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Abstract The purpose of this work is to develop an innovative procedure for reconstructing the8

pressure field from PIV velocity measurements of unsteady, incompressible flows. The proposed9

technique is based on a generalization of the Glowinski-Pironneau method for the uncoupled so-10

lution of the incompressible Navier–Stokes equations written in primitive variables and exploits a11

finite element discretization of the measurement grid. By virtue of the underlying mathematical12

formulation, the method is stable and more accurate than the other techniques proposed so far13

in the literature. The method is first applied to an exact solution of the Navier–Stokes equations,14

showing second order convergence of the L∞ error for the pressure variable. The robustness of the15

method with respect to stochastic perturbations in the velocity field is then tested and the results16

compared with other techniques proposed in the literature. Finally, the proposed technique is ap-17

plied to both phase-averaged and time-resolved PIV velocity measurements of the flow around a18

pitching airfoil employed to investigate the dynamic stall. The reconstructed pressure is compared19

with direct pressure measurements, showing very encouraging results.20

Keywords Pressure field reconstruction · Particle Image Velocimetry (PIV) · Glowinski–21

Pironneau method22

1 Introduction23

The fast development of Particle Image Velocimetry (PIV) rapidly increased the interest in24

techniques able to estimate the aerodynamic loads on immersed bodies exploiting the measured25

velocity field, since the PIV measurement technique is able to provide the instantaneous flow field26

with sufficient accuracy. It must be said that Berton et al (2004) already computed the airloads on27

an helicopter blade using very accurate Laser Doppler velocity measurements, but this approach28

precludes to achieve an instantaneous field-measurement capability and the time needed to scan29

the area of interest with a sufficient resolution is usually unaffordable.30

The possibility to compute the pressure field directly from PIV measurements is relevant for31

several reasons. Among these, the need to extract information on the pressure field over the whole32

domain, highlighting, for instance, strong vortical structures. Moreover, the possibility to obtain33

non-intrusive pressure measurements on an immersed body and the related airloads by direct34
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integration. Eventually, but of the utmost importance, the interest in measuring the pressure field1

where a direct measurement is impossible, or impractical, such as for instance in regions far from2

the immersed body and on portions of the body surface where the pressure taps cannot be easily3

placed, such as on the trailing edge of an airfoil.4

A thorough review of the history and state of the art of these methods can be found in the work5

by Van Oudheusden (2013). However, a quick overview of the available techniques highlighting their6

main features is presented here for reader’s convenience. Since in this paper we are concerned with7

low Mach number flows, the incompressibility of the fluid will be assumed throughout.8

In the past years, two different approaches have been proposed to compute the pressure field9

from PIV measurements. The first one is based on the solution of a Poisson equation for the pres-10

sure, obtained by taking the divergence of the momentum equation of the Navier–Stokes equations:11

12

−∇2p = ρ∇ · ((u ·∇)u) , (1)

supplemented with Neumann boundary conditions obtained from the momentum equation, as pro-13

posed by Gurka et al (1999). The above formulation includes the simplification that the divergence14

of velocity is zero, as a consequence of the incompressibility assumption. In some cases, the Poisson15

equation has been supplemented by Dirichlet boundary conditions based on reliable pressure mea-16

surements (Violato et al, 2011) or, in other cases, on approximate, inconsistent1 values obtained by17

heuristic assumptions about the physics of the problem. This technique mainly relies on the smear-18

ing properties of the Laplacian operator in order to smooth the experimental error on velocity. In19

any case, the solution depends significantly on the type of boundary conditions enforced, since, in20

the first case, the computation of the pressure gradient on the boundary amplifies significantly the21

experimental error or, in the last case, inconsistent boundary conditions are imposed.22

The second technique, proposed by Baur and Köngeter (1999), consists in the spatial integration23

of the pressure gradient obtained from the momentum equation of the Navier–Stokes equations by24

means of finite differences:25

∇p = −ρ
(
∂u

∂t
+ (u ·∇)u

)
+ µ∇2u. (2)

Unfortunately, this method suffers from error accumulation. It has been extended by Van Oud-26

heusden et al (2007) to the compressible case, exploiting the gas law and the adiabatic flow27

condition instead of the continuity equation, since errors in the divergence computation due to28

three-dimensionality and to out-of-plane velocity gradients could accumulate. Liu and Katz (2006)29

computed the pressure field of a cavity using a Lagrangian approach in order to estimate the mate-30

rial derivative of the velocity field , instead of the separate computation of the time derivative and31

of the advection term. As shown at a later stage by Violato et al (2011), this approach is especially32

relevant in case of convection dominated flows (see also (De Kat and Van Oudheusden, 2012) and33

yields more accurate estimates of the pressure gradient when compared with the purely Eulerian34

one.35

These techniques have been applied to several kinds of flow, e.g the flow past a square-section36

cylinder (De Kat and Van Oudheusden, 2012) or a circular cylinder with rotational oscillation37

(Fujisawa et al, 2005), the flow around a pair of bluff bodies in tandem configuration (Obi and38

Tokai, 2006), the turbulent boundary layer (Ghaemi et al, 2012). A truly challenging application39

of this method has been reported by Ragni et al (2012) who managed to compute the 3D pressure40

field around a propeller using stereoscopic PIV. Another application of these methods was the load41

estimation on a V-shaped body entering a quiescent fluid, see Panciroli and Porfiri (2013).42

Further details about the above-mentioned techniques can be found in the review paper by43

Charonko et al (2010), where a detailed comparison of several methods for calculating the pressure44

field from 2D time-resolved velocity fields in incompressible flows is presented.45

The innovative method proposed in this work aims at improving the accuracy of the previous46

methods by applying an innovative procedure to provide the Poisson equation for the pressure47

with accurate Dirichlet boundary conditions. Indeed, it is possible to obtain an uncoupled for-48

mulation of the incompressible Navier-Stokes problem, where the conditions that supplement the49

Poisson pressure problem, of an integral character (see Quartapelle (1993)), are derived exactly,50

1 Inconsistent means here that the error does not go to zero when the experimental error vanishes.
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not depending on the type of flow considered. The Glowinski–Pironneau method can be used to1

obtain Dirichlet boundary conditions fully equivalent to such integral condition. Moreover, since2

the method involves the solution of a set of elliptic problems, it can provide a smoothing of the3

errors affecting the velocity measurements. While from a formal viewpoint the method is equiva-4

lent to the previous ones based on a Poisson equation for the pressure with Neumann boundary5

conditions computed starting from the momentum equation, the present method is more accurate6

when experimental errors are present and the solution of the Poisson equation is computed numer-7

ically. Indeed, the Poisson equation is numerically more stable with Dirichlet conditions than with8

Neumann conditions. Moreover, boundary conditions are obtained from pressure conditions of an9

integral character (Quartapelle and Napolitano, 1986) which can introduce a beneficial additional10

smoothing of the experimental error.11

The present methodology can be applied to 2D, unsteady, incompressible flows either laminar12

or turbulent. In the present paper the methodology is introduced in Section 2, and assessed by both13

synthetic tests, in Section 3, and by applying it to both unsteady phase-averaged and time-resolved14

experimental datasets in Section 5.15

2 Mathematical formulation and numerical discretization16

2.1 Equations for incompressible flows17

Let us consider the Navier–Stokes equations, supplemented by Dirichlet boundary conditions,18

in a control volume V with boundary S = ∂V :19 
∂U

∂t
+ (U ·∇)U − ν∇2U +∇P = F in V,

∇ ·U = 0,

U
∣∣
S

= B on S,

(3)

where U(x,t) represents the velocity vector field, P (x,t) represents the pressure field divided by20

the fluid density and F represents a volume force divided by the fluid density. It is useful to note21

here that, in the particular application we are envisaging, B = B(x,tn) is the velocity measured on22

the boundary of the computational domain and therefore it is known, so that we can enforce full23

Dirichlet boundary conditions on the whole boundary ∂V . The more general case where the pressure24

is assigned on a portion of the domain has been discussed in the Appendix. If we are interested25

in the mean (phase-averaged) pressure field, one can introduce the corresponding version of the26

(Unsteady) Reynolds Averaged Navier–Stokes (U)RANS equations. For the sake of generality we27

will consider the URANS here. Since the velocity field is known only at discrete time intervals, we28

introduce the corresponding time discretization of the URANS equations:29 
un − un−1

∆t
+ (un ·∇)un +∇ · 〈u′n ⊗ u′n〉 − ν∇2un = −∇pn + fn in V,

∇ · un = 0,

un
∣∣
S

= bn on S,

(4)

where u = 〈U〉, u′ = U − u and similarly for pressure. A backward-Euler discretization of the30

time derivative has been used in the formulation for the reader’s convenience, but other schemes31

could be used as well. Since the only variable to be derived with respect to time is the velocity,32

and since the velocity field is known at every time instant from the PIV measurements, one can33

choose the best way to treat this term, namely to include it all in the right-hand side of equation34

(4) (explicit treatment) or to leave un

∆t on the left-hand side (implicit treatment). In this paper we35

will analyze both the implicit and explicit treatment of the time-derivative term.36

Let us divide the momentum equation by the kinematic viscosity ν and denote the unknown37

fields at the new time level by u = un and p = pn, where now the letter p indicates the scaled38
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pressure ν−1p→ p. The problem can be rewritten as:1 
(−∇2 + γϑ)u +∇p = g in V,

∇ · u = 0,

u
∣∣
S

= b on S,

(5)

where γ = 1
ν∆t , g = γ(−(1− ϑ)un + un−1)− ν−1[(un ·∇)un +∇ · 〈u′n ⊗ u′n〉 − fn], which is an2

experimentally known quantity, and ϑ is an integer which determines the explicit (ϑ=0) or implicit3

(ϑ = 1) treatment of the time-derivative term. The formulation of the steady-state problem can4

be obtained by simply setting γ = 0. With respect to the numerical solution of the Navier–Stokes5

equations, in the present case the pressure field is the only unknown. Nevertheless, by virtue of6

the existence and uniqueness of the solution of the above mathematical problem we are assured7

that, should the right hand side g and boundary datum b be computed starting from the “exact”8

velocity, then the exact solution of the above problem would give the exact pressure field but also9

the exact velocity field as a by product.10

2.2 Uncoupling of the equations11

Taking the divergence of the momentum equation (5) a Poisson equation for the pressure is12

obtained. Several approaches can be pursued to compute consistent conditions for the pressure, for13

instance the one adopted by Quartapelle and Napolitano (1986) relying on integral conditions for14

pressure. In the present work, the Glowinski–Pironneau decomposition has been adopted whose15

mathematical formulation reads:16 
−∇2p = −∇ · g
(−∇2 + γϑ)v = −∇p+ g, v

∣∣
S

= b

−∇2ϕ =∇ · v, ϕ
∣∣
S

= 0, ∂ϕ
∂n

∣∣
S

= 0.

(6)

In the above system, beside the Poisson equation for the pressure and the Helmholtz equation17

for the auxiliary variable v which takes the place of the velocity field, a Poisson equation for the18

auxiliary variable ϕ is added to enforce the solenoidality condition. In fact, as it can be noticed19

from system (6), the equation for ϕ is supplemented by overabundant boundary conditions, which20

are necessary to enforce the incompressibility constraint all over the domain as shown by Glowinski21

and Pironneau (1979), while the Poisson equation for pressure lacks boundary conditions, implying22

that the system is still coupled through the boundary conditions. This means that no boundary23

conditions are required for the pressure which plays the role of a Lagrange multiplier to enforce the24

incompressibility constraint on the velocity field, in this case represented by the auxiliary vector25

field v.26

Let us introduce the following decomposition of the unknowns:27 p(x)
v(x)
ϕ(x)

 =

p
0(x)

v0(x)
ϕ0(x)

+

∞∑
k=1

p
k(x)

vk(x)
ϕk(x)

λk. (7)

By virtue of its linearity, the original problem (6) can be split in the following sets of equations:28 
−∇2p0 = −∇ · g, p0|S = 0

(−∇2 + γϑ)v0 = −∇p0 + g, v0|S = b

−∇2ϕ0 =∇ · v0, ϕ0|S = 0,

(8)

29 
−∇2pk = 0, pk|S = µk

(−∇2 + γϑ)vk = −∇pk, vk|S = 0 k = 1 :∞
−∇2ϕk =∇ · vk, ϕk|S = 0,

(9)

where µk is the k-th basis function of the space of trace functions, namely the space of functions30

defined on the domain boundary. In this case, the Lagrangian finite-element basis functions, which31
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are 1 in one point of the boundary grid and 0 on the remaining points, has been selected. To obtain1

the discretized problems, the space of the trace functions is truncated to a finite dimension ND2

equal to the number of boundary degrees of freedom (d.o.f.), and the µk functions are replaced3

by the trace of the discrete FEM basis functions that do no vanish on the whole boundary. It is4

therefore necessary to compute the solution of the first system and compute as many solutions5

for the k problems as the number of d.o.f.s on the boundary, each time with a different boundary6

condition for pk. As we can appreciate, the PIV data only appear in system (8), whereas the k7

problems (9) are independent from the velocity data, hence they depend on the grid shape only.8

To reconstruct the pressure field, one has to compute also λk, the coefficients of the expansions9

which represent, with the above choice of the trace functions, the pressure values on the boundary10

nodes. To do so, one can use the overabundant Neumann boundary condition for ϕ. By inserting11

the expansion for ϕ in ∂ϕ
∂n = 0 and recasting the problem in variational formulation, one obtains12 ∮

S

w
∂ϕ0

∂n
+

ND∑
k=1

∮
S

w
∂ϕk

∂n
λk = 0, (10)

where w is an arbitrary test function which can be assumed different from zero only in a narrow13

shell along the boundary, so that the volume integrals above can be evaluated efficiently. Exploiting14

the divergence theorem and the Poisson equation for ϕ0 and ϕk, one obtains the following system15

of equations:16

ND∑
k=1

∫
V

(w∇ · vk −∇w ·∇ϕk)λk = −
∫
V

(w∇ · v0 −∇w ·∇ϕ0) (11)

that, once discretized, will lead to a linear system whose solution is a vector containing λk. Once17

the coefficients of the expansion have been computed, the pressure field can be reconstructed:18

p(x) = p0(x) +

ND∑
k=1

pk(x)λk. (12)

It should be noticed that p does not exactly correspond to the physical pressure field, since the19

equations have been scaled by the kinematic viscosity and density. The physical pressure values are20

obtained by multiplying the computed pressure field by ν and ρ and adding a constant pressure21

value to match the measured pressure in an arbitrary point of the flow field. This last step cannot22

be avoided by any technique exploiting the incompressible Navier–Stokes equations to compute23

the pressure. In fact in these equations, the pressure field is determined up to an additive constant24

when full Dirichlet boundary condition for the velocity variable are enforced. This problem is not a25

significant limitation, since one is generally interested in pressure differences rather than absolute26

pressure values.27

2.3 Numerical discretization28

Once the problems (8) and (9) have been recast in variational form, they can be discretized. The29

Finite Element Method (FEM) has been chosen by virtue of its efficiency, accuracy and geometric30

flexibility and since it allows one to directly translate the weak formulation in the discrete algebraic31

equations. Let Th be a regular triangulation of the domain V , built so that the nodes correspond32

to the centre of every PIV interrogation window. For this problem we will choose a linear piecewise33

approximation for p and ϕ and a quadratic piecewise approximation for u, namely we select the34

vector spaces X1
h and X2

h respectively built on the grid Th. The choice of two different vector35

spaces is necessary to satisfy the LBB condition, which must be satisfied even if the pressure and36

velocity equations are uncoupled, see Guermond and Quartapelle (1998). Introducing the basis φj ,37

1 ≤ j ≤ N for the vector space X1
h and the basis ψj , 1 ≤ j ≤ M for the vector space X2

h, we can38
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now express the approximate solutions by means of these bases:1 
ph(x) =

∑N
j=1 φj(x)pj , ph(x) ∈ X1

h

vlh(x) =
∑M
j=1 ψj(x)vlj , vlh(x) ∈ X2

h, l = 1 : nD

ϕh(x) =
∑N
j=1 φj(x)ϕj , ϕh(x) ∈ X1

h,

(13)

where N and M are the number of P1 and P2 nodes, respectively, and nD is the number of2

space dimensions. By substituting these expressions in the weak formulations, one obtains a set of3

algebraic sparse linear systems whose solution represents the nodal values of the unknowns.4

Since the FEM discretization of the Poisson and Helmholtz problems, equations (8) and (9), is
very well known, see for instance Aziz and Werschulz (1980), let us focus on the discretization of the
integral equation (11). By considering the i-th basis function wi of the trace space, corresponding
to the i-th Dirichlet boundary node, we have:

ND∑
k=1

∫
V

(wi∇ · vk −∇wi ·∇ϕk)λk = −
∫
V

(wi∇ · v0 −∇wi ·∇ϕ0) i = 1 : ND. (14)

Equation (14) represents the i-th row of the linear system Aλ = a, where:

Aik =

∫
V

(wi∇ · vk −∇wi ·∇ϕk), (15)

ai = −
∫
V

(wi∇ · v0 −∇wi ·∇ϕ0). (16)

The k-th column of matrix A can be computed once the k-th problem (9) has been solved, whereas5

the computation of the right-hand side requires the solution of system (8). The influence matrix6

A is positive semi-definite. Because of full Dirichlet boundary conditions imposed on the velocity7

field, the pressure is determined up to an additive arbitrary constant. This singularity can be8

eliminated by imposing either a prescribed mean value or the pressure value in one node. This can9

be achieved in several ways, the easiest one consisting of simply replacing the row corresponding10

to the node where we want to impose the pressure value with a row of zeros, but for the diagonal11

term which is set to one. The corresponding term on the right-hand side is set equal to the pressure12

value to be imposed. This method is definitely of simple implementation, however it can be seen13

that the modified matrix A, especially for low ∆t and ν, is extremely ill-conditioned, and therefore14

a considerable error is introduced in its solution. In order to avoid this problem, the solution15

can be computed through the diagonalization of matrix A, which is computationally onerous but16

affordable, since it has to be computed only once.17

3 Validation and Error analysis18

3.1 Convergence analysis19

The whole method has been tried on a test-case with a known solution to investigate its accuracy20

and convergence properties. The following divergence-free velocity vector field and pressure field21

are considered:22

uex(x,t) = ũ(x)q(t),

ũx(x) = − cosx sin y,

ũy(x) = sinx cos y,

q(t) = sin(2πt),

pex(x,t) = −1

4
[cos (2x) + cos(2y)]q2(t),

(17)

which is the exact solution (u,p) in V ⊂ R2 : [−1,1]2 to the unsteady Navier–Stokes equations,23

with the following choice of the volume force: f(x,t) = ũ(x)[q′(t) + 2νq(t)]. For the convergence24

analysis we consider the normalized L∞ norm (maximum norm) of the error between the exact25
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and the reconstructed solution, defined as:1

Err∞ =
‖p− pex‖∞
‖pex‖∞

=
max
x∈Ω
|p− pex|

max
x∈Ω
|pex|

. (18)

The L∞ norm has been chosen since it provides pieces of information more suitable to analyse the2

accuracy of the method from the viewpoint of the experimentalist. The error, computed for several3

values of the grid spacing h, is represented in the logarithmic-scale plot of Figure 1. The analysis4

has been carried out for two different values of the time interval ∆t, and for both the explicit and5

the implicit treatment of the time derivative, with ν = 10−5 m2/s and t̄ = 1/8 s.6

As it can be appreciated from the figure, this method provides a second order spatial conver-7

gence for the reconstructed pressure for both the explicit and the implicit treatment of the time8

derivative. Some discrepancies can be observed, for small h, with the largest value of ∆t adopted.9

This behaviour can be explained by the fact that for small h, the error due to the time discretiza-10

tion becomes of the same order of magnitude and eventually bigger than the spatial one, implying11

the saturation of the convergence curve for small h.12

Fig. 1: Convergence analysis for the reconstructed pressure. Results for different treatments of the
time derivative and ∆t

3.2 Stochastic error analysis13

To test the robustness of the method when measurement errors on velocity are present, a14

Monte Carlo simulation on a slightly modified test case (with respect to the one described in15

section 3.1) has been conducted. The only parameter that has been changed is the function of time16

g(t) = 1− exp (−4t) and the time instant considered, t̄ = 1 s. The simulation has been carried out17

with the following methodology:18
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1. Both the velocity fields at the current and previous time instants are perturbed with a stochastic1

error. The error has a Gaussian distribution with null expected value, hence we assume an ideally2

calibrated instrument, and standard deviation σpert = 0.01
2
√
3
' 3 · 10−3 m/s, generated using the3

method developed by Box and Muller (1958). The perturbation is uncorrelated between the4

two velocity components and in the spatial domain. The same perturbation has been applied5

to the two time steps, since an uncorrelated velocity perturbation in time would be amplified6

too much, especially for small ∆t. Therefore, the perturbation corresponds to a white noise in7

space.8

2. The proposed method is applied to the perturbed velocity field, with the following choice of the9

parameters: ν = 10−5 m2/s, ∆t = 10−3 s, h = 0.05 m.10

3. The procedure is repeated an adequate amount of times, each time with a different stochas-11

tic perturbation, which must satisfy the statistical properties just introduced. The computed12

pressure errors are stored for each realization of the Monte Carlo simulation.13

4. The produced database is then post-processed to compute the statistical properties of the14

pressure error.15

3.2.1 Preliminary analysis16

A preliminary analysis with a reduced amount of simulations is carried out to check the ro-17

bustness of the method for both the explicit (ϑ = 0) and implicit (ϑ = 1) treatment of the time18

derivative. The average pressure error, computed in L∞ norm and normalized by the L∞ norm of19

the exact solution, is shown in Table 1.20

- Pressure error

Implicit 2.81
Explicit 1.33 E-002

Table 1: Preliminary stochastic analysis: L∞ norm of the pressure error for the explicit (ϑ = 0)
and implicit (ϑ = 1) treatment of the time derivative.

As it can be seen from the table, the implicit method presents an unacceptable error in the21

pressure computation. This is caused by the fact that for small∆t and ν, hence great γ, the laplacian22

term of the Helmholtz equation for u is everywhere negligible with respect to the reaction term but23

for a thin layer near the boundary, leading to a singular perturbation problem. This fact generates24

oscillations in the velocity fields when discretized by the Bubnov–Galerkin method. If the boundary25

value of velocity is affected by an error, this will turn in its great amplification when the pressure is26

computed. The same problem is not present in the explicit method since the velocity has to satisfy27

a Poisson equation.28

3.2.2 Detailed analysis29

A more accurate Monte Carlo analysis has been carried out, based on a set of 1000 realizations,30

which are sufficient to reach the convergence of the standard deviation of the perturbation up31

to the second significant figure. The flow and discretisation parameters are the same as for the32

preliminary analysis, and an explicit treatment of the time derivative has been adopted since it33

guarantees a better robustness to velocity measurement errors.34

At the end of each simulation, the local normalized pressure error, defined as follows:35

Err =
p− pex
‖pex‖∞

(19)

is stored for every grid node. At the end of the whole Monte Carlo Simulation, the average and the36

standard deviation σ of Err is computed for each grid node. The results are presented in Figure 2.37

Let us first analyse the space distribution of the mean value of the error. As it can be appreciated38

from figure 2a, the mean value of the pressure error is globally quite small, and follows the profile of39
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Fig. 2: Test case with prescribed stochastic perturbation of the velocity field: expected value (a)
and standard deviation (b) of the pressure error
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the discretization error. This means that locally the mean value of the error due to the perturbation1

is approximately zero, which was expected since the perturbation has zero mean value. In usual2

applications, where the exact solution is not available, an a posteriori estimator could be used to3

obtain an estimate of the numerical error.4

A more interesting piece of information can be deduced from the plot of the standard deviation5

of the error, Figure 2b. Here the plane represents the standard deviation of the perturbation. As it6

can be seen, the standard deviation of the perturbation is amplified homogeneously on the inner7

nodes, with a ratio σ/σpert ' 1.6. The same phenomenon can be appreciated among the nodes8

belonging to the boundary, but here the ratio σ/σpert grows to approximately 2. This analysis9

shows that the most sensitive part for the amplification of the error standard deviation is the10

border of the domain, which is generally where we are more interested in knowing the pressure11

value (e.g. to compute the loads), fortunately the amplification of the perturbation is rather small,12

since the error on the reconstructed pressure is just twice the perturbation.13

The null value that can be observed on the boundary of the domain in Figure 2b can be14

explained by the fact that, since pressure is defined up to an additive constant, the exact value of15

the pressure has been imposed in that point and therefore the error is always equal to zero in that16

point, and its variance too.17

The very same Monte Carlo analysis has been repeated with different values of σpert. The18

results are reported in Table 2:19

σpert σcenter/σpert σborder/σpert

0.001 1.54 1.98
0.010 1.54 1.98
0.030 1.60 2.02

Table 2: Stochastic analysis for different values of the standard deviation of the perturbation

As it can be appreciated, the ratio between the error standard deviation and σpert is almost20

independent from the standard deviation of the perturbation, which is a typical behaviour of linear21

problems.22

3.3 Comparison with other techniques23

The proposed method, in its explicit form, is here compared with other similar techniques in
terms of robustness to the velocity error. The same approach of Charonko et al (2010) has been
pursued. An exact solution of the incompressible Navier–Stokes equations has been considered, the
decaying Taylor vortex. The corresponding velocity field has been perturbed by a zero-mean error
with Gaussian distribution of prescribed standard deviation. The considered tangential component
of the velocity field and the pressure field are:

Vθ(r,t) =
H

8π

r

νt2
exp

(
− r2

4νt

)
(20)

Pex(r,t) = − ρH2

64π2νt3
exp

(
− r2

2νt

)
+ P∞, (21)

where H is a measure of the angular momentum in the vortex, r is the distance from the origin and24

P∞ is the pressure at an infinite distance from the origin, here set to zero. The employed grid, the25

time step and the problem parameters were set equal to those used by Charonko et al (2010). The26

exact velocity field is perturbed with a Gaussian error defined as a percentage of the local value27

of the velocity. The same 26 time instants of the cited article are considered. Let us denote by δkl28

the normalized pressure error at node k at time instant l, computed as the difference between the29

computed pressure value and the exact solution divided by the pressure drop at that time instant,30
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namely Pex(0,t), as in (19). The global indicator considered for the pressure error is the following:1

σtot =

√√√√ 1

LK

K∑
k=1

L∑
l=1

(
δkl − δ̄l

)2
, (22)

where δ̄l is the average value of δkl at the time instant l, K is the total number of nodes and L is2

the total number of time instants considered. The results in terms of σtot are presented in table 33

for two different values of the velocity error (1%, 10%). Moreover, two different time-discretization4

schemes were tested: the first order backward-Euler scheme (BDF) presented in equation (4) and5

a second-order central-difference scheme (CDF) in which the time derivative is approximated as6

un+1−un−1

2∆t . Results are compared in Table 3 with those obtained by Charonko et al. for the two7

most accurate techniques, namely:8

Method A Poisson problem for pressure in conservative formulation (i.e. with the convective term9

written in the form ρ∇ · (u ⊗ u)) with full Neumann boundary conditions, implemented by10

means of second-order finite differences.11

Method B Standard line integration of the pressure gradient by means of second-order finite dif-12

ferences. In order to minimize the effect of the choice of starting location and integration path13

on the final results, the result was computed for all eight possible combinations of corner and14

integration direction, and the resulting fields averaged.15

Velocity perturbation
σtot

Proposed method, Proposed method,
A B

BDF CDF

1% 3.32% 1.36% 5% 12%
10% 36.52% 21.38% 53% 87%

Table 3: Stochastic analysis: comparison of the total RMS of the pressure error obtained by the
present method (σtot) with the one obtained by other techniques (Charonko et al, 2010). Method
A is Poisson conservative, while method B is line integration.

As it can be appreciated, an excellent propagation of the velocity error can be obtained by means16

of the proposed technique, better than the one obtainable by the other methods developed so far.17

As expected, the second order central difference formula (CDF) approach yields more accurate18

results, since it introduces a further smoothing of the velocity error. A 1.36% standard deviation19

on pressure is obtained starting from a 1% standard deviation of the velocity perturbation, which20

is quite remarkable.21

These results were obtained by applying an uncorrelated error between the two time steps.22

The same test was repeated applying the same perturbation to both time steps, revealing a 0.07%23

pressure error against a 1% perturbation. This confirms the fact that the most important contri-24

bution to the pressure error arises from the time discretization rather than from the spatial one.25

The problem is further accentuated for quite small ∆t, revealing an issue if such techniques are26

adopted for time-resolved PIV. For this reason the central difference approach is recommended for27

such applications.28

Differently from the results obtained in section 3.2.2, the linear behaviour of the pressure error29

with respect to the velocity one cannot be recognized any more. This is due to the fact that σtot30

is a global parameter that resumes the behavior of the method at different time instants, hence31

representing different problems. By repeating the same procedure at only one time instant, the32

linearity of the pressure error with respect to the velocity one is recovered.33

3.4 Robustness to out-of-plane velocity components34

In order to test the robustness of the method when out-of-plane velocity components are present,35

the very same procedure of section 3.3, with the time derivative computed with backward differ-36
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ences, has been applied to the decaying Taylor vortex after its axis has been rotated by an angle θ1

around the y−axis, leading to a systematic bias in the resolved in-plane measurements that violates2

the incompressibility constraint. This could also simulate a misalignment of the PIV laser sheet3

with respect to the flow plane. Results in terms of σtot are presented in Table 4 for different values4

of θ.5

θ δ̄ σtot

0 deg. 0.01 % 3.32 %
5 deg. 0.02 % 3.32 %

15 deg. 0.08 % 3.31 %
30 deg. 15.31 % 21.50 %

Table 4: Mean value and standard deviation of the pressure error as a function of the vortex tilting
angle

It can be noticed that the method preserves its overall performance for relatively large vortex6

tilting angles, and that the performance starts to decrease at 30 degrees. A similar behaviour is7

observed also by Charonko et al (2010) for the other techniques.8

4 Test rig and experimental setup9

4.1 Test rig and experimental setup for the phase-averaged measurements10

4.1.1 Test rig11

The experimental campaign to acquire the phase-averaged PIV database was carried out at12

Politecnico di Milano, taking advantage of the low-speed, closed-return wind tunnel at the Depart-13

ment of Aerospace Science and Technology. This wind tunnel has a rectangular test section, 1.514

m high and 1 m wide, and can achieve a maximum wind speed of 55 m/s, with a turbulence level15

lower than 0.1%.16

The blade section model that was employed for the experimental campaign had been already17

employed in several experimental investigations about the dynamic stall process and perpendicular18

blade vortex interaction, for further details see Zanotti and Gibertini (2012) and Gibertini et al19

(2013). The chosen airfoil is a NACA 23012.The chord of the blade section model is 0.3 m and20

the aspect ratio is 3.1. The model is composed by three aluminium machined external sections21

connected to an internal metallic frame also made of aluminium. The model central section is in-22

terchangeable depending on the measurement technique involved. In particular, one central section23

is equipped with 21 pressure taps positioned along the midspan airfoil contour. A different central24

section without taps is used to perform PIV surveys in the model midspan plane. The blade section25

model is mounted horizontally in the wind tunnel test section and is hinged about the quarter-26

chord axis on two external, tubular steel shafts positioned on self-aligning bearings, as depicted in27

Figure 3. The model is installed on a heavy metallic supporting structure composed by steel beams28

and aluminium profiles.29

The oscillating-airfoil motion around the axis at 25% of the chord is driven by a brushless30

servomotor through a 12:1 gearbox drive.The model pitching motion is controlled by a proportional-31

derivative action using an interface software purposely developed in Labview. Two encoders are32

mounted directly on the outer shaft: the first one is a 2048 imp/rev absolute digital encoder, used33

for the feedback control, whereas the second one is a 4096 imp/rev incremental analog encoder,34

used to determine the current model position. More details about the description of the pitching35

airfoil experimental rig can be found in Zanotti (2012).36
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Pitching System

Blade Section Model

V

Fig. 3: Test rig

4.1.2 Experimental Setup1

The experimental campaign employed both PIV and unsteady pressure measurements since the2

goal of the activity is a comparison between the reconstructed and measured pressure fields.3

The midspan section of the model is equipped with 21 Kulite XCS-093 pressure transducers4

that are slightly more concentrated near the leading edge. The pressure tap positions are shown in5

Figure 4. The pressure tap numbering starts from the leading edge and follows a closed loop from6

the upper to the lower surface.7
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Fig. 4: Position of the pressure taps on the NACA 23012 model midspan section

The pressure signals have been acquired using a National Instruments compact data acquisition8

system cDAQ-9172 equipped with six NI 9237, 24 bit sampling bridge modules. The transducer9

signals have been acquired with a 50 kHz simultaneous sampling rate on 21 channels for a time10

period corresponding to 30 complete pitching cycles. The model angular position has been measured11

by the incremental encoder simultaneously with the pressure transducer signals. The simultaneous12

acquisition of the encoder signal has been used to evaluate the phase averaged pressures on the13

airfoil surface.14
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The PIV system is composed of a Litron NANO-L-200-15 Nd:Yag double pulsed laser with 2001

mJ output energy and a wavelength of 532 nm and an Imperx ICL-B1921M CCD camera with2

a 12 bit, 1952 × 1112 pixel array. The laser was positioned on the top of the wind tunnel test3

section while the camera is positioned on one side of the test section. The camera was equipped4

with a Nikkor 50 mm lens. The synchronization of the laser pulses with the camera exposure was5

controlled by a 6 channel Quantum Composer QC9618 pulse generator. The digital encoder signal6

mounted on the oscillating model triggered every 1/rev the laser and the camera at the angle of7

attack of the oscillating model required for the test. The digital images were captured using a8

GigaEthernet EBus connection. A particle generator PIVpart30 by PIVTEC with Laskin atomizer9

nozzles was used for the seeding, consisting in small oil droplets with diameter in the range of 1-210

µm.11

For every flow condition, two different PIV measurement windows (152 mm × 86 mm) have12

been considered at the midspan of the employed wing section model: the first one positioned near13

the upper surface of the leading edge (fin1) and the second one positioned near the upper surface14

of the trailing edge (fin2). The two measurement windows are represented in Figure 5:15
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Fig. 5: Position of the PIV measurement windows with respect to the blade section

The image post-processing has been carried out by means of the PIVview 2C/3C software,16

which implements a multi-grid algorithm, starting from 96 × 96 pixel interrogation windows up to17

32 × 32, with an overlap factor of 50 %.18

All the experiments were carried out with a wind speed of approximately 30 m/s, a Reynolds19

number Re = U∞c
ν of approximately 6 · 105, where c is the airfoil chord, a Mach number of20

approximately 0.09 and a reduced frequency k = Ωc
2U∞

of 0.1 (f = Ω/2π = 3.2 Hz).21

Steady surveys have been conducted by clamping the model shaft. Then, to test the proposed22

method on a challenging unsteady flow, a moving, pitching airfoil in dynamic stall conditions has23

been considered. The prescribed time history of the angle of attack for the oscillating airfoil is24

α(t) = α0 +A sin(Ωt). (23)

For each measurement window, 1000 velocity fields have been sampled and post-processed to25

compute the average field and the Reynolds-stress tensor. When we are interested in an unsteady26

computation of the pressure field a set of velocity fields have to be acquired, for every configuration,27

at different times before and after the considered instant, depending on which time-integration28

scheme is adopted.29

4.2 Test rig and experimental setup for the time-resolved measurements30

To investigate the accuracy of the proposed technique when applied to time-resolved PIV31

datasets, further experiments, where simultaneous time-resolved PIV and pressure measurements32
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have been acquired, were carried out at DLR in the low-speed closed-circuit wind tunnel DLR-1

SWG, with a test section of 2.4 m × 1.6 m (width × height). The measurements were performed2

over the suction side of a sidewall-mounted finite wing with a chord length of 0.27 m, an aspect ra-3

tio of six and a positive linear twist of 5.5◦. The finite wing used the DSA-9A helicopter-main-rotor4

airfoil. The free-stream velocity was set to 55 m/s resulting in a chord based Reynolds number of5

9·105 and a Mach number of 0.16. The model was pitched sinusoidally about the quarter chord axis6

at α = 9◦± 6◦ at the wing root, with a frequency of 3.2 Hz (k = 0.05). The sinusoidal motion was7

driven by a Parker 190ST6M motor with a 4 : 1 gearbox. The motor controller features a cascaded8

control for current, rotational speed and position. An additional iterative learning control for the9

position input was developed to achieve a high repeatability of the motion.10

To limit the influence of the wing tip, the measurements were carried out in a plane aligned11

with the free stream and 0.52 m (1.93c) inboard of the tip. The model was equipped with 22 Kulite12

XCQ-093 unsteady-pressure transducers at that spanwise position, 15 of which were located on13

the suction side of the airfoil. The flow was seeded with 1 µm Di-Ethyl-Hexyl-Sebacat (DEHS)14

droplets and illuminated with a Litron LDY304 dual cavity laser. Particle images were acquired15

with two PCO.dimax cameras at a resolution of 1680 × 1472 pixels and an acquisition rate of 116

kHz per image pair in a stereoscopic configuration. The PIV evaluation was performed with the17

commercial software Davis 8 (LaVision) using a multi-grid scheme with two final passes. The final18

interrogation window size was 32×32 pixels with an overlap of 50%, resulting in a grid spacing of 3.619

mm (1.3%c). Assuming a precision of 0.1 pixels for the determined displacement, the uncertainty20

in the velocity is approximately 3% of U∞. The timing of the pressure data and the PIV recordings21

was synchronised by means of a camera feedback signal and a fast photodiode.22

5 Results23

5.1 Phase-averaged database24

In this section, we present the results obtained by using the proposed method to reconstruct25

the pressure field around the NACA 23012 airfoil from PIV measurements of the related velocity26

field. Herein the method is applied without any modification of the jagged grid inherited from the27

PIV data postprocessing, i.e. the grid which is obtained by simply dropping the points which lie28

outside the flow field. The following two test cases have been analysed:29

1. fixed airfoil with α = 9◦30

2. oscillating airfoil with α0 = 10◦, A = 10◦ and α = 10◦ downstroke31

To deal with the Reynolds averaged Navier-Stokes equations, both the mean field and the32

Reynolds stress tensor components have been computed by phase–averaging over 1000 samples of33

the velocity field for each selected phase. This high number of samples allows to smooth out the34

high frequency errors and therefore to reduce the error associated with the time derivative term35

in the Navier–Stokes equations, which otherwise could be quite severe. In order to compare the36

obtained numerical results with the available measures gathered from Kulite transducers on the37

airfoil surface, the arbitrary offset of the computed pressure field must be fixed. In Case 1 this was38

accomplished by applying the Bernoulli theorem in an arbitrary point far from the airfoil surface,39

while in Case 2 the offset was fixed by imposing the pressure equal to the measured one in a40

node near the pressure taps, since the steady version of the Bernoulli theorem cannot be employed41

anymore.42

The input velocity fields (magnitude and streamlines), the reconstructed pressure coefficient43

fields and the comparison between the reconstructed and the experimental cP are presented in44

Figure 6 and 7. To better assess the proposed technique by comparison with a standard pressure-45

retrieval method, the solution of the Poisson equation in its conservative formulation (Method A of46

section 3.3) with full Neumann boundary conditions was purposely implemented by means of finite47

differences. A second-order centred approximation of the derivatives was adopted in the domain48

while second-order sided differences were employed on the boundary. The cP distribution compar-49

ison between the two techniques is represented in Figures 6f and 7e. Moreover the reconstructed50

pressure coefficients for Case 1 obtained by means of the proposed technique are compared with51

those obtained using the Bernoulli equation and a standard panel method (Xfoil) in Figure 6e.52
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(a) Leading edge: Velocity field [m/s] (b) Trailing edge: Velocity field [m/s]

(c) Leading edge: Reconstructed cP (d) Trailing edge: Reconstructed cP
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Fig. 6: Case 1, fixed airfoil test case, α = 9◦. Input velocity field, (a) and (b), reconstructed cP
field, (c) and (d), and cP distribution comparison, (e) and (f).

Referring to Fig. 6e and 7e, fairly good agreement is obtained between experimental data and1

numerical results in most of the test cases, thus providing an assessment of the effectiveness of2

the proposed technique. Nevertheless, in some cases, the computed pressure value reveals some3

discrepancies from the corresponding measurement. These discrepancies can be ascribed to three4

main sources of error, namely:5

1. the distance between the points where the pressure is computed and the actual position of the6

airfoil surface, especially when strong normal pressure gradients are present. This fact does7

not allow the method to completely resolve the pressure peak at the airfoil leading edge, as8

highlighted in Figure 7e.9
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(a) Leading edge: Velocity field [m/s] (b) Trailing edge: Velocity field [m/s]

(c) Leading edge: Reconstructed cP (d) Trailing edge: Reconstructed cP
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Fig. 7: Case 2, oscillating airfoil test case, α0 = 10◦, A = 10◦, α = 10◦ downstroke. Input velocity
field, (a) and (b), reconstructed cP field, (c) and (d), and cP distribution comparison (e).

2. the reduced reliability of the PIV measurements close to the airfoil surface especially where1

severe light scattering occurs. Light scattering was an issue especially on the leading edge2

of the airfoil, producing unphysical velocity measurements close to the wall and, therefore, a3

computed pressure field affected by the same unphysical behaviour. This is well illustrated in4

Fig. 6a, where an unphysical local velocity minimum can be observed in the region of maximum5

velocity near the leading edge. This erroneous velocity sample translates in a local maximum6

of pressure (Fig. 6c). The same effect can be appreciated in the pressure coefficients computed7

by means of the Bernoulli equation in Figure 6e.8
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3. the FEM sensitivity to mesh quality, especially with respect to sharp corners on the boundary,1

see for instance the small oscillations of the reconstructed pressure in correspondence of the2

mesh corner on the trailing edge in Fig. 6e.3

Let us now focus on the comparison between the different pressure-retrieval methods. As it can4

be appreciated in Figure 6e, the employment of the Bernoulli equation gives fairly good results on5

the leading edge, where the hypothesis of the theorem can be considered to be verified in the inner6

nodes due to the thin boundary layer. However it fails in correctly reconstructing the pressure7

on the trailing edge since the nodes closest to the airfoil lie in the boundary layer, where the8

irrotationality hypothesis is not verified. For what concerns the comparison between the proposed9

technique and the classical Poisson formulation of Figures 6f and 7e, they show similar results,10

with a general better behaviour of the proposed technique with respect of the standard one.11

5.2 Time-resolved database12

In order to better assess its properties, the proposed technique was also applied to a time-13

resolved database, where the error is not filtered by the averaging procedure. Two different in-14

stantaneous velocity fields were considered, that from now on will be addressed as ”Attached” and15

”Separated” case:16

Attached αlocal = 15.8◦ in the upstroke phase of the oscillating motion, just before separation17

occurs on the upper surface of the trailing edge.18

Separated αlocal = 17.2◦ in the upstroke phase of the oscillating motion, as the flow starts to19

separate from the trailing edge of the airfoil upper surface.20

The pressure fields were reconstructed using central differences for the time derivative approx-21

imation, as it proved to lead to more accurate results in section 3.3. The input velocity fields are22

shown in Figure 8a (Attached) and 9a (Separated), the reconstructed cP fields are shown in Figure23

8b (Attached) and 9b (Separated), while the comparison of pressure coefficients reconstructed by24

the proposed technique and by the standard Poisson formulation are shown in Figure 8c (Attached)25

and 9c (Separated). In order to fix the pressure offset, the cP was set equal to the measured one26

in one of the nodes near the pressure taps.27

As it can be appreciated from Figures 8c and 9c, the pressure field was reconstructed very well on28

most of the airfoil surface, except on the leading edge where the suction peak could not be resolved29

due to the distance of the measure points from the airfoil surface in a region where strong normal30

pressure gradients are present, as already pointed out in the section 5.1. This fact was confirmed31

by comparison with CFD simulations for the same configuration. The CFD-computed pressure32

coefficients were extracted in the points corresponding to the PIV measurement points closest to33

the airfoil surface. The results near the airfoil nose were comparable with those reconstructed by34

means of the proposed technique, thus confirming that this effect can be held accountable for the35

encountered discrepancy.36

In addition, the point of flow-separation is correctly captured, as it can be appreciated from the37

slight pressure variation in Figure 9c at approximately x/c = 0.6. For what concerns the comparison38

between the proposed technique and the Poisson method, an overall better performance of the39

proposed method can be appreciated in both figure 8c and 9c.40

6 Conclusions41

In this work, an innovative and accurate procedure to compute the pressure field from PIV42

velocity measurements has been proposed based on the uncoupling of the velocity and pressure43

fields in the incompressible Navier–Stokes equations which relies on exact integral conditions for the44

pressure. By means of the Glowinski and Pironneau (1979) method, a set of linear PDE problems45

for the unknown pressure field has been derived and its numerical solution has been implemented46

by the finite-element method.47

First the proposed method is tested against an exact solution of the Navier–Stokes equations48

over a square domain, showing second order accuracy with respect to the grid size h, the pressure49
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(a) Velocity field [m/s] (b) Reconstructed cP field
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Fig. 8: Time-resolved database: Attached case. Oscillating airfoil at αlocal = 15.8◦ upstroke. Input
velocity field (a), reconstructed cP field (b), and cP distribution comparison (c).

error being computed in the L∞ norm. This norm has been chosen because it gives valuable1

information to appraise the properties of the method from the viewpoint of the experimentalist.2

Moreover, Monte Carlo simulations, with imposed stochastic perturbations of the velocity field,3

show that the regions that are most sensitive to the error on the velocity data are the boundary4

and the corners of the domain, with an approximate ratio between the standard deviation of the5

error and the standard deviation of the perturbation of almost 2, for the present test case. This6

ratio is quite insensitive to a change in the perturbation amplitude.7

The performance of the proposed method has been also compared with that provided by other8

methods exploiting the test case proposed by Charonko et al (2010). The comparison shows a9

remarkable smoothing of the velocity error, that allows the proposed method to be significantly10

more accurate than the other techniques proposed so far.11

Finally, the method has been applied to both phase-averaged and time-resolved PIV mea-12

surements of a challenging aeronautical problem: the oscillating airfoil. The comparison between13

the computed pressure distribution and the available pressure measurements on the airfoil surface14

shows pretty encouraging results. The reconstructed pressure field presents the expected structures15

of the examined cases (e.g separated flow, reattaching flow, etc.). Nevertheless some discrepancies16

are still present between the reconstructed and the experimental pressure values. These discrepan-17

cies can be ascribed more to the limitations of the PIV measurements than to the method itself.18

In particular, the fact that the boundary nodes are quite distant from the airfoil surface where the19

reference pressure is measured, and the scattering of the laser sheet near the airfoil leading edge.20
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(a) Velocity field [m/s] (b) Reconstructed cP field
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(c) cP distribution comparison: Experimental data, Proposed method, Pois-
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Fig. 9: Time-resolved database: Separated case. Oscillating airfoil at αlocal = 17.2◦ upstroke. Input
velocity field (a), reconstructed cP field (b), and cP distribution comparison (c).

Moreover direct comparison with the Poisson method for the pressure field reconstruction showed1

an overall better performance of the proposed method.2

Acknowledgements The authors gratefully thank Prof. Luigi Quartapelle for his contribution to the formulation3

and numerical implementation of the proposed method.4
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Appendix A: Treatment of pressure Dirichlet boundary conditions1

When reliable pressure measurements are available, Dirichlet boundary conditions for the pres-2

sure variable can be enforced in that part of the boundary. The starting problem is the following:3

4 
∂U

∂t
+ (U ·∇)U − ν∇2U +∇P = F in V,

∇ ·U = 0,

U = B on SU ,

P = P̄ , U · n = B · n, ∂(U ·τ )
∂n = β on SP ,

(24)

where SP is the portion of the boundary where pressure measurements are available, while in SU5

the velocity measurement is only available, in such way that SP ∪ SU = S. The new uncoupled6

formulation reads:7 
−∇2p = −∇ · g, p|SP

= p̄,

(−∇2 + γϑ)v = −∇p+ g, v|SU
= b, v · n

∣∣
SP

= b · n, ∂(v·τ )
∂n

∣∣
SP

= β,

−∇2ϕ =∇ · v, ϕ
∣∣
S

= 0, ∂ϕ
∂n

∣∣
S

= 0.

(25)

By introducing decomposition (7), one obtains the following sets of equations:8 
−∇2p0 = −∇ · g, p0|SU

= 0, p0|SP
= p̄,

(−∇2 + γϑ)v0 = −∇p0 + g, v0|SU
= b, v0 · n

∣∣
SP

= b · n, ∂(v0·τ )
∂n

∣∣
SP

= β,

−∇2ϕ0 =∇ · v0, ϕ0|S = 0,

(26)

9 
−∇2pk = 0, pk|SU

= µk, pk|SP
= 0

(−∇2 + γϑ)vk = −∇pk, vk|SU
= 0, vk · n

∣∣
SP

= 0, ∂(vk·τ )
∂n

∣∣
SP

= 0, k = 1 :∞
−∇2ϕk =∇ · vk, ϕk|S = 0,

(27)

The remaining equations are analogous to those derived in section 2.2, with the distinction that10

now ND does not represent the total number of the boundary nodes, but only the number of the11

nodes belonging to SU .12

A final word of caution for the reader is in order. By partially enforcing Dirichlet boundary13

conditions for pressure, additional errors may be introduced in the pressure-field reconstruction14

due to the pressure measurement error. The authors recommend to use the standard formulation15

of the proposed technique, in which the boundary values are derived from the velocity field, unless16

highly-reliable pressure measurements are available.17
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