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We study the full three-dimensional instability mechanism past an hemispherical

roughness element immersed in a laminar Blasius boundary layer. The inherent

three-dimensional flow pattern beyond the Hopf bifurcation is characterized by co-

herent vortical structures usually called hairpin vortices. Direct numerical simulation

results are used to analyze the formation and the shedding of hairpin vortices inside

the shear layer. The first bifurcation is investigated by global-stability tools. We

show the spatial structure of the linear direct and adjoint global eigenmodes of the

linearized Navier-Stokes equations and use the structural-sensitivity field to locate

the region where the instability mechanism acts. The core of this instability is found

to be symmetric and spatially localized in the region immediately downstream of the

roughness element. The effect of the variation of the ratio between the obstacle height

k and the boundary layer thickness δ∗k is also considered. The resulting bifurcation

scenario is found to agree well with previous experimental investigations. A limit

regime for k/δ∗k < 1.5 is attained where the critical Reynolds number is almost con-

stant, Rek ≈ 580. This result indicates that, in these conditions, the only important

parameter identifying the bifurcation is the unperturbed (i.e. without the roughness

element) velocity slope at the wall.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Processes of transition to turbulence over rough surfaces are often encountered in an en-

gineering context. For example, pipes and ducts cannot often be considered as hydraulically

smooth, especially at high Reynolds numbers. A practical example in which these phenom-

ena assume considerable importance is the flow past ice formations on aircraft surfaces that

can lead to a deterioration of handling characteristics and produce noise.

The transition process on surfaces with large roughness protrusion height appears to be

characterized by physical mechanisms that are different from those acting for lower roughness

protrusion height and have not been clarified yet. The presence of small roughness elements

at the wall produces small flow disturbances which linearly amplify while being convected

downstream, eventually attaining the amplitude necessary to cause transition at a relatively

large distance from the roughness elements that gave rise to them. Such disturbances are

of two general types: Tollmien-Schlichting waves, well visible in experiments characterized

by a two-dimensional roughness distribution1, or longitudinal vortices inducing a transient

growth of streamwise streaks of alternating high- and low-momentum fluid, which may grow

enough to cause transition before having the possibility to decay2,3. Surfaces with a discrete

or continue distribution of roughness may be used to enhance heat transfer or mixing, or

alternatively, to stabilize systems (even in the nonlinear regime; see e.g.4) and can indeed

be used for delay transition5.

The receptivity mechanisms6,7 described above, however, only apply if the roughness

amplitude is sufficiently small3,8. On the other hand, when the protrusion height is large

enough, transition suddenly appears downstream of an individual roughness element. The

mechanism involved in this process is not yet understood. In an effort to shed light on

the transition mechanism associated with large-amplitude surface roughness, several exper-

iments have been carried out in the past9,10. The results obtained have shown that if the

Reynolds number based on the roughness height exceeds a critical value, then transition

occurs immediately past the roughness element; conversely, if the critical value is not ex-

ceeded, the receptivity mechanisms described above are dominant and transition takes place

farther downstream. These experimental data produced empirical correlations based on the

roughness-based Reynolds number as far back as in the ’50s11. These criterions are still

used in practice to predict transition in the wake of isolated three-dimensional roughness
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elements. Although transition correlations are useful from a practical viewpoint, they are

not able to reveal the detailed mechanism of transition, nor do they assist in designing

transition control strategies besides simply placing design limits on acceptable roughness

levels.

Experimental data12 and numerical simulations13 have shown that the topology of the

flow around an isolated three-dimensional roughness element in a boundary layer consists

of a steady horseshoe vortex14 that wraps around its upstream side and trails two steady

counter-rotating leg vortices downstream. At sufficiently high values of the Reynolds num-

ber, unsteady hairpin vortices originate periodically from the separated region just aft of

the roughness element. The observation of vortex shedding in the wake of moderate-to-

large-height elements supports the idea that transition beyond the critical Reynolds number

is related to a global instability of the wake flow past an isolated hemispherical roughness

element.

The mechanism of transition caused by an isolated obstacle at low speeds has been

firstly investigated by Tani et al.15, Acarlar & Smith16, Mason & Morton17 and Klebanoff,

Cleveland & Tidstrom18. Tani et al.15 showed that the transition location moved closer to

the roughness element when the Reynolds number Rek exceeded a critical value. Acarlar &

Smith16 characterized the topological features of the base flow fields and highlighted that

the production of hairpin vortices can be associated to the concentration of vorticity into

the low-pressure recirculation zone past the obstacle. Mason & Morton17 performed an

experimental campaign on several roughness elements. They showed that the formation of

the counter-rotating streamwise vortices occurred in the centre plane. Klebanoff, Cleveland

& Tidstrom18proposed, in addition, a two-region model for the evolutionary change toward

a fully developed turbulent boundary layer. This model was characterized by an inner region

where the interaction between the steady and the hairpin vortices generates the turbulence

and by an outer zone where the turbulent vortex rings are generated by the deformation

of hairpin structures. Ergin & White10 discussed the interaction between the unsteady

disturbances and the steady-flow relaxation that stabilizes these disturbances.

The problem of transition past a roughness element is relevant also at high speeds where

there is the influence of free-stream temperature, Mach number and the thermal field at

the wall. Saric et al.19 suggested to take into account the three-dimensional cross-flow

instability as a possible mechanism for the hypersonic boundary layer transition; Reshotko
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& Tumin20, instead, discussed the importance of non-modal growth. Schneider21 resumed

in a detailed survey the advanced transition-estimation methods based on simulation of the

physical mechanisms, like the parabolized stability equations, the eN method and direct

numerical simulations (DNS).

The linear stability theory has been widely used to characterize the transition in the

wake flow past an isolated roughness element. Malik22 discussed the numerical solution of

the global and local eigenvalue problems for temporal and spatial stability analysis of linear

stability equations for compressible boundary layers. Reshotko23 showed that the transient

growth can be a possible mechanism of transition to turbulence. He found that the flow

presents a modal bifurcation for low-amplitude disturbances, mode interactions and a final

fully nonlinear breakdown to turbulence. Differently, when there are disturbances of large

amplitude, he observed a nonlinear breakdown that is not related to any modal mechanism.

Groskopf24 investigated the stability of a box-shaped roughness element using the biGlobal

theory. They highlighted a convective instability related to a couple of counter-rotating

streamwise eddies. Recently, De Tullio et al.25 performed a detailed stability analysis for the

flow past an isolated roughness element over an isothermal wall with adiabatic boundary

conditions. They used direct numerical simulations, spatial BiGlobal and three-dimensional

parabolized (PSE-3D) stability analyses. They concluded that the base flow modifications

introduced by the presence of a wall-mounted obstacle can lead to significant changes in the

stability features of the flow.

In recent years, the increase of computational power allowed the use of accurate numer-

ical simulations (DNS) and heavy fully three-dimensional stability computations. Zhou et

al.26 carried out several direct numerical simulations (DNS) to investigate the transitional

boundary-layer flow induced by a roughness element with the same shape considered here.

Loiseau et al.27 investigated the global stability of a periodic array of a cylindrical roughness

element. They discussed the symmetric (varicose) and antisymmetric (sinuous) eigenmodes

of instability produced by different roughness elements characterized by several aspect ratios.

The aim of the present work is to investigate the topological changes exerted by the

inherent global eigenmode in large protrusion height roughness obstacles. Using the tools of

linear stability analysis28,29 and DNS, we perform a parametric study to show how the global

instability depends on the inlet velocity profile. In §II, the geometry, numerical methods

and code validation are presented, while results of Direct Numerical Simulations and Global
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Figure 1. Flow configuration, frame of reference and computational domain P (not in scale) are

depicted using: (a) side view and (b) top view. The region P, enclosed by a dotted line, extends

from x = −Lin
x to x = Lout

x in the streamwise direction, from z = 0 to z = Lz in the wall-normal

direction and it is symmetric in y-direction (−Ly ≤ y ≤ Ly). For a complete and detailed list of

the geometrical cases and grids, see §IID.

stability analysis are reported in §IIIA. §III B provides conclusions based on our parametric

study and, finally, a summary and discussion is presented in §IV.

II. PROBLEM FORMULATION

A. Flow configuration and governing equations

We focus on the linear stability and sensitivity of viscous flows over a flat plate with a

single hemispherical roughness element. The geometrical configuration and the details of

the computational domain P = [−Lin
x , Lout

x ] × [−Ly, Ly]× [0, Lz] are shown in Figure 1.

To ease comparisons with experimental investigations made by Klebanoff et al.18, we

adopted a similar geometrical configuration. The unit-diameter hemispherical obstacle is

symmetrically placed with respect to the y−axis, its center is located in rc = (0, 0, 0.1R)

and a small cylinder of height hc = 0.1R is used to connect the hemisphere to the flat plate
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(R is the hemisphere radius). The choice to place a small cylinder is related to the additional

thickness present in Kelabanoff et al.18 due to glue interposed between the hemisphere and

the wall.

The fluid motion is governed by the unsteady Navier-Stokes equations for viscous, inco-

pressible flow,

∇ · u = 0, (1a)

∂u

∂t
+ u · ∇u = −∇P +

1

Re
∇2u, (1b)

where P ∈ R is the reduced pressure scalar field and u ∈ R
3 is the velocity vector with

components u = (u, v, w).

Equations (1) are made dimensionless using the total height k of the roughness element as

the characteristic length scale and the velocity Uk of the incoming uniform stream that would

exist in the boundary layer at the height k without roughness30. The Reynolds number is

thus defined as Rek = Ukk/ν, with ν the fluid kinematic viscosity.

B. Numerical approach for DNS

We use the spectral element method (SEM) implemented in NEK5000 to solve the govern-

ing equations (1). We chose SEM because its spectral nature ensures fast spatial convergence

while, at the same time, preserves the geometric flexibility of the finite element methods.

Here, we provide a brief description of the underlying flow solver, the numerical methods

and the implementation are described in detail in31 and in32.

The unknown vector (u, v, w, P ) is spatially discretized onto PN −PN−2 spectral elements

using Lagrange orthogonal polynomials in the Gauss-Lobatto-Legengre (GLL) nodes. For

the temporal discretization of the momentum equation (1b), a semi-implicit splitting scheme

has been used that allows high-order temporal accuracy. The time advancement is divided

in 3 independent subproblems : convective, viscous and pressure problem. These last two

elliptic subproblems are solved efficiently by using the overlapping Schwarz method32.

In order to solve the system of differential equations (1) we impose no-slip boundary

conditions at the roughness surface and at the flat plate (Ωwall), Neumann outflow conditions

(n ·(ν∇u−pI) = 0) at the outlet (Ωoutlet) and a fully developed Blasius profile, characterized

by a boundary layer thickness δ∗in, at the inlet (Ωinlet). Finally, we adopt outlet boundary
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Figure 2. Iterative stabilization procedure: Boostconv. The convergence history of the algorithm

is depicted using a continuos line (-). The natural evolution of the flow is depicted using a dash

line (- -). The final states of both computations are depicted in (B) Figure 3 and (A) Figure 4.

conditions at the upper side of the computational domain (Ω∞) and symmetry boundary

conditions at the lateral boundaries (Ωsym). The convergence and the validation of the

present numerical approach will be adressed in Sec. IID.

In subcritical conditions, the steady base flow solution, on which the stability analysis is

performed, can be retrieved by simply integrating the time dependent Navier-Stokes equa-

tions (1) over a long time interval. On the other hand, if the Reynolds number exceeds its

critical value, a simple time integration fails to converge towards the unstable flow state

that is required for the stability analysis. In these cases, it is therefore necessary the use

of a stabilizing numerical procedure able to compute the unstable reference state. Several

approaches are discussed in the literature: in Åkervik33, for example, the authors managed

to reach the steady state by damping the unstable frequencies using a dissipative relaxation

term proportional to the high-frequency content of the velocity fluctuation field; Shroff &

Keller34 computed a projection onto the small unstable subspace using a Newton proced-

ure. Here, we adopt a different approach that allows us to obtain the unstable, steady field

by correcting the new iteration of the numerical procedure using a linear combination of

previous fields. This new method works for both steady and unsteady bifurcations and it

is inspired by the Iterant Recombination Method35. It has been already used in36 and37.

Appendix A contains the details of this stabilizing procedure. As example application, we

show in Figure 2 the effect of this procedure on the convergence history at Rek = 450. The

resulting field is depicted in Figure 3.
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Figure 3. Stabilized (steady) supercritical flow at Rek = 450 and k/δ∗k = 2.62. Top view of

contour plot of a) y-component and b) z-component of the base flow field. Eight slices are depicted

respectively at x = 0, x = +1R, 2R, 4R, 6R, 10R, 20R and at the outlet (x = +30R). In each slice

we show the color map of streamwise velocity field.
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C. Linear stability tools: eigenproblem formulations and solution

methodology

The instability onset is studied using the linear stability theory. The total flow state

(u, P ) is decomposed in a base flow (Ub, Pb), steady solution of the governing equations,

and in an unsteady small perturbation field (u′, P ′):

u(x, y, z, t) = Ub(x, y, z) + u′(x, y, z, t), P (x, y, z, t) = Pb(x, y, z) + P ′(x, y, z, t). (2)

Substituting (2) into (1) and linearizing with respect to (u′, P ′), the perturbation equations

∇ · u′ = 0, (3a)

∂u′

∂t
+Ub · ∇u′ + u′ · ∇Ub = −∇P ′ +

1

Re
∇2u′ (3b)

are obtained. This set of equations can be recast in the following form

d

dt
q′ = L q′ (4)

where q′ = (u′, v′, w′, P ′) is the state vector and L represents the linearized Navier-Stokes

operator.

In order to investigate the ’core’ of the instability, we consider, furthermore, the adjoint

Navier-Stokes problem28 that reads

−
d

dt
q′ = L

†q′. (5)

The eigenvalues and eigenmodes of the operators L and L
† characterize the dynamics of

the perturbation fields. The real part of the complex eigevalue γ = σ ± iω represents the

temporal growth rate of the disturbance, while its immaginary part is the eigenfrequency of

the direct (û, P̂ ), or adjoint (û†, P̂ †), global modes. All the eigenproblems involved in this

paper are solved by the Implicit Restart Arnoldi Method implemented in ParPACK38 using

the linearized DNS (direct or adjoint) time-stepper available in NEK5000 code.

The boundary conditions associated with the direct eigenproblem are simply obtained

from those used for base flow calculations, i.e. homogeneous Dirichlet conditions at the

walls and inlet, outflow conditions at the outlet and in the far field and symmetry conditions

at the lateral boundaries. The conditions for the adjoint problem, instead, are chosen to

eliminate the boundary terms after the application of the Lagrange identity39.

9



Global stability and sensitivity analysis of boundary-layer flows over a rough surface

D. Validation and convergence analysis

The physical domain is decomposed in multi-block spectral sub-elements and the several

grids are built symmetric with respect to the y-axis. In order to ensure that the spatial

resolution is sufficient, several numerical convergence tests have been carried out. We com-

pare the results obtained using four computational domains: the first one is characterized

by Lin
x = 7R,Lout

x = 30R,Ly = 10R,Lz = 8R (this domain will be referred to as M1); the

second, larger domain is given by Lin
x = 9R,Lout

x = 40R,Ly = 12R,Lz = 10R (named M2);

the third domain (M3) has the same size of M1 but has a finer grid; finally, the fourth

domain (M4) is characterized by Lin
x = 7R,Lout

x = 70R,Ly = 10R,Lz = 8R.

The meshes M1 and M3 are discretized in space on a total of 8971 spectral elements

having a basis of 10× 10× 10 polynomials and 14× 14× 14 polynomials respectively; M2,

instead, has 16987 elements with the same polynomial order of M1. The longest domain

M4 has 20933 spectral elements with a basis of 10 × 10 × 10 polynomials. This choice of

the polynomial basis means 1000 points per element are used for a 3D case that implies

8′971′000 points for M1, 16′987′000 points for M2, 20′933′000 points for M4. Finally, the

mesh M3 has 24′616′424 points having 133 functions on each element. In each case we cluster

the elements both in the wall-normal direction near the wall and along the plate near the

roughness element. Table I shows the effect of the size of the computational domain on the

complex eigenvalue γ and on the Strouhal number extracted from DNS at the supercritical

Reynolds number Rek = 450 (k/δ∗k = 2.62). We note that results are accurate almost up

to three significant digits for nearly all computed Strouhal numbers using mesh M1; the

position of the upstream, downstream and lateral boundaries has an impact on the third

digit. The error made on the critical Reynolds number is order of 1-2 %. Furthermore, we

compare our DNS results with Klebanoff et al.18. The Strouhal number (for DNS) reported

here is obtained directly from a probe located in (x, y, z) = (5R,R,R), i.e. in the region past

the element where the saturated nonlinear oscillations due to hairpin vortices are located.
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Table I. Convergence results. (S. Direct=Global Stability analysis for direct eigenproblem, S.

Adjoint=Global Stability analysis for adjoint eigenproblem)

Type

S. Direct S. Adjoint DNS Klebanoff et al.18

M1

σ +8.7148 × 10−2 +8.7148 × 10−2 (unstable) (unstable)

St = ωk
2πUk

0.1659 0.1659 0.1685 ≈ 0.16

M2

σ +8.3329 × 10−2 +8.3329 × 10−2 (unstable) (unstable)

St = ωk
2πUk

0.1653 0.1653 0.1684 ≈ 0.16

M3

σ +8.8801 × 10−2 +8.8801 × 10−2 (unstable) (unstable)

St = ωk
2πUk

0.1661 0.1661 0.1687 ≈ 0.16

M4

σ +7.6314 × 10−2 +7.6314 × 10−2 (unstable) (unstable)

St = ωk
2πUk

0.1658 0.1658 0.1685 ≈ 0.16

III. RESULTS AND DISCUSSION

A. Comparison with the experimental investigation by Klebanoff et al.18

First of all, we performed a set of 3D direct numerical simulations to compute the flow

characteristics for the case k/δ∗k = 2.62 at different Reynolds numbers. We chose this value

of k/δ∗k and the (hemispherical) shape of the roughness element to have a direct and easy

comparison with the experimental results provided by Klebanoff et al.18. The governing

equations have been advanced in time until either a steady flow or a periodic flow was

obtained. As the Reynolds number is increased, we observe the occurrence of a limit cycle

characterized by the periodic shedding of hairpin vortices inside the boundary layer. Zhou

et al.26 divided these eddies in an upper portions, characterized by a legs angle greater than

45◦, and a trailing region, i.e. the rest of the vortex leg. We refer to Acarlar & Smith16 for

further details about the shedding characteristics, the flow patterns and about the structure
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Figure 4. (Colour online) Unsteady supercritical flow at Rek = 450 and k/δ∗k = 2.62.

of hairpin eddies.

The flow becomes unsteady for values of the Reynolds number around Rek ≈ 450. At

the value of 450 the flow is already periodic and figure 4 shows a snapshot of the computed

supercritical field. Figure 5, furthermore, shows the spatial distribution of vorticity field

in the symmetry plane y = 0. Klebanoff et al.18 suggested that each hairpin structure

is generated by the interaction between a concentration of spanwise vorticity in the wake

region (as depicted in figure 5) and the streamwise vortices near the roughness element.

In table I we show the main frequencies corresponding to the shedding of these hairpin

vortices obtained from the power spectrum analysis of the instantaneous data sampled at

(x, y, z) = (5R,R,R). This laminar, periodic, symmetric vortex shedding has been observed

also in experiments by Acarlar & Smith16, Klebanoff et al.18. Such flow behavior suggests a

possible link with the existence of a global instability that drives the flow to a limit cycle.

To corroborate this hypothesis, we perform a global stability analysis on top of the

stabilized steady base flow at Rek = 450. This was calculated using the previously mentioned

stabilization procedure ”boostconv”. We note that the corresponding Reynolds number Reδ∗
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Figure 5. (Colour online) Contour plot of vorticity field (y-component) in the symmetry plane

y = 0. The flow field is the same of Figure 4.

based on the boundary layer displacement thickness δ∗ is about 180, so that the undisturbed

flow is locally stable with respect to Tollmien-Schlichting waves2. The eigenvalues computed

using ParPACK are depicted in figure 6 for several meshes. We note that the leading complex

conjugate pair of eigenvalues are isolated as for the jet in cross flow40 or the flow past a

cylindrical obstacle27. The corresponding leading direct global mode is depicted in figure

7. The real part of streamwise component (figure 7) is symmetric with respect to the plane

y = 0; a similar spatial structure was recently described by Loiseau et al.27 for the varicose

global instability of an array of cylindrical roughness elements with large aspect ratio. The

maximum of either the streamwise, the wall-normal or the spanwise component is found

downstream of the roughness element, almost at the end of the computational domain.

As for the cylinder case, the global eigenmode increases exponentially in the streamwise

direction, reaches its maximum and then slowly decays. However, even if a short domain

was used for the present study, the computed eigenvalues are accurate since, as we will

discuss, the instability mechanism is strongly localized behind the roughness element (see

Giannetti & Luchini39 for further details). Convergence tests performed on this configuration

corroborate our statement.
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Here, we depict the real part of complex mode (Rek = 450, k/δ∗k = 2.62).
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The frequency of the leading eigenmode is found to agree very well with DNS data

(see table I). Moreover the critical Reynolds number determined by the stability analysis

compares well with the bifurcation threshold determined in the experimental investigation

reported by Klebanoff et al.18.

In addition to the direct calculations, we also computed the adjoint eigenmode (see

Schmid & Henningson2 and Luchini & Bottaro28 for further details) of the linearized Navier-

Stokes operator. As we can observe in figure 7, the adjoint mode is spatially separated from

the direct one, a feature which is due to the strong non-normality of the linearized Navier-

Stokes operator. The different components of the adjoint mode reach their maximum mag-

nitude close to the roughness element. The adjoint field gives interesting information on the

receptivity of the mode to both initial conditions and to momentum forcing. Results show

that the most receptive regions are those surrounding the hemisphere. In order to locate

the instability mechanism we performed a structural sensitivity analysis as explained in39.

In particular, in figure 9, we show iso-surfaces of the spectral norm of the sensitivity tensor

S(x, y, z) =
û†(x, y, z) û(x, y, z)

∫
P
û†(x, y, z) · û(x, y, z)dV

(6)

The structural sensitivity map is highly localized in a region just behind the roughness

element, across the surface separating the outer flow from the wake region. We note that

this field is similar to the one reported by Loiseau et al.27 for the wavemaker of varicose

instability. The fact that the instability mechanism (”the wavemaker”) is localized in a

region of strong shear suggests that the instability could be related to a feedback mechanism

involving Kelvin-Helmoltz waves.

B. Parametric study

In this section we show how the linear global instability, discussed in the previous para-

graph for a fixed k/δ∗k(= 2.62), changes as a function of this ratio. Our main objective,

here, is to determine and discuss how the variation of the boundary layer thickness δ∗k with

respect to the height k of the roughness element affects the onset of the first bifurcation.

The critical Reynolds number Rek versus the ratio k/δ∗k is shown in figure 10. We per-

formed both Direct Numerical Simulations and global stability analyses to draw a complete

picture of the dynamical system behavior. In fact, in general, it is not possible to identify
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Figure 8. Leading adjoint eigenmode for the case Rek = 450, k/δ∗k = 2.62. As in figure 7 we depict

the real part of the mode.
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Figure 9. (Colour online) Plot of structural sensitivity field for the case k/δ∗k = 2.62. top) We

depict a slice through the wavemaker in the spanwise symmetry plane (y = 0).

a supercritical (Hopf) bifurcation without the knowledge of the nonlinear saturated state.

First of all, we note that for the highest value of k/δ∗k that has been investigated here we

found perfect agreement with the experimental data provided by Klebanoff et al.18. For each

considered case, we start from Reynolds number Rek = 250 to investigate the behavior of

the flow. The numerical simulations, at this Reynolds number, are advanced in time starting

from the Stokes solution for the hemispherical wake flow. The other simulations start from

the final solution of the previously investigated Reynolds number. Appendix B report a

detailed list of the simulations carried out in the present study. We always found stable

solutions, i.e. a steady state of Navier-Stokes equations, for those values of the parameters

lying under the neutral curve depicted in figure 10. In contrast, when the Reynolds number

exceeds a critical value, for a fixed value of k/δ∗k, we always found a saturated limit cycle

associated to the shedding of hairpin vortices. In such cases, we recompute the unstable

steady base flow using boostconv to perform a linear stability analysis. The neutral curve

shown in figure 10, then, is obtained by linearly interpolating the real part σ(Re) of the
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leading eigenvalue of the Linearized Navier-Stokes operator, i.e. we identify the critical

Reynolds number by requiring that the growth rate σ, computed using the stable solution

and the stabilized one, vanishes.

The critical Reynolds number on the neutral curve increases monotonically and it reaches

an asymptote for k/δ∗k ≈ 1.5. Thus, when the height of the roughness element k is smaller

than 1.5 times the boundary layer thickness δ∗k an asymptotic regime is attained. This result

indicates that, in these conditions, the only important parameter governing the bifurcation is

the unperturbed velocity slope at the wall. The associated critical Reynolds number for this

regime is Rek ≈ 580. This value agrees very well with critical Reynolds number Rek ≈ 600

reported by Tani41.

Figure 11 shows the dependence of the Strouhal number on the ratio k/δ∗k. We note

that the computed frequency decreases monotonically with the increase of the roughness

element with respect to the boundary layer height. The Strouhal number does not reach an

asymptotic value but varies linearly with k/δ∗k. Furthermore, we also computed the adjoint

and the structural sensitivity fields for each considered case. We note that the spatial

structure of the direct and adjoint eigenmodes closely resemble the field presented in figure

7 and 8. Thus, the wavemaker is always located in the region immediately past the tip of

the hemisphere. For sake of brevity, we do not show here the structure of these modes. In

any case, as discussed previously, we can conclude that, for each case investigated in the

present work, the instability is associated to a self-sustained mechanism.

IV. CONCLUSIONS

The analysis, presented in this work, confirms the existence of a self-sustained mode in the

wake of a hemispherical roughness element of large protrusion height in a Blasius boundary

layer. Direct numerical simulations, stability and sensitivity analyses were performed to

better understand the stability properties of the flow. Results are in agreement with previous

experimental data and show that when the Reynolds number is increased beyond a critical

value, the flow undergoes an Hopf bifurcation. The self-sustained mode giving rise to the

periodic shedding of hairpin vortices has been found by performing a global stability analysis.

The spatial characteristics of both the direct and the adjoint mode have been analyzed and

the instability mechanism localized by a structural sensitivity analysis. Results show that
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Figure 10. Linear stability analysis results. The curve depicted using black dots (•) identifies the

neutral stability region for the hemispherical wake. Everywhere over this curve there exist expo-

nentially growing three-dimensional modes. Direct numerical simulations (Stable (◦) and Unstable

(∗) DNS) confirm the presence of a global instability. The triangle indicates the experimental data

provided by Klebanoff et al.18. The critical Reynolds number for k/δ∗k < 1.5 is Rek ≈ 580.

the instability mechanism is highly localized in the shear layer separating the outer flow

region from the wake region behind the hemisphere.

We performed, in addition, a parametric study to investigate the effect of the ratio k/δ∗k

on the occurrence of the first bifurcation. We found always the same kind of instability, in

agreement with the experimental findings of Klebanoff et al.18. Direct numerical simulations

confirm the existence of a supercritical Hopf bifurcation associated with the shedding of

hairpin vortices. The variation of the leading growth rate with k/δ∗k shows that when the

boundary layer thickness is sufficiently larger than the height of the obstacle, an asymptotic

linear regime is attained. In this limit, the only information that characterizes the flow

behavior is the velocity gradient of the unperturbed boundary layer profile at the wall.

On the contrary, we found that the Strouhal number varies almost linearly with the ratio

k/δ∗k in the investigated interval. The asymptotic value of the critical Reynolds number
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Figure 11. Strouhal number as a function of k/δ∗k for the flow past the hemispherical obstacle.

Rek = 580 agrees very well with the existing experimental investigations, as well as other

results presented in this paper.

Appendix A: Stabilization procedure

We briefly present the algorithm adopted for computing unstable states. Our boostconv

procedure belongs to the class of Krylov-subspace methods to solve a linear system

Ax = b. (A1)

The main idea is to boost the convergence of a pre-existing classical iterative procedure,

which will be written as:

xn+1 = xn +Brn, (A2)

where rn = b − Axn is the residual and B is an approximate inverse (preconditioner) of

A. The convergence of (A2) is governed by a series of exponentially decaying/amplifying

modes. The procedure will also be applicable to a non-linear system, where we expect a

similar behavior when xn is close enough to the exact solution x. In the classical procedure,

after a suitable number of iterations, the convergence rate is often dictated by a small number

of slowly decaying (or the divergence by a small number of amplifying) modes. The present
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algorithm is conceived to modify the part of the spectrum composed of these modes mostly,

on the assumption that the remaining part of the spectrum is sufficiently damped by the

original iterative procedure.

We focus our attention on an improvement of the existing iterative procedure of the form

xn+1 = xn +Bξn(rn) (A3)

where the modified forcing ξn is a suitable function of the residual rn which goes to zero when

and only when rn does. Equation (A3) can be implemented through a black-box subroutine

that modifies the residual and feeds it back to the pre-existing iterative procedure. As a

consequence of (A3), the equation that governs the evolution of the residual rn becomes

rn+1 = rn −ABξn, i.e.

rn − rn+1 = ABξn. (A4)

The key idea is to build a subspace of vectors on which the action of AB is known by

storing ξn and the difference rn − rn+1 before each iteration. We can then, for the purpose

of calculating ξn+1, approximately solve (A1) by a least-square approximation over this

subspace. Adding the residual of this solution back into ξn+1 restores the original feedback

on non-represented modes. This stabilizing procedure can be encapsulated in a black-box

subroutine where the only input is the original residual rn and the output is the modified

residual ξn.

Appendix B: Three-dimensional numerical simulations

Table II lists the simulation parameters and the stability characteristics for each run.

ACKNOWLEDGMENTS

Work supported by CINECA (PRACE), by European Commission through the FP7 pro-

ject ”RECEPT” (grant agreement no. ACPO-GA-2010-265094) and by the Regione Lom-

bardia award under the LISA initiative, for the availability of high performance computing

resources and support.

22



Global stability and sensitivity analysis of boundary-layer flows over a rough surface

Table II. Parameters and stability of the different three-dimensional (3D) numerical simulations.

k/δ∗k Steady state Limit cycle Critical Rek

2.62 250,300,340,360,380,400,420,440,444 450,457,460 450

2.42 250,350,450,460 467,475,500 463

2.24 250,350,450,475,481 492,500 487

2.09 250,350,450,500,507 520,550 517

1.85 250,350,450,550,561 569,575,600 562

1.57 250,350,450,550,575 588,600 581

1.26 250,350,450,550,572 590 582

1.04 250,350,450,550,577 591,600 582
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