
 

Permanent link to this version 

http://hdl.handle.net/11311/868409 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
M. Manetti, M. Morandini, P. Mantegazza 
Completely, Partially Centralized and Fully Decentralized Control Schemes of Large 
Adaptive Mirrors 
Journal of Vibration and Control, Vol. 22, N. 5, 2016, p. 1288-1305 
doi:10.1177/1077546314536426 
 
 
 
 
 
The final publication is available at https://doi.org/10.1177/1077546314536426 
 
Access to the published version may require subscription. 
 
 
  
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Completely, partially centralized and fully

decentralized control schemes of large adaptive mirrors

Mauro Manettia,∗∗, Marco Morandinia,∗, Paolo Mantegazzaa

aPolitecnico di Milano, Department of Aerospace Science and Technology, Via La Masa

34, I-20158 Milano, Italy

Abstract

Adaptive optics are an increasingly important feature of large ground

based telescopes. Large homogeneous deformable secondary mirrors con-

trolled by voice-coil motors, co-located to capacitive position sensors, are

a proven working design. Their shape control is mainly based on a com-

pletely decentralized high frequency feedback, combined with a low frequency

centralized feedforward. This paper investigates the possible improvements

achievable through the adoption of partially centralized feedback solutions,

comparing their performances with those of fully centralized optimal solu-

tions. The controllers design is based on well known techniques, such as full

state linear quadratic regulator, mini-max feedback and independent modal

space control.
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Figure 1: Adaptive optics control system.

1. Introduction

Adaptive optics (AO) corrects image aberrations introduced by atmo-

spheric turbulence (known as seeing), wind disturbances, structural vibra-

tions, thermal deformations, manufacturing and assembly inaccuracies. The

main AO components, shown in Fig. 1, are (Hardy, 1998): a wavefront sensor

to measure image aberrations from a natural or artificial guide star used as

a reference light source, an optimal mirror shape command generator (Op-

tical Controller) to compensate for the deteriorated image wavefront and an

actively controlled deformable mirror to compensate the image aberrations

by tracking the required optimal mirror shape.

This work focuses on magnetically levitated large deformable mirrors ac-

tuated through non contacting voice-coil motors co-located to capacitive po-

sition sensors. This technology has been first applied to the Multiple Mirror

Telescope (MMT, Wildi et al., 2003) and is at the basis of the Large Binoc-

ular Telescope (LBT, Riccardi et al., 2003) AO system, which represents the

state of the art (Davies and Kasper, 2012) within the existing working solu-

tions. A similar design is exploited by the Magellan Telescope (MT, Kopon

et al., 2010) and will be adopted by the Very Large Telescope (VLT, Biasi

et al., 2012), the Giant Magellan Telescope (GMT, Bouchez et al., 2012) and

the European Extremely Large Telescope (E-ELT, Gallieni et al., 2009; Biasi

and Gallieni, 2011).

Planned secondary deformable mirrors, e.g. VLT-DSM, have dimensions

in the order of a meter with more than a thousand actuation points (1170
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for the VLT-DSM). The required command rates can be up to 2 kHz and

the required positioning accuracy, with no externally applied disturbances,

is of few nanometers. The control of such stiffness dominated deformable

structures represents a real challenge, especially because it is difficult to

avoid the excitation of high-frequency structural modes characterized by a

high modal density and low damping. The coupling between all the control

points, mainly through the mirror stiffness, would suggest the adoption of

centralized controllers. Nonetheless the time required to condition, acquire

and process all the control signals has imposed the choice of a completely

decentralized high frequency feedback (FB), combined with a low frequency

centralized feedforward (FF), since the very first realization (MMT, Wildi

et al., 2003). Alternative control laws and very different strategies were pro-

posed since the MMT (Grocott and Miller, 1997; Grocott, 1997), see also

(Heimsten et al., 2012a,b; Manetti et al., 2010; Manetti, 2011; Ruppel et al.,

2013; Stein and Gorinevsky, 2005; Kulkarni et al., 2003; Massioni and Ver-

haegen, 2009; Ellenbroek et al., 2006). Even so, a completely decentralized

FB has been preferred for the MMT, LBT, MT and VLT mirrors. It as-

sured the simplest, yet effective, controller implementation when the MMT

system was designed: a single DSP board was able to control a maximum

of four actuation points, as it would have been significantly more difficult to

accommodate any complete or partial centralization of the high frequency

FB contribution. Furthermore experience showed that the FF contribution

was essential for achieving the required performances (Brusa-Zappellini et al.,

1998).

Future FPGA-based hardware improvements of the aforementioned tech-

nology allow to collect an increasing number of controlled points under the

same control board, e.g. 16 actuation points for the VLT (Biasi et al., 2012)
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and up to 36 actuation points for the E-ELT (Gallieni et al., 2009). This

makes the implementation of partially centralized and isolated controller

blocks feasible and relatively straightforward, provided they are designed

to avoid any data exchange between different control boards.

This paper evaluates and compares the deformable mirror tracking ca-

pabilities obtainable with different completely centralized solutions. Since

they would be difficult to implement on actual deformable mirrors, these

controllers will be used only to assess the behavior of more feasible solutions

based on fully and partially decentralized schemes. The design of the afore-

mentioned independent control units will be based on well-known techniques:

linear quadratic regulators (LQR), Mini-Max full state feedback and inde-

pendent modal space control (IMSC). All the controllers are designed with

reference to the GMT secondary adaptive mirror, whose performances are

computed through high-fidelity system simulations (see Sec. 2). The goal of

the work is to estimate the improvements that may be achievable, under the

constraint posed by the current hardware, with fully and partially centralized

controllers. The comparison should by no means be understood as a definite

ranking between centralized and decentralized solutions. In fact, they will

confirm that partially decentralized schemes works better than completely

decentralized and worse than completely centralized solutions. Although

this may seem obvious it was not granted beforehand, because of the peculiar

topological limitations imposed by technological implementation constraints.

They simply provides a means to estimate and quantify the pros and cons of

partially and completely centralized solutions in the face of a complete de-

centralization for massively controlled shell structures. The results obtained

could be of help in driving future design solutions by appropriately assessing

the peculiar features of each control scheme.
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Figure 2: Sketch section of the deformable mirror (Manetti et al., 2010).

2. System simulation

The GMT is a high performance telescope whose segmented primary op-

tics will combine six 8.4 meters off-axis circular mirrors arranged in a hexag-

onal pattern with a central 8.4 meters mirror (Bouchez et al., 2012). The

concave GMT secondary optics has a mirror pattern equal to that of the

primary mirror. It should be made of seven 1 m diameter Zerodur mirrors

aligned with their seven primary mates, each with 672 actuated points (see

Fig. 4), for a total of 4704 actuators. The GMT will adopt the non-contacting

adaptive mirror solution (Biasi et al., 2010). Because of the substantial static

and dynamic decoupling between the seven secondary mirrors, all the anal-

yses here reported will refer to the on-axis deformable shell alone.

The system model is rather complex and involves a multiphysics descrip-

tion (see Fig. 2) of: the static and dynamic behavior of the deformable mirror,

the air squeeze film (30-110 μm) interposed between the mirror and the ref-

erence plate, sensors and actuators, the signal A/D/A conversions including

quantization errors, noises, delays, and the wind turbulence directly imping-

ing on the mirror surface as an external disturbance. A complete and detailed

description of the model, along with numerical/experimental correlations can

be found in previous works (Manetti et al., 2010, 2012a,b). .

In the followings just a short summary of the system model is presented.
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The main aim of such a detailed model is the development of an accurate

simulator and not a system description suitable for the control design. De-

spite this fact an approximation scheme can be exploited to suggest and

verify reduced order models that are more suitable for a controller design

(see Sec. 4.).

The mirror structural dynamics are described through the development of

a shell Finite Element (FE) model, which is condensed by exploiting normal

vibration modes up to a sufficiently high frequency of 32 kHz. The (ng × 1)

vector of FE nodal out of plane displacements x is approximated as x =

Xgq, with q being the (nm × 1) vector of the modal generalized coordinates

and Xg the (ng × nm) modal shape matrix. Assuming a unit modal mass

normalization and a diagonal modal damping, the ith modal equation can be

written as

q̈i + 2ξiωiq̇i + ω2
i qi = f c

mi
+ f t

mi
+ f f

mi
, (1)

where qi is the ith modal coordinate, while ξi and ωi are, respectively, the

modal damping coefficient and natural frequency. The modal force is the

sum of three (nm × 1) vectors: the control forces f c
m = XT sat(f c

a) , the

air turbulence disturbance f t
m = XTf t

a and the fluid film generalized forces

f f
m = XT

f f
f
a. The (na × nm) matrix X samples the modal shapes at the

actuation points, Xf samples the modal shapes at the fluid dynamic nodes,

while the operator sat() accounts for actuator saturations.

A simplified turbulence disturbance approximation is proposed in (Manetti

et al., 2012a); within the present work the disturbance is considered fully cor-

related over the mirror surface and the turbulence velocity time history is

obtained through a first order rational approximation of its von Karman

power spectrum. The Gemini Telescope experimental measurements (Smith,

2001) suggest a turbulence average velocity of 7.5 m/s and a velocity standard
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deviation of 2 m/s.

The voice-coil forces are assumed to be ideally pointwise and acting nor-

mally to the deformable mirror. The actuators dynamics are described by

means of an uncoupled first order model

ẋf = − [rωfr]xf + [rωfr]f
c, (2)

f c
a = xf ,

where f c represents the (na × 1) required control forces vector, while [rωfr]

is an (na × na) diagonal matrix with ωf the circular corner frequency of the

actuators dynamics.

The capacitive sensors provides an approximately co-located measure-

ment of the shell displacement at each actuation point. Their dynamics can

be described, just like that of the actuators, as

ẋp = − [rωsr]xp + [rωsr]d, (3)

p = xp,

where p represents the (na × 1) vector of measured positions, d = Xq is the

(na×1) vector of ideal control points displacement and the (na×na) diagonal

matrix [rωsr] contains the sensors dynamics circular corner frequency ωs.

The non ideal co-location of the sensors can be accounted for as well (Manetti

et al., 2012b).

The fluid film interposed between the mirror and the reference plane,

whose thickness can vary within the range of 30-120 μm, strongly affects

the mirror dynamics, especially its damping. Hence a reasonable model of

its effects is mandatory to obtain a realistic prediction of the system stabil-

ity and performances. The simulator includes a fluid dynamics description

which exploits an ad hoc two dimensional formulation based on a finite vol-

ume discretization of the Navier-Stokes equations (Manetti et al., 2012a).
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Its coupling to the structural motion is obtained through the interpolation

provided by Xf .

3. Control strategies

The deformable mirror controller continuously adjusts the mirror surface

shape to compensate the residual optical aberrations measured by the wave-

front sensor. The desired mirror shape is computed by the optimal mirror

shape commad generator. The mirror controller receives the kth shape up-

date as a (na × 1) step command vector, dr
(k), at a relatively low command

frequency (250-2000 Hz) (see Fig. 1). Each step command is usually shaped

in time through appropriate smoothing functions, fsh(t), e.g. a fifth order

polynomial. Each command step can thus be split in a first time varying

part followed by a steady position, as shown in Fig. 3. The (na×1) reference

position vector has to be tracked in time at each actuation point and can be

written as

dr(t) = dr
(k) + (dr

(k+1) − dr
(k))fsh(t), (4)

thus determining the reference position dr(t) at each time step with a single

multiply/add instruction and also allowing to simply scale the FF action.

Such a solution is preferred because it avoids a more expensive step-by-step

computation associated to a high order low-pass filtering, while providing an

equivalent smoothing action of the command signal.

The already working solutions are based on a completely decentralized

proportional-derivative feedback, combined with a feedforward contribution

(Brusa-Zappellini et al., 1998). So the control force vector can be written as

f c = f c
f + f c

d, (5)

where the (na × 1) vectors f c
f and f c

d are respectively the FB and FF forces.

The system positioning error required by the FB proportional action is di-
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Figure 3: Sketch of typical command steps split into a time varying and steady part
(Manetti et al., 2010).

rectly obtained through capacitive sensors measurements, while the mirror

velocity is estimated through appropriate pseudo-derivative filters applied

to the position measure, without the need of any observer or more general

compensator. The FB control is realized digitally at a relatively high con-

trol frequency (70-100 kHz). The FF is applied at the same frequency, but

it is computed at the lower command frequency, making it feasible a fully

centralized FF. An improved controller has been proposed in (Manetti et al.,

2010), where the FF was modified, while the completely decentralized FB

structure was left untouched. A brief summary of the FF and FB terms of

this scheme can be found in Subsecs. 3.1, 3.2.

In the following parts of this paper the performances achievable through

the application of high frequency fully centralized and partially decentralized

FB solutions are compared with those of the existing completely decentral-

ized implementation. Once more, it should be remarked that a complete

centralization remains unfeasible without a complete rework of the existing

hardware technology. It is nevertheless assumed as a reference, providing a

good performance comparison benchmark for all the other methods. Par-

tial decentralization is an already viable strategy because new systems are
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Figure 4: Actuators layout of the on-axis GMT secondary mirror with the related (5× 5)
square grid subdivision.

equipped with FPGA-based control boards handling up to 36 control points

each. It is however still difficult to exchange data between different control

boards at the high FB control frequency. This limits the feasible structure of

any partially centralized FB, that cannot couple different actuators blocks.

These actuators blocks are here simulated by partitioning the control points

with a (5× 5) square grid, as shown in Fig. 4.

The above leads to 25 independent blocks, with a maximum of 37 and an

average of 27 control points per block. An additional constraint comes from

the need of avoiding the introduction of any full system observer/compensator.

The only available measures are the control points position and locally es-

timated velocity; these are the only informations that are supposed to be

required by the controller, just like for the already working units. By ad-

hering to the two aforementioned constraints the solutions proposed in this

paper can be applied to actual systems without the need of any hardware

change.

The controllers are designed using well established control techniques:
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Figure 5: Different gain matrix structures, which can be achieved through different con-
trol design implementations: completely decentralized (diagonal), partially decentralized
(block diagonal), partially centralized (band), completely centralized.

LQR (see Subsec. 3.3), Mini-Max full state feedback (see Subsec. 3.4) and in-

dependent modal space control (see Subsec. 3.5). All these control techniques

are applied to the above mentioned three possible control structures, i.e. the

completely decentralized (diagonal), the partially decentralized (block diag-

onal) and the completely centralized topologies of Fig. 5; a more classic band

topology is considered as well, as it allows to evaluate the effectiveness of the

block diagonal implementation.

Almost all the analyses are performed by leaving the enhanced FF contri-

bution of Subsec. 3.1 unchanged; a single analysis is carried out without any

FF, so to well highlight its importance in obtaining satisfactory performances

for a stiffness dominated system.

3.1. Feedforward contributions

The (na × 1) FF force vector, f c
f , can be split in two main contributions

f c
f = f c

fs + f c
fd, (6)
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where f c
fs is the (na × 1) static FF term, while f c

fd is the (na × 1) dynamic

FF term. The static FF represents the static forces required to obtain the

commanded shape and it is based on the (na × na) experimentally identified

stiffness matrix K∗ (see (Manetti et al., 2010) for more details),

f c
fs(t) = K∗dr(t), (7)

where dr(t), defined in Eq. 4, is computed with the the same shaping function

fsh(t) used to define the reference position vector. While the MMT, LBT

and MT mirrors were built using a different shaping function for the static

FF term, this is no more the case since the introduction of the dynamic FF

with the VLT mirror. The stiffness matrix is fully populated. Thus the static

FF is a completely centralized contribution. The computation of the static

FF term, Eq. 7, can be easily modified to introduce a sort of very effective

and efficient integral FB together with the static FF itself (Manetti et al.,

2010, 2013). This allows to increase the system robustness with respect to

external disturbances and can well fix possible inaccuracies of the identified

matrix K∗. All the results that will be presented are obtained with the use

of this modification.

The dynamic FF is meant to compensate for the system dynamics and

improves its performances during the transient part of each command step.

The (na × 1) vector, f c
fd, is computed as

f c
fd(t) = M ∗d̈

r
(t) +C∗ḋ

r
(t), (8)

where the (na × 1) vector d̈ is the tracking reference acceleration, while the

(na × 1) vector ḋ is the tracking reference velocity. The (na × na) matrices

M ∗ and C∗ should represent the system damping and mass, lumped at the

actuation points. Such matrices can be identified with a procedure similar to

that used to obtain K∗ (Manetti, 2011); nevertheless it is shown in (Manetti
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et al., 2010) that they can be proficiently approximated as being diagonal

through two scalar terms m and c, i.e. M ∗ = [rmr] and C∗ = [rcr]. In

this way their dynamic contributions become completely decentralized. The

dynamic FF is applied at the high control frequency, but computed at the

lower command rate, just like the static FF term.

3.2. Completely decentralized PD control

The control solution proposed in (Manetti et al., 2010) suggests the im-

plementation of a completely decentralized PDD2 controller; here, we limit

ourselves to a simpler and more standard PD controller, so that the (na × 1)

FB control vector can be written as

f c
d(t) = [rGdr]

(

ḋ
r
(t)− ṗ(t)

)

+ [rGpr] (d
r(t)− p(t)) , (9)

where the (na × na) diagonal matrices [rGdr] and [rGpr] are the derivative

and proportional gains. The (na × 1) vector of the measured control point

velocities, ṗ, is estimated through first-order pseudo-derivative filters. Their

state space realization is

ẋv = − [rωvr]xv + [rωvr]p, (10)

vp = − [rωvr]xv + [rωvr]p,

with [rωvr] a constant diagonal matrix based on the scalar value ωv, which

represents the pseudo-derivative filter corner frequency. The output vector

vp can be used to approximate ṗ in Eq. 9 and wherever the time derivative

of the measured position may be required in the following part of the paper.

3.3. LQR control

Consider a standard, asymptotically stable, linear time invariant state

space system representation:

ẋ = Ax+Bu. (11)
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The optimal linear quadratic regulator (LQR) guarantees the obtainement a

unique, stable time invariant control solution through a full state proportional

algebraic regulator u = −Gx,by minimizing the functional

J(u) =
1

2

ˆ ∞

0

(

xTQx+ uTRu
)

dt, (12)

where the time invariant weighting matrices Q and R are respectively at

least semidefinite positive symmetric and definite positive symmetric.

A proper choice of the system model, Eq. 11, is crucial in providing a good

control design. Thus, we assume here that the nominal plant can be approx-

imated through three (na × na) matrices, M , C and K, which represent,

respectively, the system mass, damping and stiffness matrices condensed at

the actuation points. These matrices can be interpreted as an approximated

reduced order model of both the system structural and fluid dynamics be-

havior. Different ways to retrieve these matrices can be found in Sec. 4,

along with a discussion about the limitations of such a simplified system de-

scription. Once M , C and K are identified, the nominal system state space

model can be represented either as a second order model in the physical

coordinates

Mp̈+Cṗ+Kp = u (13)

or by defining the following matrices of the corresponding state representation

of Eq 11 (e.g. Géradin and Rixen, 1997)

A =





0 I

−M−1K −M−1C



 , B =





0

M−1



 , (14)

where A is the (2na × 2na) state space matrix and B is the (2na × na) state

space input matrix. The (2na×1) state vector x is now xT =
[

pT ṗT
]

, while

the (na × 1) input vector represents the mirror FB control forces, u = f c
d.

Now, once an appropriate (2na × 2na) weighting matrix Q and a (na × na)
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matrix R have been chosen, the (na × 2na) optimal feedback gain matrix G

can be computed by solving an algebraic Riccati equation (ARE). The gain

matrix can be partitioned as G = [Gp Gd], where the (na × na) matrices

Gp and Gd can be interpreted as the centralized proportional and derivative

optimal gains obtained through the LQR design. The system FB contribution

f c
d(t) = −Gx̃ = Gp (d

r − p) +Gd

(

ḋ
r
− ṗ

)

(15)

requires a completely centralized computation; the vectors p and ṗ are the

same data needed for the completely decentralized solution of Eq. 9, and ṗ

is estimated with the pseudo-derivative filters of Eq. 10.

A distributed control structure based on the FB of Eq. 15 should not

require any data exchange between the different DSP boards, as explained in

Sec. 3, so constraining the structure of matrices Gp and Gd. The proposed

solution is straightforward and very intuitive from an engineering point of

view. It is based on the idea of removing from the system nominal plant

model all the coupling elements between actuated points belonging to differ-

ent DSP control boards. The matrices can thus be partitioned and reassem-

bled through ndsp uncoupled blocks matrices, K =
[

rKir

]

, C =
[

rCir

]

and

M =
[

rM ir

]

, where ndsp is the number of DSP control boards. The nota-

tion [r•r] stands for a (block-) diagonal matrix, index i ranges from 1 to ndsp

and the ith block matrices Ki, Ci and M i have dimension (nblock
i × nblock

i ),

with nblock
i equal to the number of actuation points handled by the ith DSP

control board. The solution of the original LQR design is thus recast into

the solution of ndsp smaller independent problems. As a direct consequence,

the proportional and derivative gain matrices Gp and Gd assume the same

block diagonal structure of the modified system matrices, Gp =
[

rGir

]

and

Gd =
[

rGd1r

]

. The resulting FB control is centralized within only the ac-

tuators belonging to each DSP unit, and there is no need to exchange any
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information between different control boards.

The deletion of some coupling terms from the system matrices leads to

a block diagonal system approximation and could be justified because the

larger is the distance between different control points the smaller is their

coupling. This may not completely justify the proposed approach. As a

matter of fact not only the coupling between distant actuators is neglected,

but also that of the actuation points that are close to each other but handled

by different DSPs. However, the system condensed mass and damping ma-

trices have a strong diagonal dominance, as shown in (Manetti et al., 2010;

Manetti, 2011). For this reason the suggested block diagonal representation

is likely to provide an adequate approximation of the system dynamics. The

block diagonal approximation of the stiffness matrix K negatively affects

the description of the system static response, that would be otherwise exact

with a fully populated stiffness matrix. The static positioning accuracy is

nevertheless well guaranteed by the FF contribution. Note that an alter-

native procedure for designing the block-diagonal and diagonal controllers

could be to constrain the structure of the gain matrix, still exploiting the

fully populated system matrices M , C and K. This approach leads to a

non convex, constrained, optimization problem, that can be solved, starting

from and maintaining a stable solution, with a numerical optimization (e.g.

Mercadal, 1991; Ercoli Finzi et al., 1985). However, although the resulting

solution would provide better performance, the problem at hand proved to

be too large to be efficiently solved numerically.

3.4. Mini-Max full state feedback control

As just stated, the nominal plant used for the design of the LQR controller

is an acceptable approximation, but by no means an accurate description of

the actual system. It lacks, among other things, a description of the high

16



frequency system fluid-structural dynamics, of the sensor and actuator dy-

namics, of the pseudo-derivative filters, and of control system delays. The

Mini-Max controller adds an additional degree of freedom to guarantee ro-

bustness in presence of unmodeled uncertainties, and allows to compromise

between the optimal performances of the LQR control and the robust design

provided by the introduction of a worst disturbance v(t) acting on the system

(Lublin and Athans, 2010):

ẋ = Ax+Bu+Lv, (16)

where the (2na × na) matrix L = B defines how the disturbance vector

v affects the system dynamics. The aim is to exploit an optimal control

solution, which is capable to reject the effect of disturbances, so that a more

robust design can be obtained. The idea is to include the determination of

the worst possible disturbance into the quadratic cost functional. Therefore,

the infinite horizon performances are degraded by setting

J(u,v) =
1

2

ˆ ∞

0

(

xTQx+ uTRu− γ2vTv
)

dt, (17)

with γ a positive parameter. The design goal is the minimization of the func-

tional J(u,v) with respect to the control unknowns u, while maximizing it

with respect to v. This is a typical differential game Mini-Max optimization

problem, min
u

max
v

J(u,d), i.e. an effort to find the optimal control in pres-

ence of the worst admissible disturbances. The solution is not guaranteed to

exist for any positive γ, but when it does a full state control law is obtained.

Consider an asymptotically stable system and assume that the state vector

x is available and the disturbance v is bounded. If the optimal value of

J(u,d) constrained by Eq. 16 exists, then it is a unique saddle point with

the optimal Mini-Max control law given by

u = −Gx, G = R−1BTP , (18)
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the worst disturbance being:

v =
1

γ2
LTPx. (19)

The matrix P is the unique, symmetric, at least positive semidefinite solution

of the matrix Riccati Equation

PA+ATP − P

(

BR−1BT −
1

γ2
LLT

)

P +Q = 0. (20)

When the optimization problem solution exists then the resulting closed-

loop system, ẋ = (A−BG)x, is guaranteed to be asymptotically stable.

Of course the system disturbances are unknown by definition, so the op-

timal feedback based on them, Eq. 19, cannot be applied. However the

resulting Mini-Max controller provides a closed loop stable system ẋ =
(

A+ γ−2LLTP −BG
)

x for which it is possible to prove that, after re-

moving the worst disturbance feedback, i.e. γ−2LLTP , the final solution

not only remains stable, but its stability margin is improved (Colaneri et al.,

1997). This point of view indicates that the optimal control gain matrix G is

designed on the penalized system ẋ =
(

A+ γ−2LLTP
)

x = (A+∆Aw)x

and then applied to the nominal system. Because γ drives the negative term

of the ARE equation, γ−2LLT , there is a minimum positive value γmin be-

low which the Riccati equation cannot be solved or the matrix P does not

result positive semidefinite. Useful γ values lies within the range [γmin, ∞].

The solution will tend to the LQR design, for which Eq. 18 still applies, as

γ → ∞. At γmin the so called full information H∞ controller is obtained.

The Mini-Max feedback action is computed as a function of the tracking

error x̃, as for the LQR control, and the control contribution assumes exactly

the same structure as Eq. 15. The distributed control is built by following

the same procedure suggested for the LQR control, leading to ndsp smaller in-
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dependent design problems, hence to uncoupled block diagonal proportional

and derivative gain matrices.

3.5. Independent modal space control (IMSC)

Normal vibration modes can be exploited not only to describe the struc-

tural behavior, as seen in Sec. 2, but also to approach the control of de-

formable structures. Designing the controller in the modal space is appealing,

since it allows addressing the system dynamics as a set of independent second

order equations, so that the controller design can be applied to uncoupled

nominal plants that are drastically reduced in size. This allowed model-

ing the sensor and actuator dynamics and the pseudo-derivative filters, still

obtaining a set of independent nominal plants with reasonable dimensions.

Moreover a modal control naturally introduces the capability to tune the sys-

tem behavior in the frequency domain, and in the adaptive optics field the

deformable mirror specifications in terms of performances are often provided

in a more comfortable way in terms of modal response specifications.

Using normal vibration modes the nominal plant for the controller design

can be written as

η̈ + [r2ωcξcr] η̇ +
[

rω2
cr

]

η = um, (21)

where η is the (nm × 1) vector of the controlled modal amplitudes, um is

the (nm × 1) vector of the modal control forces, while [r2ωcξcr] and [rω2
cr]

are the (nm × nm) diagonal matrices representing the modal damping and

stiffness. The nm natural frequencies ωc can be obtained, along with their

corresponding mode shapes, from the same accurate FE model of Sec. 2. On

the contrary, the nm modal damping coefficients ξc should approximate both

the structural and the fluid film damping. Further details about this modal

representation can be found in Sec. 4. A major advantage of the modal rep-

resentation is its capability of reducing the system to a set of nm uncoupled
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equations. A straightforward way to modify the system dynamics, while pre-

serving its uncoupled representation, is the introduction of a completely diag-

onal proportional-derivative modal feedback: um = −
[

rGm
p r

]

η− [rGm
d r] η̇,

where
[

rGm
p r

]

and [rGm
d r] are respectively the proportional and derivative

(nm×nm) diagonal modal gain matrices. This solution is usually called inde-

pendent modal space control (IMSC) (Meirovitch, 1990). The IMSC requires

the measurement of modal amplitudes and the application of modal forces.

However the system here considered relies on a finite number of discrete sen-

sors and actuators. It is thus mandatory to find a relationship between the

modal and the physical space.

The capacitive sensors measurement of the positions, p, can be approx-

imated through a truncated modal basis as p = Xcη, where Xc is the

(na × nm) matrix sampling the controlled modal shapes at the controlled

points. If the number of controlled modes, nm, is chosen equal to the num-

ber of controlled points, na, the inverse relation could be easily obtained as

η = X−1
c p. The computation of X−1

c requires that at least na modal shapes

are observable. The system modal shapes observability can be easily checked,

through the procedure suggested in (Manetti et al., 2010), by exploiting the

Hankel singular values of the Gramian matrices (Gawronsky, 2004). The

Hankel singular values usually show that more than na modal shapes result

observable for the sensors layout of the here considered deformable mirrors.

However, experience suggests that the degree of observability decreases for

increasing natural frequencies. This can lead to numerical problems in the

computation of the inverse matrix X−1
c , which would have several hundreds

or thousands rows for the latest generation mirrors. Moreover the number of

controlled modes can hardly equal the number of controlled points because

the spillover control action would easily endanger system stability. These
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practical reasons suggest to choose nm < na and exploit the Moore–Penrose

pseudo-inverse X†
c of matrix Xc, X

†
c =

(

XT
c Xc

)−1
XT

c , to obtain the modal

amplitudes from the position measurements (Meirovitch and Baruh, 1985):

η = X†
cp. (22)

The same pseudo–inverse matrix can be used to evaluate the modal velocities,

η̇ = X†
cṗ.

A related problem is the determination of a relation between modal con-

trol forces and actuators forces. It is well known (e.g. Géradin and Rixen,

1997) that the generalized control forces can be expressed as um = XT
c f

c
d.

The Moore-Penrose pseudo-inverse XT †
c = Xc

(

XT
c Xc

)−1
allows to find the

minimum norm solution

f c
d = XT †

c um. (23)

The modal FB force vector of Eq. 21 can be rewritten as

um = XT
c f

c
d

= XT
c X

T †
c

(

−
[

rGm
p r

]

η − [rGm
d r] η̇

)

= −
([

rGm
p r

]

X†
cp+ [rGm

d r]X
†
cṗ
)

, (24)

where the property XT
c X

T †
c = I has been exploited. This is a crucial point

for preserving the uncoupled structure of the modal control problem. A

further improvement of the plant modeling accuracy can be obtained by

introducing the actuators and sensors dynamics, Eqs. 2 and 3, into Eq. 24,

together with the pseudo-derivative filter action, Eq. 10. For convenience

21



this operation is performed in the Laplace domain

L(um) = −XT
c

[

r
ωa

s+ ωa
r

]

XT †
c





[

rGm
p r

]

X†
c

[

r ωs

s+ωs
r

]

d+

[rGm
d r]X

†
c

[

r ωvs

s+ωv
r

] [

r ωs

s+ωs
r

]

d



 (25)

where s is the Laplace variable, while the (na × na) constant diagonal ma-

trices
[

r ωa

s+ωa
r

]

,
[

r ωs

s+ωs
r

]

and
[

r ωvs
s+ωv

r

]

represent respectively the transfer

functions of the actuators dynamics, sensors dynamics and pseudo-derivative

filter action. These constant diagonal matrices act as frequency dependent

scalar coefficients of the modal control forces, so that Eq. 25 can be equiva-

lently rewritten as

L(um) = −

[

r
ωa

s+ ωa
r

] [

r
ωs

s+ ωs
r

]

(

[

rGm
p r

]

η +

[

r
ωvs

s+ ωv
r

]

[rGm
d r]η

)

, (26)

where the matrices
[

r ωa

s+ωa
r

]

,
[

r ωs

s+ωs
r

]

and
[

r ωvs
s+ωv

r

]

have now dimensions

(nm×nm), while the modal controlled amplitudes are now redefined as func-

tions of the true mirror displacement at controlled points, i.e. η = X†
cd.

An improved open loop plant transfer function can be obtained from Eqs. 21

and 26

η =

[

r
1

s2 + 2ωcξc + ω2
c

r

] [

r
ωa

s+ ωa
r

] [

r
ωs

s+ ωs
r

]

(

up
m +

[

r
ωvs

s+ ωv
r

]

ud
m

)

, (27)

where up
m and ud

m are respectively (nm × 1) vectors of proportional and

derivative modal control forces. Eq. 27 highlights that the improved system

description remains uncoupled if an IMSC philosophy is exploited.

Once the modal gain matrices
[

rGm
p r

]

and [rGm
d r] have been designed,

for example through one of the two procedures presented in Sec. 3.6 and 3.7,
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the corresponding gain matrices in physical space can be retrieved as

Gp = XT †
c

[

rGm
p r

]

X†
c, Gd = XT †

c [rGm
d r]X

†
c. (28)

Thus the system FB contribution assumes the same structure as Eq. 15.

The gain matrices in physical space, Eq. 28, are fully populated. A dis-

tributed control cannot be obtained through an a priori decoupling of the

plant model, as for the LQR and Mini-Max design. However, the gains cou-

pling diminishes for increasing actuators distance. This suggests to neglect

the coupling gains of actuators that are sufficiently distant from each other,

see for example (Ruppel, 2012), in order to obtain a distributed control.

Once again only the coupling terms of actuators belonging to the same con-

trol boards are retained. Of course, decoupling the system by dropping the

smaller gain terms does not offer any mathematical guarantee on the final

performances of the controller; this is especially true because the number of

dropped terms is significant. However, as we shall see, the decoupled system

performances appears to be acceptable.

3.6. Suboptimal stochastic IMSC design

The transfer function of Eq. 27, with the addition of possible system

disturbances, can be realized in the time domain through nm uncoupled state

space systems, corresponding to each controlled modal shape,

ẋmi
= Ami

xmi
+Bmumi

+Lmvmi
,

ymi
= Cmxmi

, (29)

with i ranging from 1 to nm. The (5× 1) state space vector xmi
corresponds

to xT
mi

=
[

ηi η̇i ηsi u
a
mi

vηsi
]

, where ηi and η̇i are respectively the ith modal

amplitude and velocity, ηsi is the ith measured modal amplitude, vηsi is the

ith modal velocity obtained through the pseudo-derivative filter applied to
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the measured modal amplitude, ua
mi

is the ith IMSC control force filtered by

the actuator dynamics. A possible realization of the ith modal state space

set of equations is

Ami
=























0 1 0 0 0

−ω2
ci

−2ξciωci 0 1 0

ωs 0 −ωs 0 0

0 0 0 −ωf 0

ωvωs 0 −ωvωs 0 −ωv























,

Bm =























0

0

0

ωf

0























, Lm =























0 0 0

1 0 0

0 ωs 0

0 0 ωf

0 0 0























,

Cm =





0 0 1 0 0

0 0 0 0 1



 , (30)

where the (3 × 1) ith modal disturbance vector, vT
mi

=
[

vemi
vsmi

vami

]

, com-

prises an external disturbance vemi
acting on the mirror, a measurement dis-

turbance vsmi
and a control force disturbance vami

. With reference to Eq. 29

a direct output feedback umi
= GmiCmxmi

= [Gmi

p Gmi

d ]Cmxmi
can be envi-

sioned (Kwakernaak and Sivan, 1972), where Gmi

p and Gmi

d are respectively

the ith diagonal element of the modal gain matrices
[

rGm
p r

]

and [rGm
d r].

This solution is clearly suboptimal if compared with an LQR stochastic full

state control; it is thus dubbed a suboptimal stochastic design. This so-

lution assumes the presence of stochastic disturbances, i.e. vmi
needs to

be ergodic noises with zero mean and (3 × 3) intensity matrix W v. The

gain matrix Gmi can be designed through the minimization of the functional
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J = 1
2
E
(

xT
mi
Qxmi

+ umi
Rumi

)

, i.e.

min
G

mi

(J) , (31)

where E() is the expectation operator, while Q and R are respectively the

symmetric semipositive definite (5 × 5) state weight matrix and the scalar

positive definite control force weight. The functional J of Eq. 31 can be

rewritten, by resorting to the properties of the matrix trace operator, tr(),

as

J =
1

2
tr
((

Q+CT
mG

miTRGmiCm

)

σ2
xx

)

, (32)

where the (5 × 5) state variance matrix σ2
xx is solution of the Lyapunov

equation

Ami
σ2

xx + σ2
xxA

T

mi
+LmW vL

T
m = 0 (33)

with Ami
= Ami

−BmG
miCm. The fixed structure of the gain matrix does

not allow to determine Gmi through the resolution of an ARE as for the LQR

design. So the solution is sought by performing a numerical optimization of

the functional, Eq. 32, subject to the constraint of Eq. 33. An unconstrained

minimization allows to find a solution of Eq. 33 only if the initial gain matrix

leads to a stable system. This is not a problem for the case at hand because

the plant has no unstable poles, so it suffices to start the optimization with

null or very small gains. The optimization can proceed without the explicit

imposition of the system stability constraint because a loss of stability would

cause a deterioration of the cost functional. Contrarily to the unique solution

provided by the stochastic LQR design, the suboptimal problem can converge

towards different local minima if different intensity matrix W v are chosen.

As already remarked at the end of Section 3.3, the overall difficulties and

the computational costs of finding acceptable local minima for large MIMO

control problems prevent the possibility of easily applying the suboptimal
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design strategy to the coupled physical state space system description of

Eq. 11, and this is even truer if the model is improved by adding the sensors,

actuators and pseudo-derivative filters dynamics.

Efficient optimizers require (Nocedal and Wright, 2006) not only the eval-

uation of the cost functional, but also of its (2×1) gradient vector computed

with respect to the optimization parameters Gmi

∇J =
1

2

[

tr

(

F
∂σ2

xx

∂Gmi

p

)

tr

(

F
∂σ2

xx

∂Gmi

d

)]T

. (34)

The gradient vector can be efficiently computed as

∇J =

[

tr

(

Λ
∂Ami

∂Gmi

p

σxx

)

tr

(

Λ
∂Ami

∂Gmi

d

σxx

)]T

, (35)

where the (5 × 5) Lagrange multipliers matrix Λ can be obtained through

the resolution of the adjoint Lyapunov equation

Ami
Λ+ΛA

T

mi
+ F = 0. (36)

The cost functional gradient requires the solution of only one Lyapunov equa-

tion, Eq. 36, and the computation of the derivatives
∂Ami

∂Gmi
.

3.7. Closed loop poles optimization, IMSC design

A different approach is to optimize the pole locations of each uncoupled

closed loop modal transfer function. Starting from Eq. 27, the ith modal

open loop transfer function LTFi
(s) can be written as

Lol
TFi

=

[

r
1

s2 + 2ωciξci + ω2
ci

r

] [

r
ωa

s+ ωa
r

]

[

r
ωs

s+ ωs
r

](

Gmi

p +

[

r
ωvs

s+ ωv
r

]

Gmi

d

)

, (37)

so that the closed loop transfer function is

Lcl
TFi

=
Lol
TFi

Lol
TFi

+ 1
. (38)
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An exact closed loop pole placement for Eq. 38 is not feasible without the

introduction of an observer of the complete state of the system. However,

if the ith modal response is dominated by two complex conjugate poles, i.e.

if the response can be approximated by a second order system, then a con-

strained optimization of the closed loop system poles allows to reasonably

match the desired second order modal response.

The problem can be stated in mathematical terms as a constrained opti-

mization procedure

min
G

mi

(J) such that

Re (λi) < 0,

Gmi

p ≥ 0 Gmi

d ≥ 0, (39)

where J = min
(

|λi − λi|
)

+ min
(

|λi − λ
∗

i |
)

, λi is the (5 × 1) vector of

the closed loop poles belonging to the ith modal contribution, the scalars

λi and λ
∗

i represent respectively the desired pole location for the ith modal

contribution and its complex coniugate and | · | computes the absolute value

of each vector component.

The suboptimal stochastic design requires the choice of appropriate weight-

ing matrices and system disturbances, which are usually found through trial

and errors procedures. The closed loop poles optimization, instead, requires

choosing appropriate desired pole locations. Its remarkable advantage is that

the poles location is easily linked with well known performance indexes of

second order systems. In fact, the overshoot, Ori , and the settling time, Tεi ,

of the ith approximated modal second order system response to step input

27



can be expressed as

Ori = exp



−
ξiπ

√

1− ξ
2

i



 ,

Tεi ≈
1

ωi ξi
ln





1

ε

√

1− ξ
2

i



 , (40)

where ξi and ωi are respectively the desired second order system damping

coefficient and circular frequency, while ε defines the settling time as the time

required to set the response within the region ±ε the final steady value. So

the designer can choose the desired response overshoot and settling time for

each controlled modal contribution, i.e. set the parameters Ori , Tεi and ε.

Than, by solving the first uncoupled non linear Eqs. 40, ξi can be determined

and introduced in the second of Eqs. 40 that can be solved for ωi. Finally,

the desired poles for the ith modal response are

{

λi, λ
∗

i

}

= −ξi ωi ± i ωi

√

1− ξ
2

i . (41)

Of course the constrained optimization procedure does not guarantee an

exact pole placement. Moreover, the nominal plant response may differ from

a pure second order one, especially when the ith modal circular frequency

is close to the sensors, actuators or pseudo-derivative filter own dynamics.

However the frequency separation is always sufficiently large for the case at

hand. Thus, the second order approximation is a viable approach to the

control system design. Although the sought overshoot and settling time

could be different for every nominal plant vibration mode, we have limited

our investigation to controllers designed by imposing the same values to every

mode. This is inline with the usual specifications provided in terms of modal

responses of deformable mirrors in adaptive optics.
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4. Nominal plant and robust stability criterium

The control design procedures introduced in the previous sections are

based on a nominal plant description. The mass, damping and stiffness ma-

trices condensed at the actuation points of Eq. 14 could be assumed to be

the same as those required by the static and dynamic FF of Eqs. 8 and 7.

These matrices can be tuned (Manetti et al., 2010) or identified (Manetti,

2011) directly in the field. The matrices M , C and K are symmetric pos-

itive definite, but the identified matrices M ∗, C∗ and K∗ are not, mainly

because of the inexact sensors co-location (Manetti et al., 2012b). The ideal

condensed matrices can be computed from the mirror FE model exploited to

simulate the system (see Sec. 2 and references therein); however the damping

contribution is dominated by fluid dynamics, while the FE model structural

description is undamped. In the following the stiffness matrix K is computed

from the FE model of the mirror. The mass and damping matrices, instead,

are assumed to be diagonal. The lumped mass matrix M will have all the

diagonal terms equal to the system mass divided by the number of actuation

points, as suggested in (Manetti et al., 2010) for M ∗. The damping matrix

C is derived from the identified matrix C∗, which has been verified to have a

strong diagonal dominance in (Manetti, 2011). These modeling choices lead

to an adequately accurate description of the system static response. The

plant dynamics, instead, are approximated to well match the actual plant

response for frequencies up to about 4200 Hz, a sufficiently high frequency

for the required control system bandwidth.

As anticipated in Sec. 3.5, the modal plant description, Eq. 21, exploits

part of the modal analysis performed on the accurate FE model, i.e. the

controlled modal circular frequencies ωc and the controlled modal shapes

Xc are the first nm controllable and observable modal contributions of Eq. 1.
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Once again, the modal damping coefficients ξc have to adequately describe

both the structural and fluid dynamic damping. They can be estimated from

the physical coordinates plant model of Eq. 11, built using the approximated

mass, damping and stiffness matrices of the previous paragraph: carring out

an eigenvalue analysis the first nm couples of complex conjugate eigenvalues

allow to estimate the corresponding damping coefficients associated to the

controlled modal shapes.

All the control design procedures shown in the previous sections have

very good stabilizing properties with respect to the nominal plant. However

differences between the nominal and real system may reduce system stability,

a critical point for large deformable mirrors. This is mainly related to control

spillover on the frequencies beyond those well described by the nominal plant.

The high modal density of deformable mirrors prevents the introduction of

a sufficiently sharp control action attenuation beyond the control bandwidth

without adding a sizable destabilizing phase lag. Fluid dynamics damping is

quite large in the low frequency range, but diminishes at higher frequencies,

where the phase lags of sensors, actuators and pseudo-derivative filters be-

comes appreciable as well. The development of a nominal plant model that

is accurate over a larger frequency range would be a daunting task because

of the problem size and of the difficulty of describing, even with the accu-

rate simulator of Sec. 2, the high frequency system damping. These reasons

suggest to analyze the stability robustness with respect to high frequency

plant uncertainty for all of the control system designs introduced in previous

sections, so to warrant the stability of the real plant.

The related stability robustness measure can also be exploited to compare

the different controllers. Therefore, their gains will be tuned in order to grant

the same degree of stability robustness, thus allowing a fair comparison of
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Figure 6: Block diagram description to study control system stability robustness.

the different solutions.

The block diagram of Fig. 6a represents a generic nominal plant transfer

matrix P n with an additive high frequency uncertainty P h and a feedback

controller Gc.

The additive uncertainty of Fig. 6a can be transformed into the multi-

plicative uncertainty at the plant output of Fig. 6b by simply defining the

transfer matrices P = P nGc and L = P hP
−1
n (e.g. Bastaits et al., 2009).

If the controller verifies the nominal plant stability, then the stability of the

system perturbed through the uncertainty P h placed at the plant output is

guaranteed when (Doyle and Stein, 1981)

σ
(

P (jω) (I + P (jω))−1) < 1/σ (L(jω)) ∀ω > 0. (42)

As already explained, the stability robustness level is here exploited as

a mean to compare the performances of different control designs. Thus,

to grant a meaningful comparison, the very same nominal plant has to be

used for all the controllers. The nominal modal system description has been

used for such a check over all the proposed solutions, verifying the nominal

stability of all the control designs by comparing the eigenvalues of the system

state space realization.

For the case at hand the high frequency uncertainty is modeled as a
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Parameters Values

nm 150
nh
m 4850

ωmin
h 870·2π (rad/sec)

ωmax
h 32400·2π (rad/sec)

ξh(ω
min
h ) 0.05

ξh(ω
max
h ) 0.0001

ωa 25000·2π (rad/sec)
ωs 25000·2π (rad/sec)
ωv 15000·2π (rad/sec)

Table 1: System parameters.

(na × na) transfer matrix

P h = Xh

[

r
1

s2 + 2ξhωhs+ ω2
h

r

]

XT
h , (43)

with Xh a (na×nh
m) matrix containing the nh

m high frequency modal shapes

not appropriately described by P n; ωh and ξh are respectively the high fre-

quency circular frequencies and damping coefficients. The high frequency

fluid dynamics contribution is accounted for by tuning the damping coeffi-

cient ξh, which is here conservatively approximated as linearly varying be-

tween the lower and the higher residual modal frequencies, ωmin
h and ωmax

h .

The number of controlled modes nm is kept smaller than the number of ac-

tuators, nm < na, as explained in Section 3.5. The lower uncontrolled modes

frequency, ωmin
h , is determined by nm. The number nh

m of high frequency

modal shapes not appropriately described by P n covers a wide frequency

range, up to ωmax
h , so to guarantee the absence of spillover. The sensors, ac-

tuators and pseudo-derivative filters frequencies ωs, ωa and ωv are typical of

current implementations. The high frequency modal parameters are resumed

in Table 1.
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Figure 7: Stability robustness verification of different control design schemes.

5. Simulation results

The design weights and performance parameters of each of the controllers

of Sec. 3 are first tweaked in order to obtain comparable system stability ro-

bustness. Figure 7a shows the satisfaction of the robust stability condition

for all the four completely centralized control design techniques. Curve 1 rep-

resents the right-hand term of Eq. 42, and is equal for all the controllers. The

other curves are the left-hand term and guarantee almost the same stability

robustness degree. The different implementations of the IMSC suboptimal

stochastic design are compared in Fig. 7b along with the completely decen-

tralized FB with constant proportional and derivative diagonal gain matrices

(PD). The IMSC suboptimal diagonal curve of Figure 7b is for a completely

decentralized control system. The decentralized control has been obtained

by following the block diagonal design procedure, while reducing the block

size to a single actuator.

The different designs have been tested through the simulation of the GMT
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(nm) PD LQR
Mini IMSC, IMSC,
Max poles opt. subopt.

Centralized – 4.8 4.5 5.7 4.7
Block diagonal – 5.2 4.5 5.4 4.8
Diagonal 4.8 5.0 4.6 4.7 5.0

Centralized turb. – 9.4 9.5 13.9 7.9
Block diagonal turb. – 18.7 9.8 16.9 10.4
Diagonal turb. 22.1 21.2 12.3 14.5 20.7

Table 2: rms tracking error of different control designs, without and with (turb.) wind
turbulence .

on-axis secondary adaptive mirror. The mirror must track a realistic com-

mand history of 0.3 s, with a step command rate of 2 kHz. The chosen time

history represents a bad seeing conditions, i.e. a 90th percentile seeing, and

has been provided by the GMT working group. All the analyses have been

performed with and without wind turbulence. Table 2 summarizes the rms

tracking error computed over all the actuation points at each control step

and then throughout the simulation. It should be noticed that the reported

results are obtained by assuming that the computational delay required to

evaluate the FB actions is the same for all the control schemes, and close to

the computational delay required by the current hardware to evaluate the

PD FB term. Such an assumption implies an adequate parallelization of the

control hardware. All the control techniques and gain matrices topologies

appears to have comparable rms tracking errors when the wind disturbance

is not accounted for in the simulation. In fact, without wind turbulence the

performances are mainly limited by the technology at hand. On the con-

trary the system capabilities in presence impinging turbulence, do depend

on the different control strategies and implementations. As expected, the

best performances are achieved by exploiting a fully centralized gain struc-

ture; the completely decentralized solutions show the worst performances,
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and the partially centralized ones are in between. The only exception to

this trend is the IMSC with poles optimization, whose diagonal implemen-

tation provides slightly better results than those of its distributed solution.

The mere fact that the fully centralized solutions have better performances

than decentralized ones is by no means surprising. Less granted, due to the

topological limitations imposed by the technology, are the results of block

diagonal implementations. It is interesting to discuss the actual amount of

performance losses in relation to the adopted control design techniques. The

LQR centralized design halves the rms tracking error of the diagonal imple-

mentation, while the performances of its block-diagonal implementation are

closer to those of the diagonal solution. The IMSC suboptimal results are

comparable to those of the LQR controller, but its block diagonal implemen-

tation is more efficient, with an rms error closer to that of the centralized

solution. The Mini-Max control proves to have a remarkably small depen-

dence on the controller topology. Its centralized and block-diagonal versions

are almost equivalent, and the diagonal implementation is not much worse.

The Mini-Max design for large values of the parameter γ (see Eq. 17) leads

to a solution that is equivalent to the LQR design. However, as shown in the

Appendix, lower γ values move the gain matrices topology toward a diago-

nal structure, which is at the core of a better controller robustness. This is

confirmed by the fact that it is necessary to increase the gain matrices of all

the diagonal implementations in order to obtain the same degree of stability

robustness of the distributed controllers. However the Mini-Max design pro-

vides an intrinsic diagonal dominance of the gain matrices structure, leading

to a low performance sensitivity with respect to topology variations.

Fig. 8a shows the rms tracking error frequency spectrum obtained using

the IMSC suboptimal stochastic design, computed at all of the actuation
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Figure 8: Rms tracking error frequency spectrum.

points at each control step. The rms error decreases slowly with frequency

and goes to almost zero above 1000 Hz. The performance improvements

granted by the centralized and distributed control solutions should be quite

clear. The other control schemes, such as the Mini-Max design of Figure 8b,

are characterized by similar trends. The corresponding position time his-

tories for a representative actuator are shown in Fig. 9, and confirm the

improvement in tracking that is achievable with full or partial feedback cen-

tralization.

Table 3 compares the results obtained with a different set of controllers.

The constant diagonal gain result is obtained by using a completely decen-

tralized FB with constant proportional and derivative diagonal gain matrices,

much like that implemented in operational mirrors1. The rms tracking error

1Operational mirrors actually have different gains between external and internal actu-
ator rings to better account for different stiffnesses and air damping at their boundaries.
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Figure 9: Tracking performances in presence of wind disturbances of the IMSC suboptimal
design implemented as: centralized, distributed and diagonal.

Control techniques rms (nm)

Constant diagonal gain matrices (PD) 22.1
IMSC suboptimal, distance–based band topology 8.6
IMSC suboptimal, block diagonal 10.4
IMSC suboptimal, diagonal 20.7

IMSC suboptimal centralized without FF terms 827

Table 3: rms tracking error of different control designs, in presence of wind turbulence
disturbances.

of 22.1 nm confirms the validity of this choice, even if through an appro-

priate gains design the very same completely decentralized scheme could be

improved, as shown in Table 2. The IMSC suboptimal distance–based band

topology rms is obtained with a more traditional distributed strategy, where

each actuation point is coupled with all the actuators within 0.1 m, with an

overall number of coupled actuators comparable to that of each square sectors

in Fig. 4. The resulting rms error of 8.6 nm is placed between the completely

centralized solution (7.9 nm) and the block diagonal one (10.4 nm). This
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result confirms that the block diagonal topology performances are negatively

affected by the need to neglect the coupling with all the nearby actuators

that are assigned to different control boards. However, it also highlights the

fact that the resulting performance loss is not substantial. Hence, it justifies

the proposed approach. Moreover, the possibility of using the current hard-

ware without the need of any data exchange between different control board

well compensates the inevitable slight performance loss that has to be payed.

It is remarked that the last line of Table 3 well emphasizes that no useful

results can be obtained without the any FF.

6. Concluding remarks

This paper evaluates possible FB control improvements for large de-

formable mirrors applied to adaptive optics. The work compares four dif-

ferent control techniques, each implemented with a completely centralized,

partially centralized and completely decentralized structure.

The controllers performance are compared after tuning their gains so to

assure almost the same stability robustness with respect to high frequency

modal uncertainties.

The analysis highlights significant differences in performance only when

the mirror is affected by directly impinging external wind turbulence. As

expected the best results are achieved by completely centralized solutions,

with partially centralized controllers providing better results than completely

decentralized ones.

The IMSC suboptimal centralized and block-diagonal stochastic design

assures very good performances in face of wind disturbances. The Mini-Max

control provides the best partially centralized and completely decentralized

solutions. This controller shows that a strong diagonal dominance of the gain

matrices improves the design stability robustness, albeit at the expense of
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slight performance decrements, so posing itself as a suitable design techinque

for completely decentralized solutions.

All the completely decentralized solutions provide results that are bet-

ter than those of a more traditional PD control with equal gains at all the

actuation points. The simulated results confirm also that the performance

loss incurred by decoupling nearby actuators belonging to different control

boards is limited to 31%, at most, for all but the LQR controller.

The leading role of the FF contributions is confirmed once more. In fact,

it has been verified that even the best fully centralized design is not able to

assure satisfactory performances without the presence of an appropriate FF.

This is because the system stability constraint prevents the use of sufficiently

high FB gains and thus the possibility of an accurate command tracking.

Appendix

This appendix justifies the assertion that for a small γ and a diagonal

plant mass matrix M (cfr. Section 4) the gain matrix of the Mini-Max

controller tends, for the case at hand, towards a diagonal structure. By

partitioning the matrices P and Q as

P =





P dd P T

ḋd

P ḋd P ḋḋ



 Q =





Qdd 0

0 Qḋḋ



 (44)

and recalling the definition of the matrix B of Eq. 14, the gain matrix turns

out to be:

G = R−1M−1
[

P ḋd P ḋḋ

]

= [GpGd] . (45)

Recalling that we have assumed L = B and diagonal R and Q, Eq. 18 makes

it clear that G would be diagonal whenever P dd and P ḋḋ are so. Partitioning
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the ARE Eq. 20 according to Eq. 44 one obtains:

−P T

ḋd
M−1K −

(

P T

ḋd
M−1K

)T
− P T

ḋd
V P ḋd +Qdd = 0, (46)

P T

ḋd
+ P ḋd − P ḋḋM

−1C −
(

P ḋḋM
−1C

)T
+ P ḋḋV P ḋḋ +Qḋḋ = 0, (47)

with V = M−1
(

R−1 − 1
γ2I

)

M−T , where a third equation, needed to eval-

uate P dd after P ḋd and P ḋḋ, has been omitted, since it is of no interest for

G. Consider at first Eq. 46 and rewrite it as:

−P T

ḋd
E −ETP ḋd − P T

ḋd
M−1FM−TP ḋd +Qdd = 0, (48)

with E = M−1K + γ−2M−1M−TP dd and F = R−1 + γ−2I. Now, con-

jecturing that P ḋd scales as γ, it is possible to see that the terms M−1K

of E and R−1 of F become negligible as γ → 0, so that the only signif-

icant terms of Eq. 46 would be − 1
γ2P ḋdM

−1M−TP T

ḋd
+ Qdd = 0. Being

M the scalar matrix of the uniformly lumped mirror mass m we have:

P ḋd = γ m
√

Qdd if Qdd is diagonal, as it indeed is for our case. A simi-

lar result, i.e. P ḋḋ = γm
√

Qḋḋ + 2P ḋd, will be obtained by applying the

very same reasoning to Eq. 47, thus confirming the assumed proportionality

of P with respect to γ. Similar steps, albeit for a slightly different problem,

can be found in Friedland (1986).

As said in Section 3.4, there is an inferior limit γmin allowed. So the above

result would be more or less satisfied in relation to the value γmin usable for

the application at hand. A substantial diagonalization has been verified to

actually occur in our case. It is furthermore remarked that inserting the

gain matrix of Eq. 45 into Eq. 13 leads to the following closed loop model in

physical coordinates

Mp̈+ (C +R−1M−1P ḋḋ)ṗ+ (K +R−1M−1P ḋd)p = 0. (49)
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So that, being P ḋd and P ḋḋ as positive defined as the related Qdd and Qḋḋ

terms, the active controller ideally adds a true damping and stiffness to the

system.

Without entering in further details we remark that for γ = ∞ and scalar

matrices R and M the solution of Eqs. 46 and 47 will provide at least sym-

metric positive semidefinite P ḋd and P ḋḋ, once more depending on the Qdd

and Qḋḋ terms (Hanks and Skelton, 1991). Therefore what just said about

the addition of an active damping and stiffness applies to the LQR controller

as well. It is remarked that the design parameters used in this paper are

only approximatively related to those defined in (Hanks and Skelton, 1991).

Nevertheless, they are adequate enough to provide P ḋd and P ḋḋ reasonably

approximating symmetry and positive definiteness. Then, due to the at least

semipositive definite active damping and stiffness blocks they provide by our

optimal decentralized design with reduced order models, no stability issue

will result when they are applied to the whole nominal mirror model. There-

fore, once the same robustness stability bound has been reached, there remain

just the problem of tuning the design weight for maximum performances.
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