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The linear stability of two incompressible coaxial jets, separated by a thick duct wall,
is investigated by means of both a modal and a non-modal approach within a global
framework. The attention is focused on the range of unitary velocity ratios for which an
alternate vortex-shedding from the duct wall is known to dominate the flow. In spite of the
inherent convective nature of jet flow instabilities, such behaviour is shown to originate
from an unstable global mode of the dynamics linearised around the axisymmetric base
flow. The corresponding wavemaker is located in the recirculating-flow region formed
behind the duct wall. At the same time, the transient-growth analysis reveals that huge
amplifications (up to 20 orders of magnitude) of small flow perturbations at the nozzle
exit can occur in the subcritical regime, especially for high ratios between the outer and
the inner velocities.
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1. Introduction

Coaxial jets are often employed as an effective way to rapidly mix two different fluid
streams, such as in industrial burners and airblast atomizers, just to mention a few
examples. In addition to their mixing properties, these flows are also well known for the
possibility to reduce noise generation compared to the single jet configuration (Williams
et al. 1969), resulting in several aerospace applications. Both noise and mixing properties
strongly depend on the dynamics of the large-scale vortical structures produced by the
inherent instabilities of the flow field, whose deep understanding is therefore relevant not
only from the academic viewpoint.

The incompressible flow produced by two coaxial jets is characterised by several non-
dimensional parameters that are associated with the nozzle geometry and the charac-
teristics of the two incoming fluid streams: for instance the outer-to-inner pipe diameter
ratio, RD, the ratio between the maximum velocity of the outer and inner jets, Ru, the
boundary layer thickness at the nozzle exit and the freestream turbulence. Past experi-
mental and numerical investigations (see for example Ko & Kwan 1976; Dahm et al. 1992;
Rehab et al. 1997; Villermaux & Rehab 2000; da Silva et al. 2003; Segalini & Talamelli
2011) have established the central role of Ru in the coupling between the inner and outer
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shear layer instabilities. For Ru � 1 a strong interaction occurs which results in the
synchronised roll-up of both the shear layers, the so-called lock-in phenomenon. In this
regime the coaxial jet dynamics is driven by the Kelvin-Helmholtz instability of the outer
shear layer (da Silva et al. 2003). Conversely for Ru � 1, a weak interaction is observed
where the outer stream mainly acts as a ‘coflow’ (Djeridane 1994), without substantially
modifying neither the inner jet dynamics nor the main flow instability, which is now
driven by the inner jet shear layer (Segalini 2010). Within the range of nearly unitary
velocity ratios, the development of vortical structures in the flow is strongly affected by
the presence or absence of a thick duct wall separating the two streams (Buresti et al.
1994; Segalini 2010). Indeed, in the former case, the near flow field is dominated by an
alternate vortex shedding from the blunt edge of the separating wall, which consider-
ably enhances the mixing and entrainment processes of the two jets (Talamelli et al.
2013). The existence of three different instability regimes has also been described in the
experimental work by Segalini & Talamelli (2011), based on an extensive analysis of
the dominant frequencies characterising the unsteady flow field. The authors have also
provided an effective relationship for the proper scaling of the shedding frequency in
the intermediate range of velocity ratios, 0.75 . Ru . 1.6, improving the previous one
proposed by Buresti et al. (1994).

Most of the studies addressing the coaxial jet stability properties have been performed
based on a local approach, using analytical and experimental velocity profiles (Michalke
1993; Juniper & Candel 2003; Talamelli & Gavarini 2006; Gloor et al. 2013). Within this
framework, Talamelli & Gavarini (2006) have investigated the inviscid stability properties
of a family of axial velocity profiles, varying several related parameters. In particular,
the authors have shown that an absolute axisymmetric instability occurs, and that it
depends on the local minimum velocity Ũw in the backflow region representing the duct
wall wake. The existence of this instability is also restricted to specific values of the
velocity ratio, and it was found that the range of Ru where the instability occurs shrinks
around Ru ≈ 1.3 as Ũw is increased, i.e. as moving downstream of the nozzle. Both the
lower Ru instability threshold and the absolute instability frequency, approximately equal
to 0.5, are found to weakly depend on the momentum thickness of the boundary layer. A
quasi-linear dependence of the mode frequency on Ru is reported in the same work, and
a good agreement between numerical and experimental values of the non-dimensional
frequency is obtained when introducing a scaling based on the average velocity of the
two streams and on the duct-wall wake thickness.

Besides the inherent convective nature of the jet flow instabilities, the existence of a
pocket of absolute instability and the annular vortex shedding observed in the experi-
ments, suggest that, for certain values of Re and Ru, the instability of two coaxial jets
separated by a thick wall can be ascribed to the onset of an unstable global mode. This
mechanism, which leads to a Hopf bifurcation of the steady axisymmetric base flow, is ex-
pected to be dominant in the range of unitary velocity ratios, implying a ‘transition’ from
a noise-amplifier to a fluid-oscillator behaviour (Huerre & Rossi 1998). As pointed out
by Talamelli et al. (2013), the onset of self-excited oscillations of the whole flow field is of
great interest, since it provides a ‘natural’ forcing mechanism of the flow, increasing the
mixing without requiring the introduction of additional energy in the fluid system, such
as in the case of an active control device. At the same time, this self-excited instability
can become a source of loud noise (Olsen & Karchmer 1976). These observations motivate
us to investigate the stability properties of the coaxial jet flow using a global approach,
thus accounting for strong non-parallel effects in the near-flow field caused by the thick
separating wall. Both modal and non-modal analyses are performed to characterise the
different instabilities of the flow in the range of 0.5 . Ru . 2 and 1000 . Re . 5000. On
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Figure 1. Sketch of the computational domain Ωc (azimuthal plane) employed for the investiga-
tion of the coaxial jet flow. All lengths are made non-dimensional using the inner-pipe diameter

D̃i. The black thick line is used to represent the solid wall boundary Γw while the blue shaded
area denotes the region of mesh refinement. The outer-to-inner pipe diameter ratio is fixed to
RD = 2, while the thickness of the duct wall is 0.1.

the one hand, the non-modal analysis is more appropriate to describe the relevant insta-
bility mechanisms when a noise amplifier-flow behaviour occurs (Garnaud et al. 2013).
On the other hand, the modal analysis is extended to consider the structural sensitiv-
ity of the expected unstable global mode with respect to linearised perturbations. This
analysis is performed to identify those flow regions which are responsible for the devel-
opment of self-excited flow oscillations, as done by Giannetti & Luchini (2007) for the
cylinder wake. Finally, both axisymmetric and fully three-dimensional direct numerical
simulations (DNS) of the flow are performed to assess the validity and relevance of the
stability results.

The paper is organised as follows. The flow configuration and the governing equations
are introduced in §2 where the different approaches employed to characterise the flow
stability properties are shortly recalled. Some details about their numerical implemen-
tation are given in §3, along with validation tests on the single round jet configuration.
The steady axisymmetric base flow is described in §4. Results obtained from the modal
stability analysis are discussed in §5. More precisely, §5.1 presents the global eigenspectra
computed for different perturbation wavenumbers, with the identification of the unstable
global mode responsible for the onset of the vortex shedding in the range of nearly uni-
tary velocity ratios. The corresponding neutral curve is tracked in the parameter plane
Re-Ru, thus defining the domain of linear asymptotic instability of the axisymmetric
base flow. The leading direct and adjoint eigenfunctions are illustrated in §5.2 together
with the associated wavemaker region. Then the transient dynamics of the linearised
flow perturbations is investigated in §5.3. Finally, the results obtained from the direct
numerical simulations of the flow are compared with the modal stability results in §6 and
some conclusions are drawn in §7.
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2. Mathematical formulation

2.1. Flow configuration

In the present paper we are concerned with the incompressible flow produced by two
coaxial jets in an unbounded region of quiescent fluid. The axisymmetric computational
domain Ωc and the adopted cylindrical coordinate system (r, θ, z) are illustrated in figure

1. All lengths are made non-dimensional using the inner-pipe diameter D̃i. The flow
configuration is chosen to be very similar to that investigated by Segalini & Talamelli
(2011), with an outer-to-inner pipe diameter ratio of RD = 2 and a non-dimensional
thickness of the duct wall of s = 0.1. The main difference with respect to the geometry
employed by these authors consists in the presence of the additional solid wall on the
plane z = 0, which surrounds the annular pipe. The flow dynamics is described by the
unsteady incompressible Navier-Stokes equations which are made dimensionless using
D̃i, the maximum velocity Ũi of the inner fluid stream at the pipe inlet and the constant
density ρ̃:





∂U

∂t
+ (U ·∇)U +∇P − 1

Re
∇2U = 0,

∇·U = 0.

(2.1)

The Reynolds number Re is defined as Re = ŨiD̃i/ν̃, ν̃ being the kinematic viscosity
of the fluid. Therefore, the total flow state Q = {U , P}T is specified by the velocity
field U = U(r, θ, z, t) with components (Ur, Uθ, Uz)

T , and by the reduced pressure field
P = P (r, θ, z, t). With reference to figure 1, no-slip conditions are imposed on the wall
boundary Γw while the following condition is assumed on both Γt and Γo:

1

Re

∂U

∂n̂
− P n̂ = 0, (2.2)

where n̂ denotes the outward unit normal vector. On the inlet boundaries Γin,i and Γin,o,
the following Dirichlet conditions hold:

U
∣∣
Γin,i

= Uz,i(r)ẑ, U
∣∣
Γin,o

= Uz,o(r)ẑ, (2.3)

with

Uz,i(r) = tanh [bi (1− 2r)] , (2.4a)

Uz,o(r) = Ru tanh

[
bo

(
1−

∣∣∣∣
2r − (Ro,1 +Ro,2)

Ro,1 −Ro,2

∣∣∣∣
)]

, (2.4b)

where Ro,1 and Ro,2 denote the internal and external non-dimensional radii of the
annular duct, and Ru represents the velocity ratio between the two jets, defined as
Ru = maxUz,o/maxUz,i. The two above analytical expressions are chosen to repro-
duce the experimental velocity profiles reported in the work by Segalini (2010). More
precisely, the two parameters bi and bo are related to the thickness of the boundary
layers within the nozzle. In the present analysis both values are fixed to 5. Indeed past
works have shown that the pipe boundary layer features have only a weak influence
on the flow stability properties, especially in the vortex shedding regime (Talamelli &
Gavarini 2006). The incompressible Navier–Stokes equations with the aforementioned
boundary conditions are solved numerically by Newton’s method to compute the base
flow Qb = {U b(r, z), Pb(r, z)}T on top of which the linear stability analysis is performed,
as detailed in the next paragraph. In this respect, the base flow represents the numerical
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approximation of an exact solution of the Navier–Stokes equations, as done for the single
jet by Garnaud et al. (2013).

2.2. Linear global stability

As already mentioned, the onset of the various flow instabilities is investigated by per-
forming a modal and a non-modal analysis of the linearised perturbations evolving on
top of the steady axisymmetric solution to (2.1), Qb. The axisymmetric hypothesis is no
longer valid for the total linearised perturbation field q = {u, p}T which is expanded in
Fourier modes of azimuthal wavenumber m ∈ N,

q(r, θ, z, t) =

∞∑

m=−∞
qm(r, z, t)eimθ. (2.5)

The complex-conjugate symmetry qm = q∗−m holds for these modes, and the notation
(·)∗ is employed here and in the following to indicate the complex-conjugate of a given
complex-valued quantity. At each wavenumber m, the corresponding perturbation field
qm = {um, pm}T is governed by the linear dynamical system

B∂qm
∂t

= Lmqm, (2.6)

where the operators B and Lm are expressed as follows:

Lmqm ≡
(
−Cm(um,U b) + Re−1∇2

mum −∇mpm

∇m·um

)
, B∂qm

∂t
≡
(
∂um/∂t

0

)
, (2.7)

with

Cm(um,U b) = (U b ·∇m)um + (um ·∇0)U b. (2.8)

The notation ∇m(·), ∇m· (·) and ∇2
m(·) is used to indicate the Fourier-transformed

gradient, divergence and vector Laplacian operators, respectively. For the linearised flow
field the same boundary conditions introduced in §2.1 are applied with homogeneous
data, as follows from the linearisation of the original nonlinear differential problem.

2.2.1. Global modes & wavemaker analysis

For each wavenumber m the modal stability analysis of the axisymmetric base flow is
performed by casting the perturbation field qm in the normal-mode form qm(r, z, t) =
q̂m(r, z)eλt. This ansatz leads to the following generalised eigenvalue problem for the
global mode q̂m(r, z) and the associated eigenvalue λ = σ + iω ∈ C:

λBq̂m = Lmq̂m, (2.9)

with σ and ω denoting the real and imaginary part of λ, respectively. A global instability
clearly arises when σ > 0 for some values of the governing parameters Re and Ru. The
corresponding adjoint global modes q†m(r, z, t) = q̂†m(r, z)e−λ

∗t are introduced as well
with

λ∗Bq̂†m = L†mq̂†m, (2.10)

where L†m is the adjoint operator of Lm with respect to the Hermitian scalar product

〈q†m, qm〉Ωc
=

∫

Ωc

(
q†m
)∗ · qm rdrdz. (2.11)

In particular, when a global mode becomes unstable, leading to an oscillator-type be-
haviour, the knowledge of both the direct and the adjoint eigenfunctions allows one to
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identify the ‘core’ region of the self-excited instability mechanism (Giannetti & Luchini
2007). This is achieved by performing a structural sensitivity analysis of the eigenvalue
problem (2.9) with respect to a ‘localised’ structural perturbation of the operator Lm in
the form of a localised feedback from the velocity field:

δLm =
1

r
δ(r − r0, z − z0)

(
C0 0

0 0

)
. (2.12)

Here C0 is a constant feedback tensor, (r0, z0) denote the coordinates of the point in the
azimuthal plane where the feedback acts, and δ(r − r0, z − z0) is the two-dimensional
Dirac delta function. It is worthwhile to note that, consistently with the axisymmetric
nature of the underlying base flow, the considered structural perturbation is localised in
r and z but not in θ, with the wavemaker region resulting axisymmetric. By employ-
ing the formulation adopted by Pralits et al. (2010), the structural sensitivity analysis
leads eventually to the definition of a sensitivity tensor field Sm(r, z) for each considered
wavenumber m

Sm(r, z) =

(
û†m

)∗
⊗ ûm

〈q̂†m,Bq̂m〉Ωc

, (2.13)

where ⊗ denotes the dyadic product between two vector fields. A corresponding scalar
sensitivity map in the azimuthal plane (r, z) is easily obtained by plotting at each spa-
tial point a suitable norm of the tensor, such as, for instance, the Frobenius norm,
‖Sm(r, z)‖F , which will be adopted in the present study. Other norm definitions can
be considered as well, since the wavemaker identification has been shown not to depend
on this particular choice (Carini et al. 2014b; Camarri & Giannetti 2010).

2.2.2. Transient growth

In contrast with an oscillator-type dynamics, when the flow is dominated by a noise-
amplifier behaviour, a non-modal approach allows the characterisation of those instabil-
ities which are promoted by a relevant transient amplification of the linearised pertur-
bations, due to non-normal interactions among the stable eigenmodes. This problem is
commonly addressed by looking at the most-amplified initial condition um,0 = um(r, z, 0)
over a finite time-horizon τ , i.e. the optimal perturbation for τ (Reddy & Henningson 1993;
Schmid 2007). The optimal amplification factor for the perturbation wavenumber m and
a given time horizon τ , Goptm (τ), is defined as

Goptm (τ) = max
um,0

‖um(r, z, τ)‖
‖um,0‖

, (2.14)

with ‖um‖2 =
∫
Ωc
|um|2rdrdz. The velocity field at t = τ can be formally expressed in

terms of the initial condition um,0 by introducing the propagator Pm(τ) associated with
the linearised system (2.6)

um
∣∣
t=τ

= BrPm(τ)qm,0 = BreLmτqm,0 = BreLmτBpum,0, (2.15)

where Br and Bp denote the restriction and prolongation operators between the total
flow state qm and the associated velocity field ‘component’ um:

Brqm = um, Bpum =

(
um
0

)
. (2.16)
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Mesh zi zmax rmax Ne Ndofs

M40 5 40 5 196 530 1 287 172

M60 5 60 5 261 295 1 709 681

M80 5 80 5 326 344 2 134 043

M100 5 100 5 389 588 2 546 571

M120 5 120 5 454 746 2 971 638

M140 5 140 5 519 612 3 394 807

M160 5 160 5 584 999 3 821 366

M100,r10 5 100 10 455 805 2 977 209

M100,r15 5 100 15 529 701 3 457 757

M100,zi10 10 100 5 452 219 2 959 731

M100,zi15 15 100 5 515 040 3 374 126

Table 1. Characteristics of the meshes used in the present study. All the meshes are named
Mzmax as to quickly recall the most important mesh parameter; where duplicates are present the
changing parameter is reported as a second subscript. Ne denotes the total number of triangular
elements while Ndofs the corresponding total number of degrees of freedom. All the meshes are
characterised by a grid size ∆` varying from ∆`max = 0.4 close to the outflow border Γo, down
to a minimum value of ∆`min = 0.009 within the refinement zone (blue shaded area in figure 1);
these sizes of the elements have been determined following a mesh refinement-independence
study. See figure 1 for the definition of the other parameters.

Both Goptm (τ) and the optimal perturbation uoptm,0 can be obtained as the leading eigenpair
of the following symmetric positive-definite eigenvalue problem

BrP†m(τ)Pm(τ)Bpuoptm,0 = Goptm (τ)2uoptm,0, (2.17)

where P†m(τ) is the adjoint propagator of Pm(τ), i.e. P†m(τ) = e−L
†
mτ .

3. Numerical methods

The steady solutions and the stability problems are numerically solved with PaStA, a
Fortran90 code written in primitive variables and based on the finite element method
(FEM) (Canton 2013; Canton et al. 2016). The equations are discretised on an un-
structured, two-dimensional mesh composed of triangular elements, corresponding to an
azimuthal plane of the considered cylindrical domain. Standard Taylor-Hood P2-P1 finite
elements are employed for the unknown velocity and pressure fields. In our numerical pro-
cedure the axisymmetric base flow is first computed by means of Newton iterations and
then, for each considered wavenumber m, the corresponding global modes and optimal
perturbations are extracted making use of the implicitly restarted Arnoldi algorithm im-
plemented in the ARPACK library (Lehoucq et al. 1998). More precisely a shift-invert spec-
tral transformation is applied to the eigenproblem (2.9), with the Jacobian matrix being
fully assembled. In contrast, a time-stepper approach (Barkley et al. 2008) is adopted for
the computation of the optimal perturbations, through direct-adjoint iterations coupled
to the aforementioned Arnoldi algorithm. The Crank-Nicolson time-scheme is used for
the time integration of both the direct and the adjoint systems. In particular, a discrete
adjoint approach at the spatial level is adopted, and the proper boundary conditions for
the adjoint problem are thus accounted for automatically. The LOCA library of continu-
ation algorithms (Salinger et al. 2002) is used to track the neutral curve associated with
the leading eigenmode in the parameter plane Re-Ru. All matrix inversions are handled
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Figure 2. Sketch of the computational domain employed for the stability analysis of the single
jet configuration.

using the sparse LU solvers provided with the software library MUMPS (Amestoy et al.
2000).

In order to assess the accuracy of our stability computations with respect to the
adopted discretisation, eleven meshes, characterised by different spatial extents, have
been employed. The main features of these meshes are reported in table 1. For all the
grids, a relevant portion of the inlet pipes has been modelled, with zi > 5, in order
to ensure the correct approximation of the physical adjoint eigenfunctions and of the
optimal perturbations, as recommended by Garnaud et al. (2013). In the rest of the
paper, we will present and discuss the results obtained using grids M60 to M100,zi15. A
sensitivity analysis of these results with respect to the domain extents is reported in
Appendix A. All the meshes are characterised by a grid size ∆` varying from ∆` = 0.4
close to Γo, down to a minimum value of ∆` = 0.009 within the refinement zone (blue
shaded area in figure 1) these sizes of the elements have been determined following a
mesh refinement-independence study.

Finally, nonlinear DNS of the considered flow have been carried out by means of the
spectral element code nek5000 (Fischer et al. 2008). As in the case of the finite element
method, a classical Galerkin approximation is used to spatially discretise the governing
equations. In this case, the velocity and the pressure spaces are spanned by Lagrange poly-
nomial interpolants based on tensor-product arrays of Gauss-Lobatto-Legendre quadra-
ture points in each local element. The velocity polynomial degree is N , two times higher
than that employed for the pressure (PN -PN−2 formulation); in the present computa-
tions N = 6 is chosen as a good compromise between accuracy and computational cost.
Time integration employs an explicit second-order extrapolation for the advection terms
and an implicit second-order backward differentiation for the viscous term. Both axisym-
metric and fully three-dimensional simulations are performed. For the axisymmetric case
the computational grid consists of 3920 elements, while for the three-dimensional case
the total number of elements is equal to 64160 with 32 planes being employed in the
azimuthal direction.

3.1. Validation case: the single jet

The global stability properties of the flow produced by an incompressible, round viscous
jet have been carefully described by Garnaud et al. (2013). The same flow configuration
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Figure 3. Modal and non-modal stability analyses of the single jet flow for Re = 1000 and
m = 0. (a) Global eigenspectrum. (b) Gains associated with the optimal perturbations as a
function of the time horizon τ : present results (round circle) compared with those reported by
Garnaud et al. (2013) for the same configuration (continuous line).

Re 500 1000 1500 2000

Ri
u,e 1.285 1.177 1.130 1.104

Ro
u,e 1.290 1.273 1.245 1.220

Table 2. Outlet-inlet ratios of the maximum axial velocity component characterising the base
flow for Ru = 1 and different values of Re. See also figure 4 for z̄ = 0.1.

is considered here as a test case for our numerical setup. Similarly to the coaxial jet case,
the governing equations are made dimensionless using the diameter D̃ of the nozzle and
the maximum velocity Ũ at the inlet boundary of the computational domain Γin, which
is illustrated in figure 2. In order to reproduce the results reported by these authors for
Re = ŨD̃/ν = 1000, the same axial velocity profile is assumed on Γin with

U
∣∣
Γin

= Uz(r)ẑ, Uz(r) = tanh [5 (1− r)] , (3.1)

while on the remaining portions of ∂Ωc, the imposed boundary conditions are unchanged
with respect to the coaxial jet configuration. The computational domain has the same
spatial extent of that adopted by Garnaud et al. (2013), and contains 317406 elements,
corresponding to 2072740 degrees of freedom. The global mode spectrum obtained for
m = 0 is illustrated in figure 3(a), and it features all the branches reported in the
reference paper. In particular, the branch of modes b2, which describes the advection of
the vortical structures generated by the shear layer instability downstream of the nozzle,
is very well reproduced. The computed gains for the optimal perturbations at m = 0 are
illustrated in figure 3(b) as a function of the time horizon τ . The results are once again
in good agreement with the reference ones (reported in the same figure), indicating a
monotonic growth of the amplification factor up to three orders of magnitude.
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Figure 4. Variation of the base flow velocity profiles through the nozzle for Ru = 1 and different
values of Re. (a) Axial velocity profiles imposed at the inflow and resulting velocity profiles close
to the nozzle exit (z̄ = 0.1). (b) Radial velocity profiles close to the nozzle exit (z̄ = 0.1).
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Figure 5. Base flow axial velocity field in the proximity of the nozzle for Re = 1000 and different
values of Ru. Whites lines are used to represent the flow streamlines while the grey shaded area
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Linear global stability of two incompressible coaxial jets 11

0  0.2 0.4 0.6 0.8 1  1.2
0  

0.5

1  

1.5

2  

Uz

r

(a)

-4.5 -3  -1.5 0   1.5 3   

Ur × 10−3

(b)

z = 10

z = 20

z = 30

z = 40

z = 50

Figure 6. Axial and radial velocity profiles of the computed base flow for Re = 1000 and
Ru = 1 at different stations along the z-axis. (a) Uz(r, z). (b) Ur(r, z).

4. Base flow

Before addressing the analysis of the linearised perturbation dynamics, the main prop-
erties of the steady, axisymmetric base flow produced by the two coaxial jets are shortly
described. As mentioned, the base flow represents a numerical approximation to an exact
steady solution of the Navier–Stokes equations for the present flow configuration. The
inflow profiles are chosen to approximate those measured in experiments employing con-
verging nozzles (Talamelli & Gavarini 2006) and have a top-hat shape similar to that
employed in Garnaud et al. (2013) for laminar-flow analyses. It is worth mentioning that
part of the stability analysis has also been performed using fully developed Poiseuille
velocity profiles at the inflow and the results, not presented in this work for conciseness,
were qualitatively unchanged.

By inspecting the base flowfield, it can be observed that the axial velocity profile
prescribed on the inlet boundary Γin,i ∪ Γin,o gradually modifies through the nozzle due
to the boundary-layer growth inside the pipes. A comparison between the axial velocity
profiles at the inlet and those resulting at the outlet of the nozzle is illustrated in figure
4 for Ru = 1 and different values of Re. At the pipe outlet, the outer jet displays a nearly
parabolic profile with a well-defined peak, while for the inner fluid stream, the “top-hat”
profile shape is almost preserved. As expected, these shape modifications become more
pronounced as the Reynolds number is reduced. For both fluid streams the maximum
inlet velocity is increased up to the 30% at the nozzle exit, while the ratio between the
maxima is not significantly altered, due to a comparable growth of the boundary layers.
The exact values of the outlet-inlet maximum velocity ratios for the inner and outer fluid
streams, Riu,e and Rou,e respectively, are reported in table 2. Figure 4(b) also reports the
radial component of the velocity field at the pipe outlets as a function of the Reynolds
number. It can be observed that the magnitude of Ur is about one order of magnitude
smaller than that of Uz and that, similarly to the axial component, Ur is also reduced
by increasing the Reynolds number.

The presence of a thick duct wall separating the two coaxial jet streams is responsi-
ble for the flow separation at the nozzle exit, with the formation of a closed region of
recirculating fluid, as in the case of steady bluff-body wakes. The local structure of the
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base flow is illustrated in figure 5 for Re = 1000 and four different values of Ru. For
Ru = 0.5 the wake is nearly symmetric with respect to the duct wall centreline. However,
by increasing Ru the flow topology undergoes a substantial modification. Both vortical
rings attached to the wall gradually shrink and the one located on the outer-stream side
eventually disappears. In addition, a more elongated region of low-speed fluid in the ax-
ial direction is observed and a third slender vortex ring is formed away from the wall.
It is worthwhile to note that this change in the base flow topology occurs without any
bifurcation of the initial state, similarly to what observed by Carini et al. (2014a) in the
flow past two side-by-side circular cylinders at low Reynolds numbers.

Although the weakly non-parallel assumption can provide a good approximation in
the stability analysis of the considered flow, the separation which occurs behind the duct
wall introduces important non-parallel effects, especially in the region close to the nozzle.
These effects are better illustrated in figure 6, by comparing the axial and radial velocity
profiles extracted from the base flow at Re = 1000 and Ru = 1, at different stations along
the z-axis. As expected, the radial velocity component is very small if compared with
the axial one, being three orders of magnitude lower, figure 6(b). However, the influence
of the duct-wall wake is still visible almost up to z ≈ 40, figure 6(a), and in the region
downstream of the nozzle the variation of the velocity profiles Uz and Ur profiles is not
as slow as it is usually assumed to be under the weakly non-parallel assumption. These
observations further motivate the adoption of a global approach in the stability analysis
of the flow.

5. Stability analysis

5.1. Eigenspectrum

The computation of the global eigenspectrum of the linearised coaxial jet flow for m = 0
reveals the presence of a pair of complex conjugate eigenvalues which become unstable
over a wide range of the governing parameters, Re and Ru. This region of instability
is illustrated in figure 7(a) as a grey shaded area delimited by the neutral curve of the
considered mode (black line). The neutral curve is characterised by a minimum value of
the critical Reynolds number of Re = 1356 achieved for Ru ≈ 1.27. On its lower branch,
for Ru < 1, the dependence of Ru at the instability threshold becomes gradually weaker
as Re is increased beyond Re = 3000, with a critical velocity ratio Ru ≈ 0.5. Indeed,
at low velocity ratios the flow is dominated by the inner jet instability, approaching the
behaviour of a single jet, which displays a stable eigenspectrum for all Reynolds numbers
(see, e.g., Garnaud et al. 2013). It appears that for Ru . 0.5 the outer jet is essentially
reduced to a co-flow for the inner jet and its influence is not strong enough to alter the
dynamics of the inner jet. This does not imply that Ru ≈ 0.5 is a strict lower minimum
for the velocity ratio: the neutral curve may have an horizontal asymptote for any value
below 0.5.

It is observed that the critical base flow presents a pair of counter rotating vortex
rings, located in the wake of the separating wall (see figures 5 and 11), all along the
lower branch of the neutral curve. While these vortex rings are approximately of the same
size for Ru ≈ 0.505, the outer vortex ring shrinks when moving along the lower branch
of the neutral curve and increasing the velocity ratio, until disappearing completely for
Ru ≈ 0.90 and Re ≈ 1495. On the other hand, the topology of the base flow is only
slightly modified along the upper branch of the neutral curve, and presents only one
recirculating vortex, similarly to what described for a subcritical Re (see figure 5). It
therefore seems that the onset of instability of the wake of the separating wall is not
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Figure 7. Global stability analysis of the coaxial jet flow. Panel (a) depicts the neutral curve
associated with the leading axisymmetric mode in the Re-Ru plane. The minimum critical
Reynolds number, Re = 1356 for Ru ≈ 1.27, is highlighted with a (red) dash-dotted line. The
round markers, Pi, highlight the values at which the spectra in figure 8 have been computed.
The dashed line represents the neutral curve as a function of the bulk Reynolds number Reb,
reported on the top x-axis. Panel (b) reports the Strouhal number of the marginally stable mode
along the neutral curve, plotted as a function of the critical velocity ratio Ru. The continuous
line corresponds to the frequency scaled with the inner jet velocity, Sts = sωc/(2πUi), while the
dashed line shows the same frequency scaled by the bulk velocity, Sts,b = sωc/(2πUb), reported
on the top x-axis.

related to a topological feature of the flow. The nondimensional critical mode frequency
scaled using the wall duct thickness, Sts = sωc/(2πUi), is illustrated in figure 7(b) as a
function of Ru. Except for its behaviour in the neighbourhood of Ru = 0.5, the mode
frequency increases almost linearly with Ru in analogy with what has been observed
by Talamelli & Gavarini (2006). To further investigate the similarity to the results by
Talamelli & Gavarini (2006), figure 7(b) also reports the Strouhal number referred to
the bulk velocity of the two jets, Sts,b = sωc/(2πUb). It can be observed that, when
scaled by the mean velocity, the mode frequency is approximately constant for Ru > 1,
in agreement with figure 11 in Talamelli & Gavarini (2006), but Sts,b does not assume
a constant value for low velocity ratios, where non-parallelism effects appear to be more
relevant.

Figure 8 illustrates the eigenspectra computed at the stations Pi along the neutral
curve of figure 7(a). In the same figure, the eigenvalues obtained for m = 1 and m = 2
are also reported. For these wavenumbers, i.e. m = 1, 2, all the eigenvalues have a negative
growth-rate, thus confirming that the primary instability is axisymmetric. In addition to
the leading eigenvalue (black dot lying on the imaginary axis) and in analogy with the
single jet spectrum, figure 3(a), different mode branches are observed in the spectrum for
m = 0. More precisely, with reference to figure 8(b), the branch b1 is composed by nearly
steady modes associated with vortical structures in the fluid region surrounding the jets,
which are typical of parallel flows. In contrast, the modes belonging to the branch b2 are
localised within the jet shear layers. Finally the branch b3 contains poorly conditioned
eigenvalues, which are not exactly recovered when changing the adopted complex shift
in the eigenvalue computations. Such branch structure is common to all the panels of
figure 8.
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Figure 8. Global eigenspectrum computed at four different points along the neutral curve for
m = 0, 1, 2. (a) P1, Re = 5000 and Ru = 0.505. (b) P2, Re = 1420 and Ru = 1.0. (c) P3,
Re = 1386 and Ru = 1.5. (d) P4, Re = 1559 and Ru = 2.0.

The present results are in good agreement with those by Talamelli & Gavarini (2006) for
low velocity ratios. It is interesting to notice that the analysis by these authors is mainly
focused on null or small back flow in the separating wall region. This seems to suggest
that the structure of the counter rotating vortex rings has a minor role for low values of
Ru, where the instability may originate from a synchronization between the characteristic
frequencies of the two shear layers separated by the duct wall, and therefore be mostly
dependent on the velocity ratio alone. On the other hand, Talamelli & Gavarini (2006)
observe an upper Ru limit for the instability (sensitive to the boundary layer thickness)
which is not found in the present global analysis. This discrepancy seems to suggest that
the recirculation region, and the nonparallelism of the flow, plays a more important role
on the instability for high velocity ratios. Even Talamelli & Gavarini (2006) recognise
that “for velocity ratio Ru < 0.5 and Ru > 2.6 an absolute instability occurs only if
a back flow is generated in the wake region. For instance this effect may be obtained
by aspirating the flow in proximity of the separating wall.” The present analysis shows
that aspiration is not necessary, since the recirculation region behind the separating wall
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naturally provides a back flow, but indicates the necessity for a fully nonparallel base
flow to correctly capture the nature of the instability.

It then appears that the global instability that sets in for Ru & 0.5 is related to the
presence of the blunt wall separating the two jets. This is confirmed by a global, linear-
stability analysis, not reported in the present work for conciseness, showing that the
eigenvalue that becomes unstable is largely stable when the blunt wall is substituted by
a streamlined one. However, the physical origin of this instability is not entirely clear, as
it is not clear for cylinder flows. No discontinuous modifications in the structure of the
base flow can, in fact, be observed when crossing the neutral curve. Besides, the same
critical global mode is observed even for high velocity ratios, where the topology of the
recirculating region is fundamentally altered, presenting one vortex ring instead of the
two observed for low Ru. Moreover, the adopted scaling, where the Reynolds number is
insensitive to the velocity of the outer jet, being solely based on the velocity of the inner
jet, leads to a slow change of the critical Re with Ru in the upper branch of the neutral
curve. This is not the case if a different scaling is used as, for example, by employing a
Reynolds number based on the total bulk velocity of the two jets. In this case, shown by
the dashed line in figure 7(a), the dependence of the upper branch of the neutral curve
on the velocity ratio is stronger.

5.2. Leading global modes & the wavemaker

The direct global mode computed for Ru = 1 is represented in figure 9(a) and 9(b)
by means of the real part of its axial and radial velocity components, respectively. This
mode is formed by an array of counter-rotating vortex rings developing in the wake of the
separating duct wall. The amplitude of these structures grows downstream of the nozzle,
in the axial direction, reaching a maximum value at z ≈ 11, after which they slowly
decay. The spatial structure of this eigenmode resembles that of the critical eigenmode
in the wake of a circular cylinder (Sipp & Lebedev 2007). Direct numerical simulations,
in fact, show an ‘annular’ alternating-vortex street originating in the wake of the duct
wall. Such spatial structure substantially differs from that characterising the shear-layer
modes belonging to branch b2, which display an exponential spatial growth up to the
outlet boundary of the computational domain, similarly to what observed by Garnaud
et al. (2013) for a single jet. The structure of the critical mode substantially changes
when moving along its neutral curve. Figures 9(c) and 9(d) represent the critical mode
for Ru = 2,Re = 1559. The maximum of the amplitude is located further downstream,
at z ≈ 20, and the shape is qualitatively modified. This modification is reflected in the
DNS which shows a Kelvin–Helmholtz instability in the shear-layer between the jets and
at the interface between the outer jet and the quiescent surrounding fluid.

Differently from the direct mode, the adjoint mode, illustrated in figure 10, results
essentially concentrated within the nozzle. Its spatial distribution is found in the form
of upstream inclined structures localised inside the pipe boundary layers, achieving a
maximum intensity close to the sharp corners of the duct wall. When the velocity ratio
is changed, the adjoint mode moves from the inner pipe, where it is mainly located for
low Ru, to the outer pipe, for Ru > 1.

The knowledge of both the direct and the adjoint modes allows us to identify the re-
gions of the flow where the considered instability originates, according to the wavemaker
analysis introduced by Giannetti & Luchini (2007). The ‘core’ of the global instability
can indeed be associated with the maximum values of the function ‖S0(r, z)‖F , defined
in §2. Figure 11 illustrates the sensitivity map computed along the neutral curve. Except
for the case at Ru = 2, the spatial distribution of ‖S0(r, z)‖F results highly localised
behind the duct wall, featuring negligible values both inside the pipes and far from the



16 J. Canton, F. Auteri and M. Carini

r

 

 
(a
)

0123

−
0
.7
9

0
0
.7
9

r

 

 
(b
)

0123

−
0
.7

0
0
.7

r

 

 
(c
)

0123

−
0
.2
9

0
0
.2
9

r

z

 

 
(d
)

0
5

1
0

1
5

2
0

2
5

0123

−
0
.4
9

0
0
.4
9

F
ig
u
r
e
9
.

D
ir

ec
t

g
lo

b
a
l

m
o
d
e

fo
r
m

=
0
.

P
ic

tu
re

s
(a

)
a
n
d

(b
)

re
p
re

se
n
t

th
e

a
x
ia

l
a
n
d

ra
d
ia

l
v
el

o
ci

ty
co

m
p

o
n
en

ts
,

re
sp

ec
ti

v
el

y,
o
f

th
e

le
a
d
in

g
g
lo

b
a
l

m
o
d
e

a
t

cr
it

ic
a
li
ty

fo
r
R
e

=
1
4
2
0
,R

u
=

1
.0

(p
o
in

t
P
2

in
fi
g
u
re

7
).

T
h
e

sa
m

e
q
u
a
n
ti

ti
es

a
re

d
ep

ic
te

d
in

p
ic

tu
re

s
(c

)
a
n
d

(d
)

fo
r

th
e

cr
it

ic
a
l

m
o
d
e

a
t

R
e

=
1
5
5
9
,R

u
=

2
.0

(p
o
in

t
P
4

in
fi
g
u
re

7
).

N
o
te

th
a
t

th
e

fi
g
u
re

s
o
n
ly

re
p
ro

d
u
ce

a
p

o
rt

io
n

o
f

th
e

co
m

p
u
ta

ti
o
n
a
l

d
o
m

a
in

w
h
ic

h
is

a
lw

ay
s

ch
a
ra

ct
er

is
ed

b
y
z m

a
x
>

4
0
.

M
es

h
M

6
0
,

w
it

h
z m

a
x

=
6
0
,

w
a
s

u
se

d
fo

r
th

es
e

p
a
rt

ic
u
la

r
fi
el

d
s.



Linear global stability of two incompressible coaxial jets 17

r

z

 

 
(a)

−2 −1 0 0.5
0

1

0

1

0 2.73 5.47

z

 

 
(b)

−2 −1 0 0.5

0 2.99 5.99

Figure 10. Critical adjoint global mode for m = 0 represented by the magnitude of the associ-
ated velocity field. (a) Re = 1420, Ru = 1.0. (b) Re = 1559, Ru = 2.0. Note that the figures only
reproduce a portion of the computational domain which is always characterised by zmin 6 −5.
Mesh M60, with zmin = −5, was used for these particular fields.

r

 

 

(a)

0.4

0.5

0.6

0.7

0 79 158

 

 

(b)

0 22.8 45.7

r

z

 

 

(c)

0 0.2 0.4 0.6

0.4

0.5

0.6

0.7

0 19.9 39.9

z

 

 

(d)

0 0.2 0.4 0.6

0 19.8 39.6

r

z

 

 

(e)

0 4 8 12
0

1

2

0 19.8 39.6

Figure 11. Structural sensitivity map ‖S0(r, z)‖F associated with the critical global mode at
four different points along the neutral curve. White lines are used to represent the base flow
streamlines. (a) P1, Re = 5000 and Ru = 0.505. (b) P2, Re = 1420 and Ru = 1.0. (c) P3,
Re = 1386 and Ru = 1.5. (d) P4, Re = 1559 and Ru = 2.0. (e) P4, Re = 1559 and Ru = 2.0
(extended view). Note that the figures only reproduce a portion of the computational domain
which is always characterised by zmax > 40 and zmin 6 −5. Mesh M60, with zmax = 60 and
zmin = −5, was used for these particular fields.
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nozzle. For Ru = 1, figure 11(b), the maximum intensity is attained within a ‘double lobe’
structure which is nearly symmetric with respect to the duct-wall centreline. A similar
shape of the wavemaker has been observed for several two-dimensional bluff-body flow
configurations at low Reynolds numbers (Giannetti & Luchini 2007; Pralits et al. 2010;
Carini et al. 2014b). Either decreasing or increasing the velocity ratio, the wavemaker
structure becomes distinctly asymmetric, as shown in figure 11(a) and 11(c–d), featur-
ing a single pocket of maximum sensitivity located on the side of the faster flowing jet.
Finally, by increasing the velocity ratio up to Ru = 2, another peculiar modification of
the sensitivity map occurs. As already mentioned, in this case small but non-negligible
values of the norm of the sensitivity tensor are observed over a wide region downstream
of the nozzle. A similar behaviour has also been reported by Carini et al. (2014a) in a
preliminary analysis of the secondary bifurcation of the flow past two side-by-side circu-
lar cylinders. However, differently from that case, in the present configuration the region
of non-zero sensitivity values is entirely contained within the adopted computational do-
main. An extended view is presented in figure 11(e), and ensures the proper convergence
of the computed mode with respect to the downstream location of the outlet boundary.
This is also confirmed by the convergence study reported in the Appendix A. Although
the wavemaker extends downstream of the nozzles for high velocity ratios, the most sig-
nificant contribution to the instability remains localised close to the separating wall. This
observation is confirmed by the work of Tammisola (2012) via a global and local analysis.
The author reports that, for a pair of two-dimensional jets, the downstream portion of
the wavemaker is not detected by a local stability analysis. This indicates that the ‘true’
wavemaker is the one close to the pipe exit, while the downstream area of sensitivity is
associated to the upstream reflection of perturbations generated by the ‘true’ wavemaker.
In the present analysis the magnitude of the downstream portion of the wavemaker is
lower than that of the upstream portion, indicating that this effect is not as prominent as
in Tammisola (2012). The resemblance between the wavemakers in the two works, how-
ever, suggests that even for coaxial jets at high velocity ratios the downstream portion
of the wake does not have a merely convective function, but is coupled to the near wake
dynamics.

5.3. Transient-growth

The linearised flow dynamics is now investigated by means of a non-modal stability
analysis. The non-modal analysis is here restricted to axisymmetric perturbations in the
subcritcal regime. Figure 12 illustrates the optimal gain curve Gopt0 (τ) computed for
three different values of the velocity ratio, at Re = 1000 and Re = 1250 (figures 12(a)
and 12(b), respectively). For Ru = 0.5 the amplification factors are of the same order of
those characterising the single jet, already shown in figure 3(b). For low velocity ratios
the transient amplification of the linearised perturbations is essentially driven by the
inner shear-layer response. In contrast, huge gains are obtained for a unitary velocity
ratio, and Gopt0 (τ) further increases up to 20 orders of magnitude for Ru = 1.5. When
Ru = 1.0, the maximum amplification is reached at τ = 60, which roughly corresponds
to z = 34, while for Ru = 1.5, optimal perturbations are still being amplified when they
are advected outside of the computational domain.

These results are better illustrated in figure 13 for each considered velocity ratio and
Re = 1000. This figure depicts both the optimal initial perturbation and the resulting
linearised flow field at the maximum amplification time (corresponding to the black filled
symbols in figure 12a). In analogy with the critical adjoint mode shape, the optimal
perturbations are found to be highly localised at the corners of the duct wall. In contrast
to the adjoint modes, though, the regions of maximum intensity are observed to be
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Figure 12. Gains associated with the optimal perturbations as a function of τ for m = 0
and different values of Ru. (a) Re = 1000. (b) Re = 1250. The dashed (blue) line shows the
amplification of the same optimal perturbations attained on the nonlinear flow Ru = 1.

localised on the side of the stream with lower maximum velocity for Ru 6= 1, while they
are located on both jet sides for a unitary velocity ratio. The difference between the
results of the wavemaker analysis and those of the transient growth analysis might seem
‘surprising’ at first: the wavemaker displays higher sensitivity to perturbations on the side
of the faster flowing jet, while the optimal initial perturbations are located on the inner
side of the duct walls. It should be noted, however, that the two analyses correspond to
two different kinds of instability. The structural sensitivity is associated to an intrinsic
instability mechanism: the base flow is unstable independently of external perturbations;
the transient growth, instead, is related to the input/output relationship between the
perturbations introduced into the flow and how they are transformed by the flow itself.
This fundamental difference is reflected in the results of the present analysis: the absolute
instability is associated with the presence of a blunt separating wall and to the interaction
of the shear layers separating from it. In contrast, the convective instability is associated
with the transient growth of perturbations seeded within the inlet ducts, near their walls,
and amplified in the entrance region by a Orr mechanism (Garnaud et al. 2013; Sipp &
Marquet 2013) and in the jet region by the Kelvin–Helmholtz instability mechanism. It is
interesting to notice, here, the more effective amplification of perturbations seeded near
the external wall of the jets.

To assess the relevance of the linear optimal perturbations on the actual flow, the
same perturbations have been employed as initial condition in nonlinear simulations. It
should be noted that this operation is not connected to a nonlinear optimals analysis; it
is simply an exercise to assess the actual amplification of these perturbations. It should
not be forgotten that the nonlinear flow depends on the initial amplitude. The results
are illustrated in figure 12(a) for Ru = 1.0 and Re = 1000 setting the initial amplitude of
the velocity perturbation field to a value between 0.4% and 2% of the base flow velocity,
measured in the L∞ norm of the axial component. As expected, the gains are lower in
the nonlinear flow, and the kinetic energy saturates for τ > 30, forming a plateau. The
amplification of these initial conditions, though, is still considerably high, reaching a
maximum value of 1.3 × 105, two orders of magnitude higher than the linear maximum
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Figure 14. Flow snapshot of the fully developed unsteady coaxial jet flow obtained from three-
-dimensional DNS at Ru = 1 and Re = 1500: iso-surfaces of the λ2 criterion (λ2 = −0.5) coloured
by the azimuthal component of the vorticity field. A planar cut of the azimuthal vorticity field
is also illustrated. The light grey shaded structure corresponds to the nozzle geometry.

for a single round jet. This is especially true since quite large initial perturbations have
been considered. Despite these enormous growths, the nonlinear flow confirms its absolute
stability, and returns to the steady state after advecting the perturbations outside of the
domain.

6. Direct numerical simulations

Direct numerical simulations of the two coaxial jets have been performed in order to
assess the onset of the unstable axisymmetric mode predicted by the linear global stability
analysis. Since the corresponding instability mechanism is expected to be dominant only
in the range of unitary velocity ratios, the DNS computations have been focused on the
value of Ru = 1. Figure 14 illustrates the vortex structures developing in the unsteady
fully three-dimensional flow field at Re = 1500. The structures are represented by iso-
surfaces of the λ2 criterion, for λ2 = −0.5, and coloured with the corresponding value
of the azimuthal component of the vorticity field. As can be observed in this figure,
the flow does not feature any helical mode, thus confirming the expected axisymmetric
nature of the leading instability. Based on these results, further DNS investigations are
carried out under the axisymmetric constraint, which allows us to considerably reduce
the computational cost. The simulations have been impulsively started from quiescent
conditions and then advanced in time with a nondimensional time step of ∆t = 1× 10−3

up to the achievement of either a steady or unsteady condition. In order to evaluate
the frequency of the instability, virtual probes measuring the velocity components are
introduced in the simulation. The measurements are presented in figure 15 for three
of the probes located at z = 2.0 and different radial positions: r = 0.25, 0.55 and 0.8,
corresponding approximately to the inner jet, the duct wall wake and the external jet.
For Re = 1000 (left column), all the unsteady perturbations exponentially decay and the
flow converges towards the steady base state, in agreement with the instability threshold
of Re ≈ 1420 defined by the neutral curve of figure 7(a). In contrast beyond the neutral
curve, for Re = 1500 (figure 15, central column) a stable periodic solution is established.
The frequency content associated with the probe signals (figure 15 right column) is
characterised by a main peak occurring at the same non-dimensional frequency of Sts =
0.0924 for all the probes. Such value of the vortex shedding frequency is in very good
agreement with the unstable global mode frequency of Sts = 0.0912 resulting from
the linear stability analysis, thus supporting the proposed interpretation of the ‘global’
nature and origin of the considered flow instability. The higher frequency peaks appearing
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Figure 15. Time history and frequency content of the radial velocity component extracted from
the DNS of the axisymmetric coaxial jet flow for Ru = 1 and two different Reynolds number,
i.e. Re = 1000 (left column) and Re = 1500 (central column). The velocity probes are located at
z = 2.0 and r = 0.25, 0.55, 0.8 corresponding to the top, central and bottom row, respectively.
The third column shows the spectral content of the velocity signals for the case at Re = 1500,
for which a periodic solution is established.

in the spectra of figure 15(c,f,i) correspond to second and third-order harmonics with
2Sts = 0.1847 and 3Sts = 0.2783.

7. Summary and conclusions

The linear stability of the incompressible flow produced by two coaxial fluid streams
separated by a thick duct wall has been investigated within a fully non-parallel framework
in order to properly account for the effects of the solid wall and of the jet spreading.
For such configuration, and differently from the case of a single round jet, the flow
becomes globally unstable due to an oscillatory axisymmetric mode associated with the
vortex shedding in the wake of the duct wall. This finding agrees with the existence of
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a finite region of absolute instability predicted by the local stability analysis (Talamelli
& Gavarini 2006). Despite the low Reynolds numbers that characterise it, the instability
mechanism discovered in the present analysis is known to dominate the flow for nearly
unitary velocity ratios for higher Reynolds numbers (see, e.g., Segalini & Talamelli 2011).
The characteristic annular alternating-vortex street is, in fact, dominating the large-scale
motion up to at least Re = 13 800, while being modulated by small-scale turbulence. It
was found that the region of linear instability corresponding to the global mode extends
over a wide range of the governing parameters, with a minimum critical Reynolds number
of Re ≈ 1356 (Ru ≈ 1.27) and a lower threshold of Ru ≈ 0.5, which is almost independent
of Re. The spatial structure of the leading mode results remarkably different from that
characterising the jet shear-layer modes, the former developing upstream of the latter and
featuring a well-defined maximum within the computational domain. By inspecting the
direct-adjoint product, the ‘core’ of this instability results located in the separated flow
region which forms in the near wake of the duct wall, showing two pockets of maximum
sensitivity on the two sides of the wake of the wall. As the velocity ratio is increased or
decreased, the shape of the wavemaker is modified, featuring only one ‘lobe’ located on
the side of the faster flowing stream.

A three-dimensional DNS at Ru = 1 and Re = 1500 has been performed to assess
the axisymmetric nature of the unsteady flow and further axisymmetric simulations have
been used to compare the vortex shedding frequency with the global mode frequency.
Good agreement was found for all values of the parameters, with a slight difference of
approximately 1.3%.

Finally an optimal perturbation analysis has been carried out to complete the linear
global stability description of the flow. Quite surprisingly, huge gain factors are found to
characterise the transient response of the linearised flow dynamics at high velocity ratios.
The optimal growth far exceeds that of a single round jet, achieving an amplification of
up to 20 orders of magnitude. In analogy with the results of Garnaud et al. (2013),
optimal perturbations result highly localised around the sharp corners of the nozzle. In
particular it is interesting to note that, as the velocity ratio is varied and differently from
the wavemaker, their location shifts towards the side of the lower speed fluid stream.
The same linear optimal perturbations were also used as initial conditions in nonlinear
simulations. In spite of the expected reduction in the amplification attained by these
perturbations, the gains remain considerably high, reaching values which are two orders
of magnitude higher than the linear maximum for a single round jet.

Appendix A. Sensitivity to domain size and grid resolution

In order to investigate the influence of the domain size on the stability results, several
computations have been performed by varying both the radial and the axial extension
of the domain. All computations were carried out with the same local mesh size, ∆`,
varying from ∆` = 0.4 close to Γo, down to a minimum value of ∆` = 0.009 within
the refinement zone (blue shaded area in figure 1), these sizes of the elements have been
determined following a mesh refinement-independence study; the different features of the
employed meshes are listed in table 1. As occurs in the case of the single jet (Garnaud
et al. 2013), the stable eigenvalues belonging to the branch b2 of the spectrum, which are
associated with exponential downstream growing modes, are strongly influenced by the
position of the outlet boundary. This is confirmed in figure 16, which reports the branch
b2 when computed by using meshes characterised by an increasing axial length. When
zmax > 100 (meshes M100–M160) the overall displacement of this branch becomes smaller
but the eigenvalues that constitute it are joined by other ill-conditioned eigenvalues. In
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Figure 16. Branch b2 of the global eigenspectrum computed using meshes characterised by a
different streamwise extent of the domain.

σ ω

M40 3.231422248× 10−4 5.72786478
M60 3.199831336× 10−4 5.72787783
M80 3.218508894× 10−4 5.72787597
M100 7.033327496× 10−4 5.72785716
M120 7.037579582× 10−4 5.72786021
M140 7.020678535× 10−4 5.72785978
M160 7.047876486× 10−4 5.72784736

Table 3. Computed leading eigenvalue for Ru = 1 and Re = 1420 using computational
domains of different length.

contrast, the leading unstable eigenvalue displays a good convergence with respect to the
spatial extension of the domain: the first four significant digits of its frequency are, in
fact, independent on the mesh length, as shown in table 3 for Ru = 1 and Re = 1420.
Similarly, table 4 lists the variation of the amplification factor Gopt0 (τ) computed using
the different grids for Re = 1000 and three different values of τ . It is possible to observe
that Gopt0 (τ) shows very little sensitivity to domain size. This is explained by the fact
that all optimal perturbations are located in the nozzle region, with no contributions
from other areas of the domain.
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τ 12 16 20

M40 −6.91× 10−4 −1.21× 10−3 −1.97× 10−3

M60 3.30× 10−4 −1.36× 10−4 −9.38× 10−4

M80 3.34× 10−4 −1.31× 10−4 −9.30× 10−4

M100 6.83× 10−4 2.59× 10−4 −4.99× 10−4

M120 6.85× 10−4 2.62× 10−4 −4.97× 10−4

M140 − − −
M160 6.68× 10−4 2.45× 10−4 −5.14× 10−4

M100,r10 4.44× 10−2 4.00× 10−2 3.27× 10−2

M100,r15 1.04× 10−2 −6.77× 10−3 −2.58× 10−2

M100,zi10 1.34× 10−5 − −

Table 4. Variation of the computed gain factor Gopt
0 (τ) for Ru = 1 and Re = 1000 obtained

using different computational domains, with respect to the referenceM100,zi15 grid. The variation
is also normalised with respect to the values obtained with M100,zi15.
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