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1. Introduction

Facial recognition techniques are being more and more
important because of the multitude of their possible appli-
cations [1]. In [2–5] the most relevant techniques developed
during last years have been reported, demonstrating good
results and a certain degree of maturity when operating un-
der constrained conditions. However, they still suffer high
uncertainty if used in everyday situations of the practical
life; due to this reason some authors analyzed the human
perception [6] with the purpose of identifying human cogni-
tive processes that operate during personal recognition,
with the idea of implementing them in novel algorithms
[7]. Most of the state-of-the-art recognition techniques are
based on the analysis of some biometric measurements,
provided by processing facial images with features extrac-
tion algorithms [8,9].
Several studies have been conducted on face identifica-
tion with the purpose of evaluating the main issues that
can affect the reliability of these systems (i.e. illumination,
pose, expression and occlusion). However, most of the dat-
abases proposed in literature [10–12] do not contain ste-
reoscopic acquisition of the faces but only set of frontal
and non-frontal faces acquired in different instant of time.
Relying on these databases it is therefore not possible nei-
ther obtain 3D information nor compare the impact of pose
variation on recognition rate, as facial images acquired in
different instants of time are affected by the natural varia-
tion of facial expression. In this work images of the individ-
uals faces, acquired synchronously from different
calibrated cameras, have been analyzed in order to esti-
mate the pose effect on recognition based on 3D features.
The purpose of this work is to evaluate the 3D facial feature
extraction performed with AAM models and to study their
measurement uncertainty when applied on facial images.
Furthermore, facial features processing algorithms have
been implemented to maximize the system reliability
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(i.e. weighting different facial features according to the
corresponding estimation accuracy and use multiple
images acquisition to improve the recognition reliability).
Similar studies [13] calculating Euclidean distance of 3D
facial features achieved 96.2% of correct recognition, based
on a 26 subjects database. In [14] a feature based approach
is presented, demonstrating 96.3% and 91.7% recognition
reliability rates, using images databases developed in
[10,11] with 40 and 15 individuals respectively. In the
works [15,16] the reliability of 97.3% and 96.6% has been
reached respectively, analyzing images of the 130 people
database developed in [17]. In [18] a stereo system and a
3D model have been used for the face recognition of 100
individuals in different positions, with a correct recogni-
tion rate of 98%. Although these studies include non-fron-
tal images in their database, they do not investigate the
exact error rate in different pose conditions. In the pre-
sented paper, impact of individuals’ position on the identi-
fication rate has been calculated considering three
different stereoscopic systems that synchronously acquire
the volunteer’s face from three different orientations. In
this work, according to [19,20] and in order to compare
data with results obtained in previous work [21,22], 58
points have been used to describe the facial geometry.
One of the most popular algorithms of feature extraction
available in literature is the Active Appearance Model
(AAM), developed by Cootes et al. [23], which is based on
the combined use of two different statistical models: the
Shape model and the Appearance model. The AAM has
been used in literature to extract 2D biometric features
and several studies have implemented this algorithm in
2D face recognition [3,24]. As known in literature, 3D rec-
ognition techniques show higher reliability than 2D tech-
niques [25,26]. For this reason in previous works [21,22]
it was decided to use a stereoscopic vision system to obtain
images of individuals. In order to create a system able to
analyze a high number of individuals and to evaluate its
performance on a wide statistical sample, a database of fa-
cial images has been constituted.

In particular, in order to analyze recognition reliability
on images acquired from different points of view (not fron-
tal images), individuals were simultaneously framed from
different directions using different synchronized stereo-
scopic visions.

This system has been used to acquire image sequences
of 117 individuals in order to evaluate measurement
repeatability and uncertainty, also with a minimal expres-
sion variability (the volunteers were requested to maintain
a neutral expression, however the face geometry undergoes
to minor expression changes due to the natural motion of
the face). In particular, for every 117 people, 5 repetitions
of the registered acquisitions have been analyzed.

The proposed instrument is also tested by reproducing a
recognition system oriented to control the access of autho-
rized and unauthorized people. In particular, among
images of 117 individuals, 90 faces have been used to cre-
ate a database of persons and to verify the identification
both with the same 90 individuals and with remaining
27 persons. When analyzing individuals out of the data-
base, they could be associated to the similar person in
the database, relying on minimization of geometry dis-
crepancy. To avoid this type of error, called False Accep-
tance case [27], a minimum similarity threshold has been
proposed.
2. Facial features extraction technique

The subject recognition is performed through a prior
dimensionality reduction of facial images. Using image
processing algorithms it is possible to select more relevant
biometrics to distinguish individuals [28]. In digital image
processing, the feature extraction methods allow to select
most relevant information for the case and to represent
them in a lower dimensionality space.

2.1. 2D features detection

In these years, several algorithms for facial features
extraction have been developed, of which most important
ones are presented in [29]. One of the most interesting
model-based methods [30–33] is the AAM [23]. An open
source code of this algorithm has been implemented in
the software AAM-API developed by Stegmann [34]. The
AAM algorithm is based on Principal Component Analysis
[35] and, after it has been trained with images of the same
type of the ones to be analyzed, permits to create a model
that allows to detect features from any image of the same
type. In this section, AAM algorithm will be presented. It is
based on two principal functions: 2D Shape model and
Appearance model. Although the description of AAM algo-
rithm is out of the scope of this work, a brief summary of
the algorithm is given here; more detailed information
can be found in [23].

2.1.1. The 2D Shape Model
The shape is defined as a 2D points set describing the

shape of a target body. During the shape models creation,
shapes traced on images of bodies belonging to the same
family are submitted to the Procrustes Analysis in order
to align these shapes to a common reference system and
to make the application of the Principal Component Anal-
ysis (PCA) possible.

The PCA generates the shape variation basis
/ ¼ ð/1j/2j . . . /tj Þ that can represent any x shape of ana-
lyzed bodies starting from a mean shape �x; vector b is a
real number set that models deformable shape parameters.

x ¼ �xþ /b ð1Þ
2.1.2. The Appearance model
The Appearance is defined as the texture of a portion of

the target. The Appearance model arranges all pixel inten-
sity variations of the images on the mean shape. During the
creation of this model, all the training images are trans-
formed into images of the same shape and dimensions
and the normalization of the texture is performed to avoid
lighting or luminosity changes in pictures. Thereafter,
appearance model is elaborated by performing PCA on
the training images. Similarly as the shape model, the



appearance model consists of the grey level vector of the
mean appearance �g, the variation basis /g and a group of
grey level parameters bg .

g ¼ �g þ /gbg ð2Þ
Fig. 2. Bottom cameras model visualization.
2.2. AAM model annotation

Shape and Appearance models building is based on the
analysis of training images, i.e. a sample of images where
facial features have been manually annotated. The annota-
tion process of an image consists in tracing different land-
marks that outline the most important facial traits on
various images. In particular, 58 landmarks demarcating
seven areas of the face has been used in this work (three
closed path and four open): jaw, mouth, nose, eyes, and
eyebrows, as shown in Fig. 1. The choice of the 58 recorded
points is made according to the method of record of previ-
ous works carried out in agreement with other studies
[21,22], in order to make the database mergeable and to
be able to compare data. The annotations made on images
obtained with the top camera and the bottom camera are
shown in Fig. 1. At a later stage, is possible to fit this model
on new images and to automatically obtain biometric
features.
2.3. AAM model creation

The created AAM model has to include shape and tex-
ture information of the face which may vary in repeated
acquisitions depending on subject expression and position.
In order to have an accurate detection of the features, the
parameters of the created models may not cover a too large
variation of the shape. In particular, using the system pre-
sented in Section 4, when retracting the individuals with
stereoscopic cameras, in other words from two different
points of view, a big camera angle in the vertical plane in-
duces big shape modifications. Therefore, the experiences
gained in literature [36] and in this work have shown the
need of having two models: one for the top cameras and
one for bottom cameras. In Fig. 2, three principal variation
modes are shown: the first mode represents the rotation of
the head in the horizontal plane, the second mode repre-
sents the rotation in the vertical plane and third mode rep-
resents skin variation.
Fig. 1. Representation of 58 annotated points on
2.4. Feature extraction

All presented operations are preliminary developed to
create the two described models, which will be fitted on fa-
cial images in order to automatically detect the landmarks.
The AAM fitting algorithm iteratively varies both model
parameters until the difference between real face image
and simulated face image is minimized. The results of this
operation is a 58 2D points mask for top images and an-
other 58 2D points mask for bottom images that will be tri-
angulated [37] in order to build a 3D mask. For each
individual analyzed, the 3D points mask has been built
by triangulating two 2D masks, each one extracted with
the AAM algorithm. The computational cost of this proce-
dure varies proportionally to the complexity of the created
model. Processing time optimization has not been imple-
mented as it was not the purpose of this work; with the
currently implemented software solution the average time
required for the complete recognition of one individual is
bottom image (left) and top image (right).



10.3 s, where 5.1 s are required to extract the 2D features
from each image (resolution 1280 � 1024 pixel), and
0.1 s for the comparison with the 117 individuals database.
Analysis has been performed with a PC provided of a Intel
i7-3.40 GHz processor and 8 GB RAM.
3. Design and development of the acquisition system

The most important objective of this work is to collect a
large sample of facial images and to use it as a database to
assess and refine different recognition techniques.

In the first stage of this project a database of images has
been created in order to constitute a robust statistical basis
for the verification of obtained results. From the experi-
ence gained during the test of the AAM-API code [38], it
has been experimented the need of instructing the shape
and texture models, which constitute the heart of the algo-
rithm, with the use of adequately large statistical sample.
Furthermore, as shown in previously conducted studies
[39], the presence of small rotations of the face introduces
an important error in recognition rate. For this reason, rec-
ognition uncertainty in function of different angles of the
face has been evaluated. To do that, it was important to
have facial images acquired from different viewpoints in
the same instant of time. Indeed, since the face is a deform-
able body, the geometry of the face may slightly vary even
in consecutive instants, according to different expressions.

To acquire necessary information for the creation of the
database described in the following chapter 4, a multi-
camera vision system has been developed, allowing to
simultaneously retract faces from different points of view.
The system is provided of three pairs of cameras, which
perform synchronous acquisitions of the same individual
from different points of view, as the subject was turning
the head. In this way, data referred to images of the face
in frontal and rotated positions are perfectly comparable.
The system developed is schematized in the diagram of
Fig. 3a and shown in Fig. 3b. Each pair of cameras is verti-
cally aligned and placed at 0�, 5� and 10� referring to the
axis of the face (see Fig. 4), as indicated in Fig. 3a with
the tags cam1-2, cam3-4 and cam5-6. A seventh camera
is placed at mid-height (cam 7 in Fig. 3b), between two
central cameras, to collect images that will form the data-
base and that can be used for the validation of 2D recogni-
tion techniques.

Stereoscopic vision is obtained by coupling each top
camera with the corresponding bottom camera, with the
intent of minimizing the nose undercut issue. Since the
measurement error decreases in the third dimension when
the angle between cameras increases [40], an angle of 45�
has been used, which results to be the best compromise
[21] because it maximizes the angle and avoids occlusion
phenomenon in the two views. The configured system al-
lows having a field of view size of approximately
300 � 400 mm, large enough to contain the subject’s face
placed 1000 mm away from the system.

As described above, the system consists of a pair of AVT
– Marlin F-131B (equipped with 2/300 1280 � 1024 pixel
CMOS sensor) cameras, and two pairs of AVT – Pike F-
145B (Sony 2/300 1388 � 1038 pixel CCD progressive scan
sensor) cameras. The seventh camera is the IDS – GigE
UI-5490SE-M (Aptina 1/200 3840 � 2748 pixel CMOS Sen-
sor). All cameras are equipped with 25 mm focal length
lenses and connected to a computer via three firewire
IEEE1394 acquisition cards (for cameras 1 to 6) and a Giga-
bit Ethernet card (for camera 7). A common trigger gener-
ates the signal to synchronize all cameras. A LabView
software allows simultaneous management of seven cam-
eras and images recording in bitmap format. The control
system allows to acquire sequences of images with a
user-defined interval (default set 5 s), in order to obtain
multiple images of the same person in the same nominal
position but allowing small changes of expression that nat-
urally happens.

According to [41], each pair of cameras has been cali-
brated using the Zhang’s method [37,42] and Camera Cali-
bration Toolbox [43], which provide to determine internal
and external calibration parameters.
4. Database building

The acquisition system described above has been used
to collect several facial images, in order to test the reliabil-
ity of the recognition judgment as a function of the acqui-
sition angle and considering natural variability of the
expression and head position.

As mentioned in Section 2.1, in the proposed system the
2D features detection is based on the AAM algorithm,
which describes biometric properties of the face using
two statistical models built on facial images. According to
[36] it is necessary to adequately train these models, in or-
der to have good flexibility in both of them. The AAM mod-
el has to be trained considering also images with angled
face and a wide range of facial characteristics in order to
automatically recognize them. Increasing the number of
pictures used to train the AAM, increases the number of
recognizable subjects and the model adaptability to differ-
ent positions. A good model flexibility permits to cover a
wide range in terms of shape and texture variation and
to represent a large genetic diversity, pose variations and
expression changes. On the other hand if a too broad range
of condition is used, the reliability of features recognition
is reduced. For this reason, one model for the top camera
images and one model for the bottom camera images have
been realized.

The database includes facial images of 117 volunteers;
for each one of them, 3 series of acquisitions are carried
out:

� 1 Set with the subject in frontal position (0� rotation) as
shown in Fig. 5a.
� 1 Set with 10� rotation of the head, as shown in Fig. 5b.
� 1 Set with 20� rotation of the head, as shown in Fig. 5c.

Each set contains 9 pictures of the same subject in the
same position, acquired with a rate of 1 images every 5 s.
to allow natural minor changes in head position and in
facial expression.

Therefore, 6 cameras frame 9 times the individual
placed in 3 positions that is 6 � 9 � 3 = 162 images



Fig. 3. The proposed multi-vision system: (a) development scheme and (b) picture.

Fig. 4. System design scheme.

Fig. 5. Images collected in the database: the subject is framed in three different positions: (a) 0� rotated, (b) 10� rotated, (c) 20� rotated.



recorded for each person. Since some acquisitions were
compromised due to quick movements of volunteers that
induces the blurred effect of the image due to not negligi-
ble motion during the exposure time, for all 117 individu-
als it was possible to analyze only five repetitions of the
nine. The first repetition was used to train the AAM model,
and other four to verify the recognition.
5. Analysis and results

In this part, the process of personal identification will
be presented, starting from two stereoscopic images of
the face, passing through landmarks extraction with AAM
and concluding with aspects of 3D shape construction
and mask comparison with those in the database.
5.1. Model development

The first phase of the process is the annotation of train-
ing images to build the variability model of the AAM soft-
ware. As previously explained, the annotated images
provide the statistical base for the training of shape and
texture models built by the Active Appearance Model
(AAM). In this stage, the following annotations have been
carried out:

� For 50 volunteers, the two images obtained with cam-
eras 1 and 2 (Fig. 3) with the subject in frontal position
has been annotated.
� For 19 of them, 18 pair of images has been annotated,

using images of cameras 1 to 6 (Fig. 3) in three different
position of the subject (0�, 10�, 20� head rotation).

With a heuristic approach to the problem, first group of
images is used to introduce model adaptability to human
biological diversity, second group provides the shape mod-
ification caused by head rotation.

In conclusion, the AAM models have been built using
about 200 images. These images are used only to train
the AAM and the other four images of the same acquisition
set are used to test the recognition.

At a later stage, the facial images were analyzed with
AAM in order to automatically extract the 2D facial masks.
As the feature detection software works in two dimensions
(i.e. images), it is necessary to elaborate separately two ste-
reoscopic images to detect the landmarks prior to triangu-
late. In [22], according to [36], it has been experienced the
need of two different AAM models, the first for the images
of the top cameras and another for the images of the bot-
tom cameras.

After obtaining the 2D masks from each pair of images,
it is possible to triangulate homologous landmarks and to
calculate a 3D masks. These operations have been under-
taken for all 117 volunteer and 117 masks are collected
in a database containing the 3D landmarks coordinates.
Similarly, in the recognition process, from the pair of ste-
reoscopic pictures of the person to be recognized, two 2D
masks are extracted with AAM and then triangulated to
obtain the 3D mask. The recognizing 3D mask will be
compared with the masks belonging to the database as de-
tailed below.

5.2. Landmarks weighting according to measurement
uncertainty

Since the recognition process is based on geometric
comparison of 3D masks, one of the main issues in the rec-
ognition process is the variation of landmarks coordinates
due to facial expression changes. There are some parts of
the face that are more stable and less affected by facial
expressions, such as eyes and nose, while other points
which position is strongly correlated with the expression
assumed by the individual [44].

Moreover the face AAM model does not detect all land-
marks with the same accuracy; in particular, their identifi-
cation is affected by high uncertainty in those areas of the
face where it is not evident the variation of texture, such as
the profile of the jaw. The worst results are found for those
parts of the jaw located close to the ear, as the derivative of
the facial surface respect to the image plane is high and a
small shift in plane, caused by an inexact detection of land-
marks, produces a wide variation in depth. These points
are also affected by occlusion issues in rotated face images.

The variability of these landmarks could deceive the
subject recognition and, for this reason, it seems reason-
able to weight differently each of the 58 points, according
to their uncertainty (and therefore their reliability in per-
sonal identification).

For this reason, 58 different weights have been assigned
to each of 58 landmarks, using high weights for features
extracted with good accuracy, and low weights for points
detected with low accuracy.

In order to estimate weights for each one of the 58 land-
marks, the variance between repeated measurements of
the face has been calculated analyzing 9 masks obtained
from 9 repeated pictures of the same subject, for all the
117 subjects in the database. Since small rotations of the
face may occur between consecutive acquisitions, it is nec-
essary to align one mask to the other one before to calcu-
late average position and relative variance for each
landmark. An arbitrary 3D mask is chosen as reference
and all the other ones are roto-translated in order to min-
imize the distance of corresponding points.

The first mask of the subject is taken as reference.

(1) Each of the other 8 masks of the i-th subject is iter-
atively aligned to the reference mask applying a
roto-translation, based on minimization of the
summed squared distance between corresponding
points.

(2) After roto-translation the variance of the 58 points
coordinates in the nine masks of the i-th subjects
is computed as:
VarðUÞi;k ¼
Pf

j¼1ðUi;j;k � Ui;kÞ
2

f
ð3Þ

where:
� 1 < j < f = 9 image repetitions for the same subject;

Uj mask coordinates;



Fig. 6.
ally to

Table 1
Averaged weight by areas of the face.

Area Weight
� U coordinates of the reference mask;
1 < k < p = 58 landmarks;
1 < i < n = 117 people.
Jaw 0.23
Mouth 0.51
Nose 1.10
Eyes 1.87
Eyebrow 0.96
(3) This operation is repeated for all the subjects in the
database (i = 1–117) and the result is the matrix
VarðUÞi;k of 58 � 117 values of the variance corre-
sponding to each landmark for each individual.

(4) The variances VarðUÞi;k are averaged between the
117 individuals and the vector Vark of 58 elements
is obtained.
Vark ¼
Pn

i¼1Vari;k

n
ð4Þ
(5) Finally, the weights of each k-th point are calculated
as the inverse of the average variance of point Uj and
then normalized to make their sum equal to 58.
Weightk ¼
1

Vark

ð5Þ

Weightnorm;k ¼
Weightk

P58
k¼1Weightk

� 58 ð6Þ
In this way, the variance of each point associated with
each individual was obtained. Fig. 6 shows an example of
landmarks variability in one person.

In Table 1 the average weights are shown, gathered in
face areas. The results confirm what was intuitively sug-
gested: there is more stability on the eyes; the mouth is
subject to large modifications due to facial expression
changes, while the outline of the jaw presents the highest
variability.

The individual recognition procedure can be summa-
rized in the followings process:

(1) A pair of top and bottom images are respectively
analyzed through the top and bottom AAM models
and 2D landmarks are extracted.
Landmarks position and their variance representation proportion-
the circles radius.
(2) Each pair of 58 homologous points are triangulated
and the 3D mask is obtained.

(3) The mask is compared with i-th one in the database
by calculating the Summed Weighted Error (SWE) as
described in Eq. (7):
SWEi ¼
P58

k¼1ðWeightk � ðUk;i � Uk;ref Þ2Þ
58

ð7Þ
where Uk,i are the coordinates of the k-th point for the i-th
individual.

(4) The mask is iteratively rotated and translated to the
i-th mask, until it matches as well as possible (by
minimizing the SWE).

(5) The comparison is repeated for all i = 117 masks in
the database and the 117 SWE final values are
calculated.

(6) Correspondence of the face is verified by searching
the mask of the database with the minimum associ-
ated SWE.

5.3. Reliability of the recognition system

The evaluation of the recognition reliability has been
conducted by comparing 117 new masks, obtained from
a new pair of pictures, with the 117 masks of the database.
In order to prove the goodness of these results, this analy-
sis was repeated four times, using four different pair of
images. In other words, this test has been carried out on
(117 � 117) � 4 = 54,756 comparisons.

Error rates in the recognition test on four images of each
subject (acquired at interval of 5 s), are shown in Table 2.
The reported results show high variability of the recogni-
tion in various images. In fact, the recognition process
was highly influenced by high uncertainty of the worst
landmarks that can deviate calculated discrepancy be-
tween masks. In Table 3 results of analogous analysis per-
formed using weights are reported in order to prove their
effectiveness.

From the obtained results, it is clear that with the use of
rotated cameras, (maintaining the face oriented to camera
1 and 2, or rather a 0� head rotation) the reliability of rec-
ognition decreases, due to uncertainty in the detection of
some landmark. Furthermore, with the use of weights,
the error rate significantly decreases, both for frontal and
angled images.

Similar tests are performed on images of the face 10� ro-
tated and shown in Table 4. These results can be compared
with those taken in frontal position by the pair of cameras
5 and 6 (10� cameras in Table 3) showing an average error
slightly higher than the latter. Their comparison is moti-
vated because these two cases reproduce symmetric



Table 2
Error rate in recognition test, in four trials for 117 � 117 comparisons,
without using weights.

Without weights, 0� face rotation

Trial 0� Cameras 5� Cameras 10� Cameras

1 15.4 19.7 23.1
2 23.1 34.2 28.2
3 34.2 28.2 29.9
4 22.2 33.3 35.0
Average error (%) 23.7 28.8 29.1

Table 3
Error rate (%) in recognition test using weights: comparing results with
those in Table 2 is possible to observe considerable failure reduction.

Use of weights, 0� face rotation

Trial 0� Cameras 5� Cameras 10� Cameras

1 2.6 5.1 4.3
2 3.4 6.8 6.8
3 4.3 5.1 10.3
4 5.1 9.4 8.5
Average error (%) 3.8 6.6 7.5
images. Analyzing the standard deviation of recognition er-
ror in both cases, it is possible to prove the compatibility of
data. In fact, in the first case, average is 7.5% and standard
deviation equal to 2.6%, whereas in the second one, aver-
age is 9.0% and standard deviation is 1.5%, which means
that their confidence intervals overlap.

5.4. Reliability improvement

Indicating the system recognition reliability as the abil-
ity to perform a correct recognition, it is possible to define
the reliability rate as R = 100 – error rate.

Information obtained from each one of three pairs of
cameras can be combined in order to improve the recogni-
tion reliability, as if three systems simultaneously worked.
In particular, identifications performed with 5� and 10�
cameras (cameras 3 and 4 and cameras 5 and 6 in Fig. 3)
and frontal cameras (1 and 2) were compared. It is possible
to interpret it as a new system composed of three instru-
ments with reliability values R0

� ;R5
� ;R10

� and with overall
reliability rate Rtot (Eq. (8)), as schematized in Fig. 7. Each
of these recognition instruments has reliability estimated
by means of the results shown in Table 3:

� Reliability 1-2 cameras = 100–3.8 = R0� = 96.2%.
� Reliability 3-4 cameras = 100–6.6 = R5� = 93.4%.
� Reliability 5-6 cameras = 100–7.5 = R10�= 92.5%.
Table 4
Error rate (%) in recognition test using weights with 10�
rotated subjects.

Use of weights, 10� face rotation

Trial 0� cameras

1 10.3
2 7.7
3 10.3
4 7.7
Average error (%) 9.0
The developed algorithm, permits to compare the rec-
ognition reliability achieved from the pairs of cameras
using the following logic: only if both pairs of 5� and 10�
cameras recognize the same person and this is different
from the one recognized by the central cameras, the result
from the angled cameras are considered more reliable;
otherwise recognition obtained from central pair of cam-
eras is considered correct. We can represent the overall
system with the diagram in Fig. 7, where the total reliabil-
ity [45] is expressed by the formula (8).

Rtot ¼ 1� ð1� R0
� Þ � ð1� ðR5

� Þ � ðR10
� ÞÞ ¼ 99:48% ð8Þ

It is possible to appreciate a theoretical reliability improve-
ment of the system, by decreasing the error rate from 3.8%
to 0.52%.

The error rates of the overall system in four experimen-
tal tests have been reported in Table 5, with an actual reli-
ability increase from 96.2% to 98.9%.

However, the recognition solution with three stereo-
scopic systems requires the use of a complex system com-
posed of six calibrated cameras and configured to perform
the synchronous acquisition. In order to obtain a reliability
improvement, reducing the complexity of the structure,
multiple tests using only one pair of frontal cameras
(cam1 and cam2) was performed. Hence, the results ob-
tained from the four trials previously described (Table 3)
were considered as repeated biometric measurements
and the information were combined in a unique recogni-
tion judgement as described below.

Referring to Table 6, it is possible to have 5 cases: in the
case #1 the identification was correct and coherent in all
four tests, whereas in case #2 recognition was exact and
coherent in three trials out of four. Similarly, in the case
#3 the correspondence was found to be exact and coherent
in two tests out of four. It is clear that negative result on all
four tests (incorrect and incoherent shown in case #5)
have never occurred, but in the worst case (#4) one indi-
vidual was recognized in just one trial out of four, that is
without any coherence with other trials.

In the case of repeated tests with cameras 1 and 2 only
(Fig. 3), it is possible to have a structurally less complex
system, which allows obtaining reliability improvement
by simply matching multiple acquisitions of the face. For
example, if recognition is considered correct when occur-
ring cases #1 and #2 (i.e. the cases of coherence at least
in three tests out of four), the error rate was 3% and the
correct recognition rate is therefore 97%, which is a result
closely aligned with the state of the art systems described
in Section 1.
5.5. Recognition threshold

The developed identification system recognizes an indi-
vidual basing on the evaluation of the SWE, Summed
Weighted Error, selecting the most resembling mask in
the database (i.e. minimum SWE). If we suppose to use a
recognition system in order to supervise admissions in a
restricted area, during a real identification process it is pos-
sible to have five situations:



Fig. 7. Reliability scheme of the proposed system.

Table 5
Error rate (%) for the proposed system, in four trials on 117 � 117
comparisons.

Trial 0� + 5� + 10� Cameras

1 0.0
2 0.9
3 0.9
4 2.6
Average error (%) 1.1

Table 6
Recognition results comparing 4 trials.

Case
#

Identification in 4
trials

People correctly
recognized

Percentage
(%)

1 100% Correct 102 87
2 75% Correct 12 10
3 50% Correct 2 2
4 25% Correct 1 1
5 0% Correct 0 0

117 100
� Access admitted (positive recognition):
(1) The person is correctly recognized and present in

the database.
(2) Unauthorized person is accepted by mistake as

authorized (False Acceptance) [27].
(3) An authorized subject is recognized as another

member of the database (False Identification).
� Access denied (negative recognition):

(4) The person is correctly rejected because not present
in the database.

(5) The system erroneously rejects an authorized per-
son, by giving a false alarm (False Rejection) [27].

Consequently, three main types of percentage errors
can occur in a recognition system [27] when analyzing
authorized and unauthorized individuals:

Unauthorized person:

� FAR (False Acceptance Rate) is the percentage of false
acceptances, this event occurs when the system errone-
ously accepts unauthorized users.
Authorized person:

� FRR (False Rejection Rate) is the percentage of false
rejections, when authorized users are erroneously
rejected as they were an external individual.
� FIR (False Identification Rate) is the percentage of fal-

sely assigned identifications that occurs when an inter-
nal user is admitted as another one.

In order to evaluate these three types of error, among
the 117 individuals in the database, two groups were cre-
ated: one composed of 90 authorized people and the other
one with 27 unauthorized persons.

Therefore, following analysis are carried out by evaluat-
ing SWE obtained in the access attempt of 90 authorized
and 27 impostors as follows:

� False Acceptance Rate is calculated by collecting SWE
values in the recognition of 27 individuals not belong-
ing to the database.
� False Rejections are generated by discarding greater

SWE of Correct Recognitions in the 90 � 90 comparison
(Fig. 8).
� False Identifications cases extracted from Incorrect Rec-

ognition cases, as recognizing people have been associ-
ated to other individuals of the database when
comparing 90 � 90 persons.

Plotting on a histogram of occurrences the SWE calcu-
lated for users recognitions (Figs. 8 and 9 respectively), it
is possible to visualize its occurrences distribution [46]. It
is intuitive to assume the SWE average value is lower in
the case of authorized correct recognition cases than in
impostor recognition cases.

In the histogram in Fig. 8 occurrences of individuals cor-
rectly recognized are highlighted; the 94.4% of the showed
data lie below the SWE value of 4 mm2.

Similarly, data regarding the impostors recognition are
highlighted in the histogram of Fig. 9. Below the SWE value
of 4 mm2 it can be found a percentage of False Acceptance
Rate of 13.9%.

It is important to note that the probabilities of correct
and incorrect identifications of internal members are com-
plementary because they refer to the analysis of the same
subjects sample.



Fig. 8. SWE values distribution of correctly recognized authorized members and false rejection cases.

Fig. 9. SWE values distribution in impostors recognition cases.

Table 7
False Recognition Rate (FRR), False Acceptance Rate (FAR) and False
Identification Rate (FIR) as a function of SWE threshold.

SWE threshold mm2 2 2.5 3 3.5 4

FAR (%) 0 1.8 4.6 8.3 13.9
FIR (%) 0 0 0.2 1.1 1.3
FRR (%) 22.7 15.8 12.0 7.7 5.6
Correct identifications represent the 96.2% of all
90 � 4 = 360 internal individual recognitions (Table 3),
whereas False Identifications constitute only the 3.8%
(average error Table 3) of the 90 � 4 = 360 internal recogni-
tion trials. As False Identifications constitute a very small
data collection, they are not represented on a histogram
but their occurrences are shown in Table 7.

Introducing a data acceptance threshold, it is possible to
reduce the FAR and the FIR, at the cost of generating False
Rejection cases (i.e. increasing FRR). By adjusting the
threshold value, it is possible to modify the ratio between
False Rejection and False Acceptance cases, (i.e. to vary the
selectivity of the system). The threshold introduction can
define a tolerance degree in the recognition process: if
the threshold is high the system will have a large tolerance
with a high number of False Acceptances, otherwise,
imposing a low value, it will be very restrictive and it will
have a high number of False Rejections. The choice of the
threshold value depends by the required tolerance.

Different threshold levels have been applied on SWE
values and FAR, FIR and FRR percentage as a function of
the threshold are collected in Table 7. In Fig. 10 the thresh-
old effect is shown: the left area of the first curve repre-
sents the Positive Recognitions (Correctly Recognized
people + False Identifications + False Acceptances) while
on the right there are Negative Recognitions cases
(Correctly Rejected people + False Rejections).

The SWE threshold value may vary depending to the re-
quired tolerance degree for the recognition system: if the
threshold is set to 2 mm2 the percentage of False Rejec-
tions is 22.7%; however, the identification is almost totally
free of False Acceptances probability. Contra, if a higher



Fig. 10. By superposing correct recognition and impostors recognition diagrams, it is possible to highlight the impact of the SWE threshold in a variability
range DS. At the left of this threshold, SWE recognition values are considered positive; SWE values at the right of the threshold are considered negative.
threshold is used, the possibility of False Acceptances in-
creases. The minimum value of summed errors
(FRR + FAR + FIR) is equal to 16.8%, obtained assuming a
3 mm2 threshold.

The numerical values of the thresholds reported above
were computed for the specific case o 58-point masks used
in this work. Of course, considering a different points set
would lead to different numerical values for the threshold,
nevertheless the concept of the threshold and the proce-
dure to estimate its numerical value would be the same
as the one proposed above. In particular the value of the
threshold depends on the SWE values (see Fig. 10) and,
as previously described in this section, it is possible to fix
different values, according to the desired recognition pol-
icy (i.e. to minimize FAR or FRR . . .).
6. Conclusions

Facial recognition techniques still suffer of lack of reli-
ability when applied under real conditions. In this work
the impact of face rotation on recognition performance is
estimated using a stereoscopic multi-camera vision sys-
tem, which allows to frame the subject from three different
point of view: 0�, 5�, 10� rotation referring to the head axis.

With the 7-cameras stereoscopic system, facial images
of 117 individuals have been collected in a database com-
posed of 3 series of frames acquired in 3 different head
positions, repeated 9 times. Hence, 22113 pictures are
recorded.

The proposed recognition system has been tested on
117 � 117 � 4 = 54,756 comparisons, demonstrating an ini-
tial average error rate of 23.7% using frontal cameras, 28.8%
using 5� rotated cameras and 29.1% using 10� rotated cam-
eras. Weighting the facial feature with a weight inversely
proportional to the measuring uncertainty, average errors
decrease respectively to 3.8%, 6.6% and 7.5%. By matching
recognition results provided by three pair of cameras it is
possible to further reduce the error to an average value
of 1.1%. However, this solution requires a complex six-
cameras acquisition system, which is hardly applicable in
most of the practical conditions. Due to this reason, a sim-
ilar analysis has been made by matching information ob-
tained using one pair of cameras in four repeated trials. If
we consider satisfying a correct results coherence in at
least three recognition of the four, it is possible to appreci-
ate a 3% error. Similar works, reported in literature,
showed comparable error rates; some of which have been
discussed in Section 1. Finally the use of measurement
threshold on the SWE value to reduce False Acceptance
Rate has been contemplated. The analysis in the effective-
ness of the SWE threshold was done considering a subset
of 90 individuals of the database as ‘‘authorized people’’
and the other 27 people as ‘‘non-authorized’’. It has been
observed that the SWE average in rejected individuals is
larger than the SWE in correctly recognized individuals.
Introducing a SWE threshold of 4 mm2 it is possible to re-
duce to 13.9% the False Acceptance Rate producing only the
5.78% of False Rejection Error. If a zero-FAR system [47] is
required, the threshold has to be placed at 2 mm2.
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