adaptive I&I controller.
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As a further robustness demonstration, a series of detailed verifications have been carried out on a

modified models with weakened bending and torsional stiffnesses. It is then possible to track the trend of

the maximum control effort against the related stiffness changes at a fixed flight speed. The test velocity is

35% higher than VF,OL and the applied disturbance is an aileron pulse having an amplitude of 5 [deg] and

duration of 0.2 [s]. The obtained trends are shown in Figure 15.
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(a) Maximum control efforts vs. bending stiffness.
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(b) Maximum control efforts vs. torsional stiffness.

Figure 15: Results of a robustness verification on the Goland wing.

It should be noticed that the control effort is much more affected by the torsional stiffness changes,

whereas a reduction of the bending stiffness results in a decreased maximum control effort. This is likely due

to the effect that a decreasing bending stiffness has on the flutter behavior of the wing. In fact, reducing the

frequency of the first bending mode results in a slight postponement of the bending-torsion flutter onset.

VI. Concluding Remarks

The paper has presented an adaptive approach for the active suppression of a possible nonlinear flutter

through a full state Immersion and Invariance (I&I) controller, coupled to a sliding mode observer. The per-

formance of such a controller has been verified on three typical aeroelastic test cases: a typical wing section,

the BACT wing benchmark model and the Goland wing, with mathematical models representing their aero-

dynamic subsystem at different levels of fidelity, ranging from quasi-steady nonlinear approximations, to full

and ROM based CFD formulations. It should be remarked that one of the tests, the Goland wing, provides

a simple, yet not trivial, application involving a deformable beam model, which is somewhat closer to pos-

sible more realistic applications. Because of the small number of design parameters, the adopted interactive

design procedure, based on well reasoned and physically understood simulations, has been verified to be an

adequate tool. In fact the resulting adaptive controllers provided fairly robust stabilisation properties against

differing flow conditions, sizeable system disturbances, model order and parameters variations. Moreover

the importance of embodying appropriate formulations of the dynamics of sensors and actuators has been

26 of 30

American Institute of Aeronautics and Astronautics



verified, whereas neglecting them could lead to a loss of robustness, mated to a difficult implementation.

It is believed that to fully verify the strength and weaknesses of a non linear adaptive I&I controller there

remains the need of focusing on more complex and realistic applications, e.g. multi input and deformable

free flying aircraft, integrating true design specifications related to stability and response performances.

A. Appendix: Models Data

Figure 16: Typical section degrees of free-
dom.

Figure 17: Goland wing geometry, d3/4 =
0.43 [m].

qs =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h

θ

β

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Ms =

⎡
⎢⎢⎢⎢⎢⎣

m Shθ Shβ

Shθ Jθθ 0

Shβ 0 Jββ

⎤
⎥⎥⎥⎥⎥⎦

Cs =

⎡
⎢⎢⎢⎢⎢⎣

2ξhhmωhh 0 0

0 0.002Jθθ ωθθ 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Ks =

⎡
⎢⎢⎢⎢⎢⎣

mω2
hh 0 0

0 Jθθω
2
θθ 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Typical section: mass, damping and stiffness matrices; qs = [plunge, pitch, trailing edge control]T.

m Jθθ Jββ Shθ Shβ ωhh ωθθ ξhh c b xh

[kg] [kgm2] [kgm2] [kgm] [kgm2] [rad/s] [rad/s] [-] [m] [m] %c

NACA64010 29.45 5.52 1.50 3.68 0.1178 40.5 81.0 0.001 1.0 0.5 75

BACT 88.7 3.80 1.00 0.0631 0.0128 21.01 32.72 0.0014 0.4048 0.8096 75

Table 7: NACA64010 typical section and BACT wing data.

m Jθθ Jββ Shθ Shβ modal damping bending stiffness EJ torsional stiffness GJ

[kg/m] [kgm] [kgm] [kg] [kgm] [-] [Nm2] [Nm2]

35.72 8.64 0.4 6.52 0.05 0.005 994506.6 100714.9

Table 8: Goland wing uniform inertias per unit length, modal damping and uniform bending and torsional
stiffnesses.
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