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Abstract

The dynamics and evolution of turbulent structures inside
an engine-like geometry are investigated by means of Large
Eddy Simulation. A simplified configuration consisting of
a flat-top cylinder head with a fixed, axis-centered valve
and low-speed piston has been simulated by the finite vol-
ume CFD code OpenFOAM®; the standard version of the
software has been extended to include the compressible
WALE subgrid-scale model, models for the generation of
synthetic turbulence, some improvements to the mesh mo-
tion strategy and algorithms for LES data post-processing.
In order to study both the initial transient and the quasi-
steady operating conditions, ten complete engine cycles
have been simulated. Phase and spatial averages have
been performed over cycles three to ten in order to extract
first and second moment of velocity; these quantities have
then been used to validate the numerical procedure by com-
parison against experimental data. Complex unsteady fea-
tures of turbulent fields like laminar-to-turbulent transition
and tumble vortexes evolution have been studied either by
time-resolved analysis and Proper Orthogonal Decomposi-
tion (POD). In addition, the cycle-to-cycle variations of flow
field due to turbulent unsteadiness has been investigated
by statistical analysis. Despite the present study has been
carried out on a simplified geometry, it shows that LES can
be a reliable tool not only for predicting averaged quantities
(mean velocity and Reynolds stresses), but also to repro-
duce the dynamic behavior of complex turbulent structures
in IC engines.

Introduction

Among all physical phenomena that occur inside an engine
cylinder, turbulence has certainly a direct impact on thermo-
dynamic efficiency, brake power and emissions of the en-
gine since its influence extends from volumetric efficiency
to air/fuel mixing, combustion and heat transfer. Histori-
cally, turbulent flows have been simulated mainly by mod-
els based on Reynolds Averaging of Navier-Stokes equa-
tions (RANS), either in they original version or in the un-
steady formulation (URANS) for slowly-varying flows [1]. In

ICE simulation, URANS approaches have proved to pro-
vide very good predictions of phase-averaged flow fields:
macroscopic features of charge motion – like swirl and tum-
ble vortexes – can be estimated with a good accuracy [2].
On the other hand, most of the time-varying quantities char-
acterizing in-cylinder flows cannot be resolved by a model
based on implicit time- or ensemble-averaging methods
like URANS: small-scale turbulence, cycle-to-cycle variabil-
ity (CCV) and in-cycle evolution of three-dimensional struc-
tures (jets and vortexes) can be simulated only by a time-
resolved (rather than time-averaged) approach like Large
Eddy Simulation (LES) [3]. In the recent years, LES has
been successfully applied to ICE simulation by several au-
thors, including Haworth [4, 5], Thobois et al. [6, 7], Hasse
et al. [8]; their work has shown that good predictions of
mean and fluctuating velocity, together with estimation of
turbulence-driven CCV, can be achieved by LES.

The aim of this paper is to further explore the potentiality of
LES for ICE simulation. The computational tool used in this
paper is the open-source CFD software OpenFOAM® [9],
whose current standard version (2.2.x) has been extended
by the authors to include the new features [10, 11, 12, 13,
14] used for the present work. In particular, modifications
regarded the inclusion in the code of compressible WALE
subgrid-scale model [15], some improvements to the mesh
motion strategy, and suitable boundary and initial conditions
for LES which includes turbulent structures (generated ar-
tificially at the boundary), with physically sound spatial and
temporal correlations [16]. Finally, algorithms for data post-
processing, such as for the calculation of Proper Orthogo-
nal Decomposition (POD), have been developed. The im-
plemented framework for LES has been included in LibICE,
a C++ open-source library for ICE simulation developed at
Politecnico di Milano.

The paper is organized as follows: first the simulated ge-
ometry will be presented together with the numerical setup,
then a basic validation of the procedure by comparison
against experimental data will be performed and the com-
pleteness of simulations will be assessed. Finally, a more
thorough analysis of dynamic features is carried out and fol-
lowed by a discussion upon the results.



a)

Figure 1: a) Geometry of the experimental apparatus used by Morse et al. [17]. The same configuration has been modeled for the present paper,
with the addition of an upper plenum (not shown). b) Cut view of the Finite Volume grid used for the simulations. The whole mesh had about 4.8
million hexahedral elements, including the plenum (not shown).

Case setup

The axisymmetric piston-valve assembly introduced by
Morse et al. [17] has been selected as a test-case for the
present study. Specification of the geometry as well as a
list of main functioning parameters are represented in Fig.
1. The piston has a bore diameter of 75 mm and stroke
is 60 mm. Clearance height is 30 mm from cylinder head,
thus geometric compression ratio is 3. The poppet valve
is coaxial with respect to the piston axis and it remains at
fixed height through the whole engine cycle. Piston motion
is purely harmonic with a frequency of 200 rpm; as a con-
sequence, the engine Reynolds number (considering air as
a working fluid) is Re = ρUpD/µ = 2000.

The geometry has been discretized with a pure structured
hexahedral mesh, which is depicted in Fig. 1-b. The
cylinder inlet section is connected to a plenum (not repre-
sented) whose volume is about 15 times the cylinder vol-
ume. The purpose of the plenum is to avoid reflections from
the boundaries and thus improve the stability of the simula-
tion. The total number of elements in the mesh is approx-
imately 4.8 million, with a minimum cell thickness of about
0.02 mm in the valve seat.

Dynamic mesh handling has been based on a point mo-
tion strategy without topological changes. Mesh points
have been divided into three sets according to the mo-
tion law they were subjected to (see Fig. 1-b). All points
above the cylinder head are fixed since there are no mov-
ing boundaries there; as a consequence, they belong to the
set named “static mesh” and their displacement velocity is
zero everywhere. Similarly, points located below the cylin-
der head (“head points” in Fig. 1-b) were not moving to
preserve the cell quality in a critical region like the interface
between valve seat and cylinder. Finally, points belonging to
the cylinder region (with the exception of the “head points”
just mentioned) do move axially to account for the deform-
ing geometry. In this work the cylinder axis was aligned to
the z axis of the global reference frame (Fig. 1); the follow-
ing relations are therefore written accordingly. Given Up as
the piston velocity (Up(t) = S/2 sin(ωt)ic; where S is the
piston stroke and ic the unit vector parallel to cylinder axis),

the point velocity up is calculated as:

up(xp) = Up ·
zmax − zp

zmax − zpiston
(1)

where xp = (xp, yp, zp) is the point position, zmax is the z-
coordinate of the farthest moving point from the cylinder and
zpiston is the z-coordinate of the piston.

Subgrid-scale model

In this work, the WALE (Wall-Adapting Local Eddy-
viscosity) model (first developed by Nicoud et al. [15]) has
been implemented according to its compressible formula-
tion [18]. The model is based on the eddy-viscosity as-
sumption for compressible flows [19]:

τsgsij = µsgs

(
2S̃ij −

2

3
S̃mmδij

)
− 2

3
ρ̄ksgsδij (2)

where τij is the subgrid scale viscous stress tensor and S̃ij

is the Favre-filtered strain rate tensor

S̃ij =
1

2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
(3)

The overbar denotes space filtered quantities, while the tilde
denotes the Favre-filtered quantities. For most of the eddy-
viscosity models, the eddy-viscosity can be written in the
general formulation:

µsgs = C2
m ρ̄ ∆̄2 ÕP (x, t) (4)

where Cm is the constant of the model, ∆̄ is the filter char-
acteristic length scale (calculated as ∆̄ = V 1/3, where V

is the local cell volume) and ÕP is an operator of space
and time, homogeneous to a frequency, defined from the
resolved fields.

For the compressible case, the resulting formulation for the
eddy viscosity is:

µsgs = ρ̄
(
Cw∆̄

)2 ÕP 1

ÕP 2

= ρ̄
(
Cw∆̄

)2 (
sdijsdij

) 3
2

(S̃ij S̃ij)5/2 +
(

sdijsdij
)5/4 (5)
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where sdij is the traceless symmetric part of the square of
the velocity gradient tensor ḡij = ∂ui/∂xj :

sdij =
1

2

(
g̃2ij + g̃2ji

)
− 1

3
δij g̃

2
kk (6)

In order to write the subgrid-scale viscous stress tensor, the
relation between the turbulent viscosity µsgs (see Eq. 4)
and the turbulent subgrid scale kinetic energy ksgs must be
considered:

ksgs = C2∆̄2 S̃mnS̃mn = C2∆̄2

(
µsgs

ρ̄ C2
m ∆̄2

)2

= C′w

(
µsgs

ρ̄ ∆̄

)2

(7)

By the combination of Eq. (7) and Eq. (2) it follows:

τsgsij = 2µsgs

(
S̃ij −

1

3
S̃mmδij

)
− 2

3

C′w
ρ̄

(µsgs

∆̄

)2
δij (8)

As suggested in [18], C′w has been set to 45.8. To make
the stress realizable, its diagonal entries were forced to be
nonpositive.

Among the favourable characteristics of the WALE model,
that make it very suitable for engine flows, one has:

- invariance to any coordinate translation or rotation;

- ease of implementation on any kind of computational
grid;

- it is function of both the strain and the rotation rates;

- it goes naturally to zero at the wall with y3 behavior, so
that neither damping function nor dynamic procedure
are needed to reproduce the effect of the no-slip con-
dition at the wall.

The WALE SGS model had be implemented by the authors
of the present work in the OpenFOAM® technology; both
the implementation and the suitability for engine-like cases
have been assessed in previous works [12, 20].

Numerical setup

The compressible filtered Navier-Stokes equations have
been solved using a Finite Volume (FV) solver based on the
transient-SIMPLE algorithm [21]; this choice has been driven
by the necessity of ensuring convergence of pressure-
velocity coupling at each timestep without being limited
by the Courant-Friedrichs-Lewis (CFL) criterion. Tempo-
ral integration has been performed with a fixed angular
step equal to ∆θ = 0.05◦; as a consequence, the maxi-
mum Courant number ranged from 0.75 (near bottom- and
top-dead-center) to ≈ 11 around θ = 90◦ + k 180◦, with
k = [0;Ncycles]. A total number of 10 piston cycles have
been simulated, even though only data from the last 8 cy-
cles have been used for postprocessing. Time derivatives
have been discretized using a second-order backward dif-
ferencing scheme, while pure second-order differencing has

been used on all space derivatives with the exception of the
momentum advection (∇·(ρUU)). For this term, an interpo-
lation scheme in which linear-upwind is blended with linear
interpolation has been used with a blending factor of 75%
linear [22], in order to achieve a very stable solution with
an almost second-order accuracy. Boundary conditions at
the walls were set as adiabatic. Wall functions were not ap-
plied at the solid walls: flow equations were solved up to
y+ → 0, despite it was known that mesh resolution was not
sufficient to solve the boundary layer. Synthetic-turbulence
at the inlet boundary [13, 23] was generated for the flow en-
tering into the domain, while a non-reflecting condition on
pressure was applied for the outgoing flow.

Post-processing of results

Post-processing of results is an important part of every
analysis based on LES. The large amount of data coming
from the computation needs to be reduced to extract us-
able information. Usually, the first stage of data process-
ing consists in the calculation of first and second statistical
moments of velocity: in this case the reduction algorithm
discards any dynamic information about the flow field. Av-
eraging has been applied in this work to compare mean and
RMS velocity profiles against experimental measurements,
in order to validate the simulation procedure.

On the other hand, CCV is usually detected and measured
on the basis of some quantities obtained by an integration
over the volume, that are examined as they evolve through
the different engine cycles. In this paper the chosen mea-
sure for CCV is the specific kinetic energy:

〈Ē(t)〉 =

∫∫∫
1

2
ũ(x, t)ũ(x, t)dxdydz (9)

Finally, informations about the organized motions of the flow
field and their energy content can be extracted by means
of Proper Orthogonal Decomposition (POD). POD consists
in decomposing a time-varying velocity field u(x, t) into M
independent pairs [a(k)(t), ψ(k)(x)], where a(k)(t) is a time-
dependent coefficient expressing the energy content of the
k-th mode, and ψ(k)(x) is the corresponding spatial basis
function:

u(x, t) =

M∑
k=1

[
a(k)(t)ψ(k)(x)

]
(10)

POD modes are usually extracted by the so-called “method
of snapshots”, that has been originally developed by
Sirovich [24] to reduce the computational cost of formal
methods [25]. Given a number of realizations M of a time-
dependent vector field u(x, t), it is possible to define the
inner product:

(
u(i),u(j)) =

N∑
n=1

[
D∑

d=1

[
u
(i)
d (xn)u

(j)
d (xn)

]]
(11)

Eq. (11) is used to build the matrix C, where:

Cij =

(
u(i),u(j)

)
M

(12)
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Figure 2: Profiles of mean axial velocity (left) and axial RMS fluctuations (right) for CA = 36◦ ATDC, at different distances from the cylinder head
(conventionally z = 0). — simulations; � experiments.

for which the following eigenvalue problem is solved:

C q(k) = λ(k)q(k) (13)

Finally, the POD modes are calculated as:

ψ
(k)
d (xn) =

M∑
m=1

q(k)m u
(m)
d (xn) (14)

and the time-varying coefficients as:

a(k)(t) =
(
u(i), ψ(k)) (15)

with i as the temporal index.

Usually, eigenvalues and eigenvectors resulting from Eq.
(13) are ordered by decreasing magnitude of the eigen-
values, so that the energy content of POD modes
[ψ(1) . . . ψ(M)] will be in decreasing order as well.

Since a reciprocating engine is characterized by a periodic
operation due to its varying geometry, it is generally not ap-
propriate to consider the temporal index i as θ = i ∆θ (be-
ing ∆θ the integration step). One solution is to calculate
a “phase-dependent” POD: for each crank-angle position a
different POD is calculated, where the number of snapshots
is defined by the total number of simulated engine cycles. It
is worth mentioning that an alternative method is available,
namely the “phase-independent” POD, where linear trans-
formations are applied to the FV grid and to the velocity field
for each crank-angle; the total number of realizations equals

the number of saved timesteps. The “phase independent”
POD has been developed by Fogleman et al. [26] and ap-
plied to the same test case of this paper by Liu and Haworth
[27]. However, in the present work, the former approach has
been chosen because, in the authors’ opinion, it allows for a
better physical insight on the dynamics of turbulence inside
an engine cylinder.

Basic solver validation

In this section, the solver and setup used to simulate the
configuration of Fig. 1 will be evaluated in order to val-
idate the whole LES procedure. First, a comparison be-
tween mean and RMS velocities obtained by LES and the
experimental measurements by Morse et al. [17] will be
presented. A similar comparison was done in the direct nu-
merical simulations in [28]. Afterward, the completeness of
the simulation will be estimated by quantitative parameters.

Average and RMS velocity

Comparisons between simulated and measured data have
been performed for three different Crank-Angle (CA) posi-
tions, namely, 36, 90 and 144 CA degrees. Both ensemble
averaging and space averaging have been applied to the
results. As mentioned before, only the last eight cycles,
out of a total of ten, have been considered for the post-
processing. This choice was due to the need of excluding
any non-repeatable phenomenon that might occur during
the very first phases of the simulation, when the cylinder

4



CA = 90◦ ATDC
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Figure 3: Profiles of mean axial velocity (left) and axial RMS fluctuations (right) for CA = 90◦ ATDC, at different distances from the cylinder head
(conventionally z = 0). — simulations; � experiments.
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CA = 144◦ ATDC
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Figure 4: Profiles of mean axial velocity (left) and axial RMS fluctuations (right) for CA = 144◦ ATDC, at different distances from the cylinder head
(conventionally z = 0). — simulations; � experiments.
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Figure 5: Comparison of simulated (left) and experimental (right) streamlines within the cylinder region at: a) CA = 36◦ ATDC; b) 90◦ ATDC; c)
144◦ ATDC; d) 270◦ ATDC.

conditions are very different with respect to the other cycles.
Space averaging has been computed along the circumfer-
ential direction, in order to reduce the total number of en-
gine cycles to be simulated. Data have been sampled with
an angular step of 5◦. Linear interpolation has been used to
approximate the fields in between cell centers. Both ensem-
ble averaged velocity (Ū ) and RMS fluctuations (urms

z ) have
been extracted from the circumferential-averaged planes
and compared with experimental measurements. Profiles
have been plotted along the cylinder radius at increasing
distance (with a step ∆z = 10 mm) from the cylinder head.
Only the axial component of the velocity has been consid-
ered, since no reference data are available for the other two.
In Fig. 2 velocity profiles for CA = 36◦ are represented. The
match between simulation and experiments is very good on
all sampling positions. The amplitude of local minima at z =
-10 mm and z = -20 mm is correctly estimated, even though
the position is slightly shifted towards the liner wall. The
same considerations can be done for the local maxima of
urms
z . At z = -30 mm velocities are very low, because the

measurement location is very close to the piston. Compar-
ison of averaged velocities at CA = 90◦ are represented in
Fig. 3. The match between computed and measured val-
ues at z = -10 mm and z = -20 mm looks satisfying, the
experimental profile is caught fairly well; the same observa-
tions made for the previous case apply to this crank angle
position as well. However, differences between simulated
and measured velocities increase as the sampling plane lo-
cation is moved far from the cylinder head, even though the

qualitative trend is generally preserved. On the other hand,
RMS axial fluctuations are well predicted on all five sam-
pling planes, both qualitatively and in absolute values. Pre-
dictions of velocity field for CA = 144◦ (Fig. 4) show a very
good agreement with experimental data. Profiles of mean
axial velocities are matched almost perfectly in all positions.
Slight differences can be seen for RMS fluctuations near the
cylinder walls; however, it is difficult to estimate the impor-
tance of such deviations since little information about the
confidence interval of experimental data is available [17].
In Fig. 5 the streamlines stemming from simulation results
(on the left) are combined with those obtained from experi-
mental data by Morse et al. [17] (on the right). The purpose
of this series of images is to provide a qualitative overview
of the mean velocity field inside the cylinder. A compari-
son between simulations and experiments can be however
done, bearing in mind that the simulated streamlines have
been traced for different values of the stream-function with
respect to experimental ones. At CA = 36◦ the match is
very good both in terms of shapes and sizes of the recircu-
lation regions, while at CA = 90◦ (Fig. 5-b) there is a mis-
match in the size of the large recirculation vortex adjacent
to the cylinder axis. A mismatch has been observed also in
the two-dimensional plots already shown in Fig. 3; as it will
be shown in the next paragraph, a possible explanation may
be found in the mesh resolution that was used at CA = 90◦,
which is not sufficient to capture the main vortex structures
influencing the flow field. However, at the same crank angle,
similar discrepancies have been observed also in other au-
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thors’ works [5, 28]. At CA = 144◦ (Fig. 5-c) almost all flow
features are caught, with some exception in the description
of the corner vortex between the liner and the cylinder head;
this structure is only hinted in the simulations and it cannot
clearly be seen in the experiments. Finally, the streamlines
plot at CA = 270◦ (represented in Fig. 5-d) does show only
a uniform velocity field with parallel streamlines, due to the
upward stroke of the piston.

Completeness estimate

A common issue with LES is to determine the maximum al-
lowable cell size to resolve at least the 80% of total kinetic
energy [1]. If the complete energy spectrum is not known
from detailed experiments and/or DNS data, the complete-
ness of the simulation has to be estimated in some way. In
this work the Length Scale Resolution parameter (LSR) [29]
has been adopted as an estimator of the mesh resolution.
LSR is defined as:

LSR =
∆̄

`DI
(16)

where `DI is the lower limit of the inertial sub-range, which
is usually estimated as [1]:

`di ' 60 η (17)

where η is the Kolmogorov scale. The LSR parameter is
proportional to the ratio between the actual resolved en-
ergy level and the corresponding lower limit of the inertial
sub-range: where the LSR value is equal to 1 all the tur-
bulent scales up to the dissipation range are resolved. By
the LSR definition, the evaluation of the actual resolved en-
ergy level is directly linked to the local filter size. It helps to
clearly correlate the adopted mesh size to the local energy
resolution all over the computational domain. In [12, 30], a
LSR value between three and five is given as the upper limit
to guarantee a reasonable LES resolution at an affordable
computational cost.

The common use of a completeness estimator is to detect
the mesh regions that need a local refinement. However,
when the mesh is dynamically changing, it is important also
to monitor the cell sizes during the whole simulation. In
fact, it is possible that for some crank angles (most likely
near bottom dead center), the LES filter width is too coarse
to correctly resolve the turbulent scales. Contour plots of
LSR for the first processed cycle are represented in Figs. 6.
From the pictures it clearly appears that LSR is almost ev-
erywhere lower than the threshold value of 5. LSR is higher
than 5 only at CA = 90◦, in the shear layer between the
annular jet and the in-cylinder region and on the liner walls
where the jets impacts.

This helps to justify the discrepancy that has been noticed
in Fig. 3 and Fig. 5 between the predictions and the experi-
ments for this piston position; however, a maximum value of
LSR of about 7 is not high enough to pose concerns about
the quality of the overall simulation; the analysis of com-
pleteness shows that mesh resolution might be increased
in the upper part of the cylinder, but it is fine enough to re-
solve up to the limit of the inertial subrange. As evidenced
also in [12], the LSR parameter is very helpful when used

Figure 6: Contour plots of the LSR parameter on an axial plane.
a) 0◦ (TDC); b) 36◦ ATDC; c) 90◦ ATDC; d) 144◦ ATDC; e) 180◦
ATDC; f) 270◦ ATDC. LSR looks higher than 5 only at CA = 90◦, in
the shear layer between the annular jet and the in-cylinder region
and on the liner walls where the jets impacts.

to compare similar grids having different refinement levels;
this is a consequence of the fact that in similar grids the
filters are related to similar characteristic lengths and are
therefore comparable. Conversely, when different grids are
compared (structured with unstructured, unstructured with
hybrid, different unstructured), LSR represents only a qual-
itative parameter, to distinguish between mesh zones that
are refined enough and zones whose resolution is not suffi-
cient to describe the main turbulent structures characteriz-
ing the physics to study.
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Figure 7: Volume integral of resolved kinetic energy 〈Ē(θ)〉 versus
global crank-angle.

Further results and discussion

Cycle-to-Cycle Variability

The most promising aspect of LES is the capability of
predicting unsteady flow phenomena, rather than average
quantities like those used for validation. In Fig. 7, the nor-
malized value of the integrated kinetic energy E, as defined
in Eq. (9), is plotted against global crank angle for the cylin-
der region. The quasi-periodic trend is clearly recognizable;
cycle-to-cycle variation is present, and it is especially appar-
ent at the local maxima, when θ ≈ 120◦ + k 360◦. In par-
ticular, the difference in absolute value between the highest
peak (which belongs to cycle n. 7) and the lowest one (cycle
number 5) amounts to nearly 12%.
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Figure 8: Maximum per-cycle value of 〈Ē(θ)〉

On the other hand, it does not seem to exist any mono-
tone trend regarding the peak values of kinetic energy, see
Fig. 8. With the exception of the first cycle, which has the
highest absolute value, all other data points lie around the
average value of E ≈ 0.675. However, Fig. 8 suggests also
that some sort of cycle-to-cycle periodic phenomena might
be present. In effect, starting from number 2, each cycle
with an high value of peak kinetic energy is followed by a
cycle with a low-value of it, and vice-versa.

In Fig. 9 the value of kinetic energy vs. crank angle is rep-
resented for each simulated cycle. Apart from cycle 1, the
other curves are, more or less, overlapping. The largest
CCV variation is seen to be around θ = 120◦, in correspon-
dence to the maximum values of E. A quantitative measure
for that is given by the normalized standard deviation of the
energy, Fig. 10. CCV is seen to be high during the in-
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Figure 9: Cycle-to-Cycle Variability of 〈Ē(θ)〉 versus engine crank
angle. — simulations; — average over eight engine cycles (3 to
10).

take stroke, with the peax value around 120◦ as already
mentioned, but also with a small plateau in proximity of the
bottom dead center. As expected, CCV is instead very low
near the Top Dead Center, where turbulence level is at its
minimum too.
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Figure 10: Variance of 〈Ē(θ)〉 calculated over eight engine cycles
(3 to 10).

In order to gain a more detailed insight on the possible
causes of CCV, the instantaneous vorticity field has been
calculated at selected crank positions and contours of the
absolute value of vorticity |ω| have been plotted on vertical
planes passing through the cylinder axis. In Fig. 11 the vor-
ticity field at TDC is represented; as it might be expected,
there are little or no organized structures at all, since they
have been pushed into the upper plenum by the compres-
sion stroke. When the intake stroke begins, at CA = 36◦,
the annular jet coming from the valve enters into the cylin-
der (Fig. 12); a shear layer forms between the jet and the
(relatively) undisturbed region that surrounds it, until the jet
breaks up, at about mid-way between the cylinder head and

the piston. Some degree of CCV can be seen already at
this stage, in particular looking at the shear vortexes at the
end of the annular jet. In even cycles (cycles 4, 6, 8, 10) the
diameter of the vortex is slightly larger with respect to odd
cycles(cycles 5, 7, 9). At CA = 90◦, vortical structures are
fully developed and CCV is more clearly visible, especially
in cycles from five to ten, see Fig. 13. Furthermore, there
is a clear alternating pattern between odd and even cycles,
that follows the trend already seen for CA = 36◦. In fact,
odd cycles have a vorticity field that is shifted towards the
piston face, with a relatively calm region in the upper half of
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CA: 0 deg

Figure 11: Vorticity contours at Top Dead Center for all simulated cycles

CA: 36 deg

Figure 12: Vorticity contours at CA = 36◦ ATDC for all simulated cycles
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CA: 90 deg

Figure 13: Vorticity contours at CA = 90◦ ATDC for all simulated cycles

CA: 144 deg

Figure 14: Vorticity contours at CA = 144◦ ATDC for all simulated cycles
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CA: 180 deg

Figure 15: Vorticity contours at Bottom Dead Center for all simulated cycles

CA: 270 deg

Figure 16: Vorticity contours at CA = 270◦ ATDC for all simulated cycles
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Figure 17: (a), (c), (e) Eigenvalues of POD modes versus crank angle for velocity component ux, uy and uz . (b), (d), (f) Ratios between
eigenvalues for velocity component ux, uy , uz .

the cylinder. On the other hand, even cycles have a more
uniform vorticity distribution, that extends nearly up to the
valve. In addition, the shear layer instability in the jet com-
ing from the valve section is clearly visible in these plots,
especially for even cycles (six, eight and ten); in odd cycles
ths instability is less evident and the jet breaks up with little
or no sign of it. At CA = 144◦ (Fig. 14) the organized charge
motion begin to dissipate since the fluid is not accelerated
any more. As shown before, CCV is at its maximum around
this crank angle position. The qualitative distribution of |ω|
is seen to change significantly among different snapshots
on Fig. 14: however, there is no recognizable pattern as in
the previous case. At BDC (Fig. 15) residual vorticity re-
sides mainly near the cylinder axis but the motion is highly
unorganized. After BDC the air is expelled from the cylinder
into the plenum, so there are no visible vortical structures
and streamlines are almost parallel to cylinder axis. This
can be inferred also by Fig. 16 which depicts vorticity con-
tour plots at CA = 270◦.

POD analysis

To conclude the investigation of LES results, a phase-
dependent POD analysis has been carried out. With the
snapshots method, the number of extracted modes equals
the number of saved timesteps; for a phase-dependend
POD this is, in turn, the number of simulated engine cy-
cles. By convention, modes are sorted in decreasing or-
der of energy content, i.e., decreasing eigenvalue. Phase-
dependent POD has been calculated on the whole domain,
thus including the plenum. This must be taken into account
when the results will be analyzed.

For the purposes of this section, only the first four modes
are presented, out of a total of ten. In Figs. 17-a, 17-c and
17-e, each mode eigenvalues are represented for each ve-
locity component, i.e. Ux, Uy, and Uz, respectively. In Figs.
17-b, 17-d and 17-f, the ratio ri,i+1 = ai/ai+1 between con-
secutive eigenvalues is displayed as well. This parameter
can be regarded as an indicator of the level of organiza-
tion of the flow: when ri,i+1 is high, most kinetic energy is
contained in first modes, whereas the remaining modes are
less energetic. On the contrary, when ri,i+1 ≈ 1 the energy

is evenly distributed between modes.
The trend of the curves of mode 1 in Figs. 17-a, 17-c, 17-e
reflects the variations of piston velocity. In fact, the curves
have absolute minima at dead centers and local maxima
around the middle of either the expansion and the compres-
sion stroke. Not surprisingly, due to the axisymmetric geom-
etry, graphs concerning ux and uy (respectively Figs. 17-a
and 17-c) are almost identical, whereas the curve related
to uz (Fig. 17-e) is shifted upwards, since the predominant
direction of the flow is aligned with the z- axis, especially in
the plenum region. In all graphs, the ratio r1,2 between the
first and the second eigenvalue is always significant, rang-
ing from a minimum value of 2 (e.g. at dead centers for x-
component) to a maximum of over 100 (e.g. at CA ≈ 270◦

for the z- component). On the contrary, the ratio between
eigenvalues of greater order is much lower, being always
comprised between 1 and 2. The first four modes extracted
for piston at TDC are represented in Fig. 18-a. The un-
organized character of the flow can be easily seen, since
no large-scale structures can be detected. This situation is
reflected by the low values of r1,2 in Figs. 17-b and 17-d.
However, since the flow has been pushed into the plenum,
originating a strong upward jet, the value of r1,2 related to uz

remains high. As the piston accelerates, and a jet is formed
under the valve, the level of organization increases, espe-
cially with respect to ux and uy. At CA = 90◦ the eigenvalue
ratios are higher, not only between the first two modes, but
also among successive ones. In contour plots of Fig. 18-b
the flow structures can be clearly recognized. Mode 1 has a
strong resemblance to mean flow field (compare with aver-
age streamlines, Fig. 5), while higher modes 2 and 3 show
smaller and smaller structures, that strongly remind the tur-
bulence cascade from large to small eddies. At CA = 144◦,
that corresponds to the maximum degree of CCV, the first
POD mode is still quite energetic, and its contour plot (Fig.
18-d) still has a strong affinity with the mean velocity field.
However, the second mode has a smaller eddy length scale,
with most part of energy concentrated in the jet shear layer.
In mode 3 some vortical structures can be recognized, that
were not in contours of mode 2. Both the main recircula-
tion region and the ring vortex under the cylinder head can
easily be detected. Finally, during the compression stroke,
most turbulent features have been advected into the plenum
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Figure 18: Magnitude of first four POD modes for varying crank-angles.

14



or dissipated by the upward motion of the piston. Thus, as
one might expect, the contour plots of velocity modes do
represent only small scales which almost have the same
level of energy.

Conclusions

The purpose of this work was to validate and assess the
capability of LES for predicting the turbulent behaviour of
a compressible flow field within a deforming geometry. A
simple engine-like geometry composed by a cylinder and
an axisymmetric, fixed valve has been modeled and simu-
lated by the CFD code OpenFOAM®-2.2.x. Extensions to
the official version of the software regarded mainly the de-
velopment of models for Large Eddy Simulation and of post
processing tools, such as for phase and space averaging of
fields and for the computation of phase-dependent POD.
The procedure presented proved to be accurate both in the
prediction of average quantities and turbulence dynamics,
while the LSR parameter proved to be reliable to identify if
the grid resolution was sufficient to resolve the main turbu-
lent scales of the engine. In particular, the analysis based
on LSR allowed to justify the discrepancy between the pre-
dictions and the experiments found at 90◦ CA degrees in
the shear layer, between the annular jet and the in-cylinder
region and on the liner walls where the jets impacts. Cycle-
to-Cycle Variability has been detected and the shear layer
instability in the jet coming from the valve section, especially
occurring at even cycles, has been shown. Finally, the POD
analysis allowed for separating the energetic scales of un-
steady motion, simplifying the study of turbulence evolution.
The resulting level of detail of the proposed approach allows
for a better insight on the unsteady phenomena occurring
inside the cylinder, thus opening the way to a deeper un-
derstanding of physical bases of CCV.
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