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1. Introduction

Over the last few decades, Condition Monitoring (CM) tech-
niques have been strongly developed in terms of measurement
devices, and data processing and management capabilities. These
developments have encouraged industries like nuclear, oil and
gas, automotive and chemical to apply Condition-Based Mainte-
nance (CBM) (Jardine et al., 2006; Campos, 2009) for increasing
system availability, reducing maintenance costs, minimizing
unscheduled shutdowns and increasing safety (Thurston and
Lebold, 2001; Yam et al., 2001; Miao et al., 2010).

A typical CBM scheme is shown in Fig. 1: a fault detection (FD)
system continuously collects information from sensors mounted
on the component of interest (Jardine et al., 2006; Ahmad and
Kamaruddin, 2012) and delivers information on the health state
(either normal or abnormal conditions) of the monitored compo-
nent through an alarm system interface. On the basis of the
received information, the decision maker decides whether it is
necessary to perform a maintenance action or if it is possible to
postpone it (Jardine et al., 2006).

In this work, we only focus on the FD system. This is typically
made by an empirical reconstruction model and a decision tool
that supports the decision maker. Several methods have been used
with success to reconstruct values of the signals expected in
normal conditions, for example Artificial Neural Networks (ANNs)
(Ebron et al., 1990; Dong and McAvoy, 1994; Fantoni and Mazzola,
1996; Hines et al., 1997; Maki and Loparo, 1997; Xu et al., 1999;
Hines and Davis, 2005) and Auto-Associative Kernel Regression
(AAKR) (Hines and Garvey, 2006; Yang et al., 2006; Heo, 2008;
Baraldi et al., 2012).

The decision tool typically analyzes the differences (residuals)
between the measured and reconstructed values of the n measured
signals in order to advice on the component health state (normal or
abnormal conditions) (Fig. 2). If reconstructions are similar to mea-
surements, then the component is recognized to be in normal con-
ditions (nc) and no alarm is triggered, whereas if reconstructions
are different from measurements, then abnormal conditions (ac)
are detected and an alarm is triggered (Zhao et al., 2011; Di Maio
et al., 2013).
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Notation and list of acronyms

CM Condition Monitoring
CBM Condition-Based Maintenance
FD Fault Detection
ANN Artificial Neural Networks
AAKR Auto-Associative Kernel Regression
n Number of measured signals
j Index of the generic signal, j = 1, . . . ,n
nc Normal Conditions
ac Abnormal Conditions
c False alarm rate
b Missing alarm rate
SPRT Sequential Probability Ratio Test
PI Prediction Interval
OS Order Statistics
M Length of the detection window
NPP Nuclear Power Plant
Np Number of measurement times and/or representative

turbine shaft speeds of each signal j, j = 1, . . . ,n
tk k-th time instant, k = 1, . . . ,Np

e(tk) Prediction error at the k-th time instant
~xtestðtkÞ Vector containing the test measurements of n signals at

time tk, k = 1, . . . ,Np

xtest (tk, j) Measured value of signal j, j = 1, . . . ,n at time tk,
k = 1, . . . ,Np~

x
_testðtkÞ Vector containing the reconstructed values of the test

measurements of n signals at time tk, k = 1, . . . ,Np

x
_testðtk; jÞ Reconstructed value of signal j, j = 1, . . . ,n at time tk,

k = 1, . . . ,Np

x̂lowerðtkÞ; x̂upperðtkÞ Lower and upper bounds of PI at time tk

1 � r Confidence level
a95percentile (tk) Sorted scale factor value at the k-th time instant

for 95% confidence level, k = 1, . . . ,Np

NV Number of measurements/reconstructions in the vali-
dation set performed at time tk after the beginning of
the transient used to estimate the PIs

varres
k ðx

_valðtkÞÞ Bias between NV measurements and their recon-
structions at time tk of signal j of the validation set

varres
k ðx

_valðtkÞÞ Variance of NV reconstructions at time tk of signal
j of the validation set

t1 1st time instant
Ntrain Number of time series measurements in normal condi-

tions of a training set
N Component transients of signals measurements
i i-th component transient, i = 1, . . . ,N
P1 Probability that 1 signal j, j = 1, . . . ,n is failed and de-

tected for a given detection window of length M

Pn Probability that at least one out of n signals are failed
and detected for a given detection window of length M

P Probability that a transient is failed and abnormal con-
ditions are detected using Np �M + 1 detection win-
dows

cmax Prefixed maximum limit of false alarm rate
fi(x(t, 1), . . . ,x(t, 4)) i-th transient of four-dimensional (n = 4) sig-

nals with Np = 101 time steps
~xnc

i¼1:4000ðtkÞ Time evolutions in nc of the 4 signals in the 4000
transients at tk, k = 1, . . . ,Np of the j-th signal (sigmoid
behavior)

a, f and l Random parameters in arbitrary units used to con-
struct transients in nc

xnc
i ðtkÞ Time evolutions in nc of the i-th transient at tk,

k = 1, . . . ,Np of the j-th signal (sigmoid behavior)
R Number of operational zones of a component in normal

conditions
h Gaussian kernel bandwidth
tf Random failure time of a signal j, j = 1, . . . ,n in a tran-

sient i, i = 1, . . . ,N
xac

i ðtkÞ Time evolutions in ac of the i-th transient at tk,
k = 1, . . . ,Np of the j-th signal (different functional
behavior)

a⁄ and l⁄ Random parameters in arbitrary unit used to con-
struct transients in ac based on the signal value

X Historical measurements performed at past time tk,
k = 1, . . . ,Ntrain

xtest(tk, 1) Test value of signal 1 measured at time tk k = 1, . . . ,Np

x(tk, j) Historical value of signal j measured at past time tk,
k = 1, . . . ,N of X

d2(tk) Euclidean distance between the current test measure-
ments ~xtestðt; jÞ and the k-th observation of X, x(tk, j)

l(j) and r(j) Mean and the standard deviation of the j-th signal
in X

w(tk) Similarity measures obtained by computing d2(tk),
k = 1, . . . ,N

ai(tk) Scale factor at the k-th time instant of the i-th valida-
tion transient, i = 1, . . . ,NV of signal j

ei(tk) Residual between the measured value of signal j and its
reconstruction in the i-th validation transient,
i = 1, . . .. ,NV at time tk

x
_val

i ðtkÞ Reconstructed value of signal j at time tk, k = 1, . . . ,Np in
the i-th validation transient i = 1, . . . ,NV

x test-normalized (t, j) Normalized values of x(t, j) at time t using l(j)
and r(j)

xval
i ðtkÞ Value of signal j measured at time tk, k = 1, . . . ,Np in the

i-th validation transient i = 1, . . . ,NV
d Outcome of the Durbin–Watson test
In threshold-based methods (Puig et al., 2008; Montes de Oca
et al., 2012), the presence of abnormal conditions is detected when
the residual values exceed a prefixed threshold. A practical diffi-
culty is the setting of the threshold value itself: too high threshold
values lead to high missing alarm rates (b), whereas too low values
lead to high false alarm rates (c) (Di Maio et al., 2013). Further-
more, threshold-based methods do not provide any information
on the confidence that we should have in the FD system outcomes,
such as expected missing and false alarm rates (Zhao et al., 2011).
Contrarily, statistical methods which consider the residual as a
random variable and analyze its statistical distribution, such as
the Sequential Probability Ratio Test (SPRT) (Wald, 1947; Gross
and Humenik, 1991; Schoonewelle et al., 1995; Hines and
Garvey, 2006; Baraldi et al., 2010; Di Maio et al., 2013), typically
allow obtaining the desired level of missing and false alarm rates.
However, also they require the setting of some parameters such as
those defining the expected statistical distributions of the residuals
in abnormal conditions, which can be difficult in practical industrial
applications (Emami-Naeini et al., 1988; Di Maio et al., 2013).

Independently from the choice of the reconstruction model and
of the method adopted to analyze the residuals, the performance of
the overall FD system is influenced by uncertainties which can
cause false and missing alarms, and affect the decision on the
necessity of performing a maintenance intervention (Helton,
1994; Zheng and Frey, 2005; Weber et al., 2007; Aven and Zio,
2012).

In this context, the objective of the present work is to develop a
novel, non-parametric, sequential decision tool that takes into
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account the quantified uncertainty on the reconstructions. Meth-
ods like Trimmed Sequential Probability Ratio Test (TSPRT) and
non-parametric sequential rank-sum probability ratio test (SRPRT)
are some examples of similar sequential schemes, in which the
residuals are tested sequentially (Yu et al., 2004), but are hardly
applicable within a FD system dealing with operational transients.

Contrarily, in this work, the quantification of the uncertainty of
the reconstructions is based on the estimation of Prediction Inter-
vals (PIs) by using Order Statistics (OS) theory at a pre-defined con-
fidence level, e.g., 95% (Al-Dahidi et al., 2014) and the novel
decision rule consists in properly setting the number M of consec-
utive measurements (hereafter also called detection window) that
have to be covered by the estimated PIs for proper FD during oper-
ational transients. In practice: (a) if at least one out of M consecu-
tive measurements falls within the corresponding PIs, the
component is assumed to work in normal conditions, (b) if the M
consecutive measurements do not fall within the corresponding
PIs, abnormal conditions are detected. The proposed decision tool
is tested with respect to an artificial case study representing the
behavior of a component during operational transients and it is
validated using a real industrial case concerning 27 shut-down
transients of a nuclear power plant (NPP) turbine. The obtained
results show that the approach is able to detect and provide the
decision maker with the required information for establishing
whether a maintenance intervention is necessary with controlled
false and missing alarm rates.

The remaining of this paper is organized as follows. In Sec-
tion 2, a reconstruction model for signal reconstruction during
operational transients is developed, and the method adopted
for estimating the PIs on signal reconstructions is presented.
In Section 3, the novel non-parametric, sequential decision tool
to decide whether the component is in normal or abnormal
conditions is proposed. An artificial case study representing
the component behavior during typical start-up transients
and a real industrial case concerning 27 shut-down transients
of a nuclear power plant (NPP) turbine are introduced in
Sections 4 and 5, respectively. Furthermore, the results
obtained in the application of the novel FD system to the case
studies are discussed. Finally, some conclusions are proposed
in Section 6.

2. Reconstruction model and uncertainty quantification

A typical reconstruction model receives in input a vector
~xtestðtkÞ ¼ ½xtestðtk;1Þ; xtestðtk; jÞ; . . . ; xtestðtk;nÞ� containing the test
measurements of n signals, j = 1, . . . ,n at time tk, k = 1, . . . ,Np where
Np is the number of measurement times of each signal j. On the
basis of historical measurements performed in normal conditions,
the reconstruction model produces in output a vector
~
x
_testðtkÞ ¼ ½x

_testðtk;1Þ; x
_testðtk; jÞ; . . . ; x

_testðtk;nÞ� containing the values
of the input signals expected in case of normal conditions at the
time tk. For the sake of simplicity, the signal index j will be omitted

from the notations xtest (tk, j) and ðx
_testðtk;jÞ, and will be used only

when strictly required for understanding.

2.1. Reconstruction of operational transients

Numerous empirical reconstruction models are available in lit-
erature, e.g., ANNs and AAKR. Despite that, in (Baraldi et al., 2012),



different approaches to the problem of signal reconstruction
during operational transients have been compared using AAKR
(see Appendix A) as base model for the reconstruction. The
obtained results have shown that, in order to reduce the
computational efforts and to increase model reconstruction
accuracy, it is sometimes useful to develop an ensemble of
reconstruction models, each one dedicated to a different
operational zone of the component. Thus, in what follows, we
resort to the use of AAKR models tailored on different operational
zones for an online signal reconstruction task, as we shall see in
Section 4.

2.2. Uncertainty quantification using PIs

The quantification of the uncertainty on the signal reconstruc-
tions by AAKR is based on the estimation of Prediction Intervals
(PIs) (Bendat and Piersol., 2010) by using Order Statistics (OS) the-
ory (Secchi et al., 2008) and a scale factor (Bouckaert et al., 2011):
with respect to a component in normal conditions, the PI with
confidence level 1 � r (e.g., 95%) is defined as the interval

½x
_lowerðtkÞ; x

_upperðtkÞ�, such that the probability that the measure-
ment of signal j at time tk, xtest (tk), falls within the interval is equal
to 1 � r (Al-Dahidi et al., 2014).

The method goes along the following steps. It entails an offline
procedure for estimating the PIs and an online procedure for pro-
viding the FD system with the proper PIs.

The offline procedure consists in:

� Step 1: Signal reconstruction. Using Ntrain training data, the AAKR-
built model provides the reconstruction x̂val

i ðtkÞ of signal j at
time tk, k = 1, . . . ,Np in the i-th validation transient i = 1, . . . ,NV,
of length Np, (i.e., Ntrain = Np � NT, where NT is the number of
training transients each of length Np). The number NV of valida-
tion transients is properly defined by OS theory (Secchi et al.,
2008) for guaranteeing a PI with confidence level 1 � r.
� Step 2: Residual calculations. At each k-th time, the absolute dif-

ference between the measured value and its reconstruction of
signal j is calculated as eiðtkÞ ¼ x

_val
i ðtkÞ � xval

i ðtkÞ
��� ��� of the i-th

validation transient, i = 1, . . . ,NV.
� Step 3: Prediction error calculations. At each time k, the

prediction error of signal j is calculated as eðtkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varrec

k ðx
_valðtkÞÞ þ varres

k ðx
_valðtkÞÞ

q
by calculating the variance of

the NV reconstructions varrec
k ðx

_valðtkÞÞ (Eq. (1)) and the variance

of the NV residuals (squared bias) varres
k ðx

_valðtkÞÞ (Eq. (2)) of
signal j:

Varrec
k x

_valðtkÞ
� �

¼
PNV

i¼1 x
_valðtkÞ �

PNV
i¼1 x

_val
i ðtkÞ

� �
=NV

� �2

NV
ð1Þ

varres
k x

_valðtkÞ
� �

¼
PNV

i¼1 x
_val

i ðtkÞ � xval
i ðtkÞ

� �2

NV
ð2Þ

� Step 4: Scale factor calculations. At each time k, the scale factor,
a95 percentile (tk), is calculated as the 95th percentile of the NV

ai(tk), i = 1, . . . ,NV, where aiðtkÞ ¼ eiðtkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varrec

k ðx
_valðtkÞ

q
Þ, to

estimate a PI with a given confidence 1 � r. The advantages of
using the scale factor are: (1) the trade-off between the cover-
age and the width is satisfied; (2) the technique is independent
from the reconstruction method applied (Bouckaert et al.,
2011); and (3) the scale factor deals with the uncertainty
caused by the AAKR-built model. In practice, at each time tk, if
the AAKR reconstructions are inaccurate, then, the scale factor
values are large (i.e., eiðtkÞ ¼ x
_val

i ðtkÞ � xval
i ðtkÞ

��� ���; i ¼ 1; . . . ;NV is

large) in order to achieve the desired coverage level (1 � r),
and vice versa.
Then, within the online FD, for any test measurement xtest (tk) of a

given signal j at each time tk, the uncertainty on the reconstruction,
x
_testðtkÞ, is quantified in the form of PI, as in Eq. (3):

x
_testðtkÞ � a95percentileðtkÞeðtkÞ; x

_testðtkÞ þ a95percentileðtkÞeðtkÞ
h i

ð3Þ

In this way, at each time tk a PI is yielded with a specified coverage
and with an acceptable width (Al-Dahidi et al., 2014).
3. The Novel Decision Tool

In this section, a novel non-parametric, sequential decision tool is
proposed to decide whether the component is in normal or abnor-
mal conditions, taking into account the quantified uncertainties.

Once the PI with a given confidence level has been estimated at
each time tk as in Eq. (3), the final decision on the necessity of
performing a maintenance intervention can be taken by directly
comparing M successive signal measurements with the estimated
PIs (Fig. 3). In practice, if the component suffers from some
abnormality at time tk, the measurement at time tk + 1 should start
deviating from the normal conditions. If we consider M consecutive
measurements, two situations may occur:

� At least one out of M measurements falls within the corre-
sponding PIs, with associated confidence level 1 � r; thus, the
component is assumed to work in normal conditions and the
alarm is not triggered.
� The M consecutive measurements do not fall within the PIs;

thus, abnormal conditions are detected and the alarm is
triggered.

The length M of the detection window is the number of mea-
surements that the decision maker should wait before taking a
decision regarding the health state of the component (Dixon
et al., 2000; Guo and Bai, 2011): this, in principle, should be as
low as possible and, at the same time allow for large fault detect-
ability (i.e., small false alarm rates (c)): that is, the detection win-
dow length and the detectability have to be simultaneously
optimized.

Assuming that N transients have been measured at different
times, each transient being a n-dimensional time series of Np

measurements (yielding to uncorrelated residuals at the Step 2 of
the offline PI quantification procedure of Section 2.2), the
reconstructions uncertainties can be quantified in the form of PIs
with a confidence level 1 � r such that the probability that the
measurement in normal conditions xtest(tk) of signal j, j = 1, . . . ,n
at time tk, k = 1, . . . ,Np, falls within the interval ½x

_lowerðtkÞ;
x
_upperðtkÞ� is equal to 1 � r (Rasmussen et al., 2003; Office of
Nuclear Regulatory Research, 2007): then, the optimum length M
of the detection window can be calculated using Eq. (4), where cmax

is the maximum acceptable false alarm rate (see Appendix B for
demonstration):

P ¼ 1� ½1� rM�ðNp�Mþ1Þ�n � cmax ð4Þ

It is worth mentioning that for more complex cases (e.g., Np is not
fixed), Eq. (4) can be seen as a multi-objective optimization problem
whose optimal solution is a compromise between the measurement
sampling frequency (that affects Np) and M that can be found using
optimization methods such as evolutionary algorithms (e.g.,
Genetic Algorithms, Differential Evolution, etc.).
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4. Artificial Case Study

An artificial case study has been designed to generate transients
representative of the start-up behavior of a component (Baraldi
et al., 2013a). Each transient, fi(x(t, 1), . . . ,x(t, 4)), is four-
dimensional (i.e., n = 4 signals) and has a time horizon of Np = 101
time steps, in arbitrary units of measurements. The choice of testing
this novel fault detection system on multivariate signals is due to
the fact that the complex industrial components are commonly
continuously monitored using redundant sensors measuring differ-
ent signals taken on different components, i.e., multivariate signals,
to collect as diverse and redundant as possible information (Gross
et al., 1997).

With respect to normal conditions, 4000 transients represent-
ing the start-up of the component have been simulated. The
signal evolutions are characterized by a sigmoid behavior
xnc

i ðtkÞ; k ¼ 1; . . . ;101; i ¼ 1; . . . ;4000 given by Eq. (5):

xnc
i ðtkÞ ¼ 2a ð1þ erf

tk � lffiffiffi
2
p

� �� 	
þ 10�3f ð5Þ

where a, l and f are random parameters in arbitrary units. In
practice, the simulations have been performed by sampling random
values of the parameter f from a Gaussian distribution f �N(0,1),
and of the parameters a and l from uniform distribution functions
with lower and upper bounds reported in Table 1.

Fig. 4 shows the obtained evolutions of the four signals in the
4000 transients, xnc

i ðtkÞ; k ¼ 1; . . . 101; i ¼ 1; . . . ;4000.
Table 1
Limits of the uniform distributions from which the parameters in
Eq. (5) have been sampled.

Parameter Lower bounds Upper bounds

a 0.45 0.55
l 2.2 2.7
Among them, we have used NT = 300 transients to train the
AAKR-built model, NV = 59 transients as validation set to opti-
mize the value of the model parameter, i.e., the kernel band-
width h (see Appendix C), and to estimate the PIs as described
in Section 2.2. Once the detection window M is properly set as
in Section 3, the remaining transients are used to verify the
performance of the novel FD system by calculating the actual
false alarm rate (c).

In order to reduce the computational efforts and to increase
model reconstruction accuracy, an ensemble reconstruction
model made by R = 5 AAKR-built reconstruction models has been
considered in this artificial case, each one dedicated to a differ-
ent operational zone (Baraldi et al., 2012). The different opera-
tional zones are defined according to the time elapsed from
the start of the transient and are reported in Table 2. In order
to develop the overall reconstruction model, the training pat-
terns are split into different sets, according to the time at which
they have been measured. Then, for each operational zone, an
AAKR model is built using the corresponding training set. Once
the FD system has been built, it can be used on line for the sig-
nal reconstruction task by sending the test pattern to the corre-
sponding reconstruction model.

Furthermore, 100 additional abnormal transients have been
simulated in order to reproduce the signal behaviours in abnormal
conditions by assuming a different time evolution for one
signal randomly chosen among the four signals: the signal
evolution is characterized by a sigmoid behavior given by Eq. (5)
until a failure occurs at a random failure time, tf; then, the signal
evolution is characterized by Eq. (6) with parameters sampled
from different uniform distributions due to the fact that the effect
of an abnormal condition is usually directly related to the signal
value (Baraldi et al., 2012) i.e., to the operational zone at which
the failure occurs:

xac
i ðtkÞ ¼ 2a� ð1þ erf

tk � l�ffiffiffi
2
p

� �� 	
þ 10�3f ð6Þ
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Fig. 4. Simulated time evolution in normal conditions of the 4 signals in 4000 start-up transients.

Table 2
Definition of the five operational zones for the four signals.

Operational zones Time period Operative conditions

Zone 1 1–20 Slow start up
Zone 2 21–40 Fast start up
Zone 3 41–60 Start converging to a steady state
Zone 4 61–80 Almost steadiness
Zone 5 81–101 Steady state (nominal value)

Table 3
Limits of the uniform distributions from which the parameters in Eq. (6) have been samp

Parameter Zone 1 Zone 2 Zon

Lower Upper Lower Upper Low

a⁄ 0.57 0.59 0.57 0.61 0.57
l⁄ 2.8 2.9 2.8 3 2.8
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Fig. 5. Example of one simul
Parameters a⁄ and l⁄ are randomly sampled from the uniform dis-
tributions of Table 3, that depend on the operational zones of failure
occurrence.

As an example, Fig. 5 shows the evolution of the four signals in
one of the simulated abnormal transients,~xac

i¼1ðtkÞ; k ¼ 1; . . . ;101, if
signal 1 (upper left) is randomly selected to be the failed signal at
the randomly chosen time tf = 40 (i.e., operational zone 2).

The AAKR models have been trained and their parameters opti-
mized as described in Appendix C. In particular, the parameter h
led.
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Table 4
h values for the R = 5 operational zones.

Operational zones Time period h values

Zone 1 1–20 0.05
Zone 2 21–40 0.05
Zone 3 41–60 0.01
Zone 4 61–80 0.009
Zone 5 81–101 0.005
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Fig. 7. Number of false alarms of 6 different extensive tests, each with 600 normal
transients.
values have been identified by optimizing the accuracy of the sig-
nal reconstructions in normal conditions and their robustness in
abnormal conditions.

Table 4 reports the obtained optimal values of parameter h in
the different operational zones.

4.1. PI estimation

The PIs obtained in the reconstructions of signal 1, xtest(tk, 1), of
a test transient by considering R = 5 AAKR-built reconstruction
models and Eq. (3), are shown in Fig. 6. Notice that the PI widths
are variable during the time evolution and with an acceptable
width increasing from zone 1 (time from 1 to 20) to zone 3 (time
from 41 to 60). This is due to the variability of the training patterns
used to train the reconstruction model, which is lower at the
beginning of the transient.

4.2. Verification of the FD system capability

Results obtained by applying the novel FD system of Section 3
to the artificial case study are presented. Firstly, statistical inde-
pendence of the residuals is tested with the Durbin–Watson test
(Montgomery et al., 2001): small values of the test outcome d indi-
cate that residuals are, on average, positively correlated, whereas if
d	 2, they are, on average, negatively correlated. In this case,
when the test is applied independently on the residuals of each
one of the n = 4 signals, d turns out to be in the range (1.4–2.6),
and, thus, we can conclude that the residuals can be considered
as statistically independent; therefore, the hypotheses for applying
the proposed sequential decision strategy hold and the optimum
length of the detection window, M, can be calculated by solving
Eq. (4) (see also Appendix B) with Np = 101 time steps, cmax = 0.01
and the level of confidence on the PI, 1 � r = 0.95.

P ¼ 1� ½1� 0:05M�ð101�Mþ1Þ�4 � 0:01! M ¼ 4
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4.2.1. Normal conditions: false alarm rate
In order to verify whether the false alarm rate of the test tran-

sients in normal conditions is satisfactory, i.e., less than cmax = 0.01,
we have performed 6 extensive tests each using 600 normal tran-
sients. Fig. 7 shows that for all these extensive tests, the number of
false alarms obtained is smaller than the maximum allowed limit
of false alarms, i.e., 600 � cmax = 600 � 0.01 = 6 false alarms.

As an example, Fig. 8 shows the (wrong) detection of one false
alarm: M = 4 consecutive measurements (time 40–43) of signal 3
fall outside their corresponding PIs within the detection window.
Hence, the alarm is triggered and the decision maker should draw
the conclusion that an abnormal condition at time t = 43 is
occurred. The PIs of signals 1, 2, and 4 have been magnified by a
factor of 20 and only some points have been shown for ease of
visualization, and a zoom-in of signal 3 is shown from time 40 to
time 43 at which the abnormality of the transient is declared.

4.2.2. Abnormal conditions: missing alarm rate
In order to verify the ability of the FD system to correctly detect

the abnormality of the component, we have performed a test using
the 100 available simulated abnormal transients; among these:

1. Abnormality in 87 transients has been correctly detected and
the failed signals identified, with a delay in detection at least
equal to M = 4 measurements. In other words, faults and their
causes (i.e., the failed signals) have been correctly isolated/iden-
tified. This can help the decision maker to properly plan main-
tenance interventions. In this regard, this FD system can be,
thus, seen as a fault isolation system as well as Non Linear
0 60 70 80 90 100
e (t)

patterns obtained using Eq. (3).
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Fig. 9. An example of abnormality detection: the fault is simulated for signal 4 and imputed to signal 2.
Principal Component Analysis (NLPCA) (Harkat et al., 2007) and
Principal Component Analysis (PCA) (Dunia et al., 1996;
Kerschen et al., 2005).

2. Abnormality has been detected in 3 transients with due delay
equal to M, although the failure has been imputed to one of
the other (normal) signals: as an example, Fig. 9 shows that
although the fault is simulated for signal 4 starting at time
tf = 58, it is imputed to signal 2 and detected at time tf = 61,
due to the first exceedance of the PIs of M = 4 successive mea-
surements among the four signals (for signals 1,3 and 4 tf

should be equal to 63, 64 and 62, respectively).
3. Abnormality in 4 transients has been detected either at the

failed signal or the other three normal signals but, the detection
is anticipated, and

4. 6 transients have been considered in normal conditions
although they are actually in abnormal conditions, i.e., the miss-
ing alarm rate (b) is equal to 0.06. This can be explained with
the support of Fig. 10: in this case, the simulated failure occurs
on signal 2 at random time, tf = 78. However, the sampled
anomalous parameters a⁄ and l⁄ do not differ enough from
the normal condition parameters a and l and make this tran-
sient behave like the normal historical measurements used as
training transients (yellow curves in upper right plot).

In this regard, considering the 90 detected anomalies i.e., case 1
and case 2, we can draw the probability density function (pdf) of the
delay time, that is at least equal to M = 4 (Fig. 11): in some cases,
more time is needed for the detection due to the uncertain behavior
of the anomalous transients that do not radically differ from the
normal transients. The mean delay in abnormality detection turns
out to be equal to 8 measurements (including the M = 4 measure-
ments that are necessary for stating the evidence of the anomaly),
that is the time that the decision maker should wait before taking
a decision regarding the health state of the component.
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5. Real Case Study

The novel FD system has been applied to a real industrial case
concerning N = 27 shut-down multidimensional transients of a
nuclear power plant (NPP) turbine. Each transient is three-dimen-
sional (i.e., n = 3 vibration signals of the turbine shaft) and has a
time horizon of Np = 4500 time steps. Among these, 26 transients
with similar functional behavior have been used as representative
of normal conditions, whereas 1 transient with a different
functional behavior has been used as representative of abnormal
conditions. It is, indeed, an actual signature of abnormal conditions
of the turbine during operation (whose detailed characteristics
cannot be discussed, due to confidentiality reasons). Fig. 12 shows
the evolutions of the three signals in the 27 transients and the
corresponding turbine speed values.

It is worth mentioning that in order to overcome problems con-
nected with the possibility of misalignment between transients, i.e.,
amplified and/or delayed transients and, hence, to easily apply the
PI estimation method and the novel decision tool to synchronized
transients, the signals have been transformed into the ‘‘turbine
speed-domain’’ instead of the ‘‘time-domain’’ (Baraldi et al.,
2013b). The transformation is obtained by considering only the time
interval, where the turbine speed of those transients decreases from
1000 rpm to 600 rpm. In this way, it is possible to focus only on the
decreasing part of the shut-down transients, avoiding problems due
to the operative oscillations around the steady-state different plant
operational conditions and to time misalignment of transients before
the shut-down transients start (Baraldi et al., 2013b).

In this work, a single AAKR-built model has been developed,
where we have used for training and validation:

� NT = 4 transients to train the model to provide the signal recon-
structions at 25 representative turbine shaft speeds (equally
spaced between 1000 rpm and 600 rpm),
� NV = 14 transients to optimize the value of the model parame-

ter, i.e., the kernel bandwidth h, and to off-line estimate the
PIs. The number NV = 14 of validation transients is properly
defined by OS theory (Secchi et al., 2008) for guaranteeing a



0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

V
ib

ra
ti

on
Si

gn
al

 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

V
ib

ra
ti

on
Si

gn
al

 2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

V
ib

ra
ti

on
Si

gn
al

 3

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

Time (t)

T
ur

bi
ne

 S
pe

ed
(r

pm
)

Normal Conditions
Abnormal Conditions

Normal Conditions
Abnormal Conditions

Normal Conditions
Abnormal Conditions

Normal Conditions
Abnormal Conditions

Fig. 12. The evolutions of the three vibration signals in the 27 transients and the corresponding turbine speed values.

20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

V
ib

ra
tio

n
Si

gn
al

 1

Turbine Speed (rpm)

Measurements
Reconstructions
Prediction Intervals
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PI with a confidence level, 1 � r, that is limited to 80%
(Al-Dahidi et al., 2014), due to the scarce number of measure-
ments (16) at each representative turbine shaft speed.
� The remaining transients are used to verify the performance of

the novel FD system for a series of 25 representative turbine
shaft speeds.
� The parameter h value has been set to 0.1, by optimizing as

described in Appendix C the accuracy of the signal reconstruc-
tions in normal conditions and their robustness in abnormal
conditions.

5.1. PI estimation

The PIs obtained in the reconstructions of vibration signal 1 of a
test transient by a single AAKR-built reconstruction model with
optimum h = 0.1, and Eq. (3), are shown in Fig. 13. Notice that the
PI widths are variable during the time evolution and with an accept-
able width with respect to the variance of the vibration signal.
5.2. Verification of the FD system capability

Results obtained by applying the novel FD system of Section 3
to the real industrial case are presented. The Durbin–Watson test
is applied independently on the residuals of each one of the n = 3
signals: d turns out to be in the range of (0.7–1.7), and, thus, we
can conclude that the measurements are not statistically indepen-
dent, and slightly positively correlated. Despite that, the novel FD
system shows good performances in terms of false and missing
alarm rates as we shall see in Sections 5.2.1 and 5.2.2. In this case,
the optimum length of the detection window, M, with Np = 25
representative turbine shaft speeds, cmax = 0.01 and the level of
confidence on the PI, 1 � r = 0.8, is calculated by solving Eq. (4)
(see also Appendix B):
P ¼ 1� ½1� ð0:2ÞM�
ð25�Mþ1Þ�3

� 0:01! M ¼ 6
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Fig. 14. An example of PIs and the reconstructions in one normal transient.
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5.2.1. Normal conditions: false alarm rate
In order to verify the ability of the novel FD system to identify

the correct health state of the turbine i.e., normal conditions in this
case, a cross-validation procedure is used (Bendat and Piersol.,
2010). Specifically, a 10-fold cross-validation is implemented to
calculate the actual false alarm rate (c): the test transients are fixed
whereas the training and validation are randomly partitioned into
4 blocks of equal size; one of these blocks is used as a training data
subset whereas the remaining 3 blocks are combined together to
constitute the validation data subset. The cross-validation process
is then repeated 10 times (10 folds), each time using different
blocks for training and validation sets. Combining the false alarm
rates of the 10 folds, the obtained false alarm rate is equal to 0.

Fig. 14 shows an example of the obtained PIs and the recon-
structions in one normal test transient for one of the 10 cross-val-
idations. Using a detection window of length M = 6, 6 consecutive
measurements falling outside their estimated PIs are never found
and, hence, the normality of the turbine can be confirmed.
5.2.2. Abnormal conditions: missing alarm rate
For the abnormality detection, the test transient of Fig. 12 has

been used. Its reconstructions, provided by the AAKR-built model,
and its PIs have been used for comparison and anomaly detection.
Fig. 15 shows the ability of the method to promptly detect that this
transient differs from those of normal conditions: 6 consecutive
measurements at representative turbine shaft speeds fall outside
the estimated PIs of the vibration signal 3, as soon as the transient
starts.

Again, the isolation of the faulty signal can be useful for the
decision maker to identify the cause of abnormality and, thus, to
properly plan maintenance interventions.



6. Conclusions

In this work, a novel, non-parametric, sequential decision tool is
proposed to help the decision maker in assessing the normal or
abnormal conditions of a component, taking into account the
quantified uncertainties that affect the component behavior and
the FD system itself. The quantification of the uncertainty of the
reconstructions is based on the estimation of Prediction Intervals
(PIs) by using Order Statistics (OS) theory at a pre-defined
confidence level, e.g., 95%. Then, the novel decision rule consists
in properly setting the number M of consecutive measurements
that have to be covered by the estimated PIs. In practice: (a) if at
least one out of M consecutive measurements falls within the
corresponding PIs, the component is assumed to work in normal
conditions and the alarm is not triggered, (b) if the M consecutive
measurements do not fall within the corresponding PIs, abnormal
conditions are detected and the alarm is triggered. The optimum
length M of the detection window is estimated at a prefixed max-
imum limit of false alarm rate, cmax. The Auto-Associative Kernel
Regression (AAKR) method is adopted to build the empirical model
of signal reconstructions.

The novel FD system has been tested using an artificial case
study representing the monitoring of a component during typical
start-up transients and validated using a real industrial case con-
cerning 27 shut-down transients of a nuclear power plant (NPP)
turbine. The obtained results show that the approach is able to
guarantee low false alarm rates (6cmax, e.g., =0.01) and missing
alarm rates and, hence, provide the decision makers with the
robust information for establishing whether a maintenance
intervention is required or not.

In the overall CBM scheme, other sources of uncertainty such as
those related to the decision maker attitude towards the decision
of performing a maintenance intervention once the FD system
detects abnormal conditions, should be considered. This will be
object of future research work.
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Appendix A. Auto-associative Kernel Regression (AAKR)

Auto-Associative Kernel Regression (AAKR) is a non-parametric,
empirical modelling technique that relies on historical measure-
ments of the signals taken during normal conditions of the compo-
nent to predict (reconstruct) the current signal measurements
vector at a given time t, ~xtestðtÞ ¼ ½xtestðt;1Þ; xtestðt; jÞ . . . ; xtestðt;nÞ�,
j = 1, . . . ,n; where n is the number of measured signals, e.g.,
pressure, temperature, vibration, etc. as a weighted sum of those
historical observations. The historical measurements performed

at past time tk, k = 1, . . . ,Ntrain are collected into the matrix X whose
generic element x(tk, j) is the measured value of signal j at time tk

(Baraldi et al., 2011, 2012; Al-Dahidi et al., 2014).
Then the estimated value, x

_testðt; jÞ, of the measurement, xtest(t, j),
of the j-th component at time t is given by:

x
_testðt; jÞ ¼

PNtrain
k¼1 wðtkÞ 
 xðtk; jÞPNtrain

k¼1 wðtkÞ
ðA1Þ

Weights w(tk) are similarity measures obtained by computing the
Euclidean distance between the current sensor measurement xtest(t, j)
and the k-th observation of X (Eq. (A2)):

d2ðtkÞ ¼
Xn

j¼1

ðxtestðt; jÞ � xðtk; jÞÞ
2 ðA2Þ

and inserting it in the Gaussian kernel (Eq. (A3)):

wðtkÞ ¼
1ffiffiffiffiffiffiffi
2p
p

h
e�

d2 ðtk Þ

2h2 ðA3Þ

where h is the Gaussian kernel bandwidth.
In order to provide in Eq. (A2) a common scale across the

different signals measuring different quantities, it is necessary to
normalize their values. In the present work, the signal values at
time t are normalized according to:

xtest�normalizedðt; jÞ ¼ xtestðt; jÞ � lðjÞ
rðjÞ ðA4Þ

where, xtest(t, j) is a generic measurement of signal j, l(j) and r(j) are

the mean and the standard deviation of the j-th signal in X (Eq.
(A5)):

lðjÞ ¼
PNtrain

k¼1
xðtk ;jÞ

Ntrain

rðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNtrain

k¼1
ðxðtk ;jÞ�lðjÞÞ

2

Ntrain

r ðA5Þ
1.5 2 2.5 3
ce (d2)

h=0.1
h=1

ction with two h values.
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Appendix B. Optimization of the decision rule parameter M

In case of normal conditions, for each j-th signal of the N
n-dimensional transients of time horizon Np and a given detection
window of length M, the probability of false alarm P1 is given by Eq.
(A6) (assuming that measurements are statistically independent
and that the probability that the measurement in normal condi-
tions xtest(tk) of signal j, j = 1, . . . ,n at time tk, k = 1, . . . ,Np, falls

within the interval ½x
_lowerðtkÞ; x

_upperðtkÞ� is equal to 1 � r:

P1 ¼ ProbabilityfFalse alarm for 1 signal taken in a time

window of length Mg ¼ rM ðA6Þ

The probability Pn that a false alarm is given when n signals are
considered for a given detection window of length M is given by
Eq. (A7), assuming the signals are statistically independent:

Pn ¼ProbabilityfFalse alarm for nsignals taken in a time
window of lengthMg¼¼1�PfNo false alarms for

nsignals taken in a time window of lengthMg
¼1�ð1�P1Þn ¼1�ð1�rMÞn

ðA7Þ

Thus, the probability P that a false alarm is triggered when a tran-
sient of time horizon Np is observed is given by Eq. (A8):

P ¼ 1� PfNo false alarms for any of the ðNp �M þ 1Þ
detection windowsg ¼ 1� ð1� PnÞðNp�Mþ1Þ ðA8Þ

Substituting Eq. (A7) in Eq. (A8), the probability P (Eq. (A8)) can be
re-written as:

P ¼ 1� 1� 1� ð1� rMÞn
� �h iðNp�Mþ1Þ

¼ 1� ½1� rM �ðNp�Mþ1Þ�n

ðA9Þ

Thus, the optimum length M of the detection window can be
calculated using Eq. (A10), where cmax is the maximum acceptable
false alarm rate:

PfFalseAlarmg ¼ P � cmax ðA10Þ
Appendix C. Kernel’s Bandwidth (h) Optimization

The value of the kernel bandwidth has to be optimized to have a
balance between the AAKR accuracy and robustness following a
trial-and-error procedure: (1) the accuracy which is the ability of
the model to correctly and accurately reconstruct the signal values
of a component in normal conditions: An accurate fault detection
(FD) system allows reducing the number of false alarms, and (2)
the robustness which is the ability of the model to reconstruct
the signal values of a component in abnormal conditions: a robust
AAKR model reconstructs the value of a measured signal as if the
component is in normal conditions thus, allows reducing the num-
ber of missing alarms.

A local optimum value of h and a misleading setting of h may
lead to inaccurate reconstructions that have to be tackled by prop-
erly quantifying the reconstructions model uncertainty. As an
example, in Fig. 16 it can be seen that with a small bandwidth
(h = 0.1) large weights (similarities) are assigned to historical data
whose distance is very close to zero, whereas with a larger band-
width (h = 1), the weight assignment is less specific (Office of
Nuclear Regulatory Research, 2007).
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