
 

Permanent link to this version 

http://hdl.handle.net/11311/787325 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
M. Carini, F. Giannetti, F. Auteri 
On the Origin of the Flip-Flop Instability of two Side-by-Side Cylinder Wakes 
Journal of Fluid Mechanics, Vol. 742, 2014, p. 552-576 
doi:10.1017/jfm.2014.9 
 
 
 
 
 
The final publication is available at https://doi.org/10.1017/jfm.2014.9 
 
Access to the published version may require subscription. 
 
 
 This article has been published in a revised form in Journal of Fluid Mechanics 
[https://doi.org/10.1017/jfm.2014.9]. This version is free to view and download for private 
research and study only. Not for re-distribution, re-sale or use in derivative works. © 2014 
Cambridge University Press 
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Under consideration for publication in J. Fluid Mech. 1

On the origin of the flip-flop instability of
two side-by-side cylinder wakes

M. Carini1, F. Giannetti2 and F. Auteri1†
1Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34,

20156 Milano, Italy
2Dipartimento di Ingegneria Industriale, Università degli studi di Salerno, via Ponte don
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In this work the flip-flop instability occurring in the flow past two side-by-side circular
cylinders is numerically investigated within the range of nondimensional gap spacing
0.5 < g < 1.4 and Reynolds number 50 < Re 6 90. The inherent two-dimensional flow
pattern is characterized by an asymmetric unsteady wake (with respect to the horizontal
axis of symmetry) with the gap flow being deflected alternatively toward one of the
cylinders. Such behaviour has been ascribed by other authors to a bi-stability of the
flow, and therefore termed flip-flop. On the contrary, the simulations performed herein
provide new evidence that at low Reynolds numbers the flip-flopping state develops
through an instability of the in-phase synchronized vortex shedding between the two
cylinder wakes. This new scenario is confirmed and explained by means of a linear global
stability investigation of the in-phase periodic base flow. The Floquet analysis reveals
indeed that a pair of complex-conjugate multipliers becomes unstable having the same
low frequency as the gap flow flip-over. The neutral curve of this secondary instability
is tracked within the above region of the parameter space. The spatio-temporal shape of
the unstable Floquet mode is then analyzed and its structural sensitivity is considered
in order to identify the ‘core’ region of the flip-flop instability mechanism.

Key words:

1. Introduction

The incompressible flow past two side-by-side circular cylinders represents one of the
prototypical flow configurations that has been widely used to investigate interference phe-
nomena in bluff-body wakes (Zdravkovich 1977). For such configuration it is well known
that different flow regimes can occur depending on the value of the nondimensional gap
spacing between the two cylinder surfaces g = g∗/D (see figure 2) and the Reynolds num-
ber Re = U∗

∞
D∗/ν, where U∗

∞
denotes the free-stream velocity, D∗ the cylinder diameter

and ν the kinematic viscosity, see Sumner (2010) for a recent review. When g & 5, the
flow interference between the wakes becomes negligible while for 1 − 1.2 . g . 5 simul-
taneous vortex shedding takes place either in phase or phase opposition. Besides these
synchronized patterns, asymmetric flow states have also been observed within the inter-
mediate range 0.2 . g . 1.2. These states are characterized by a deflected gap flow with
the formation of a narrow and a wide wake. More precisely, a narrower wake is formed
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behind the cylinder toward which the gap flow is deflected. The narrow wake is associ-
ated with a higher drag coefficient and a higher vortex shedding frequency than those
associated with the wider wake. In some cases the gap flow is found to switch randomly
between the two opposite directions describing the so called flip-flopping behavior.
The switch over of the gap flow deflection has been observed both in experiments

(Bearman & Wadcock 1973; Kim & Durbin 1988; Sumner et al. 1999; Zhou et al. 2002)
and numerical simulations (Kang 2003; Chen et al. 2003; Afgan et al. 2011). In their
experimental investigations at g = 0.75 and Re = 2 − 7 × 103, Kim & Durbin (1988)
found that the time scale of the flip-flop is several orders of magnitude greater than that
of vortex shedding and a sharp transition between the two asymmetric states has been
documented by means of the base pressure signals. Still within the turbulent regime,
similar features of the flip-flop behaviour have been reported in the experimental work
of Zhou et al. (2002) (g = 0.5, Re = 5800) and by Afgan et al. (2011) (0.25 < g < 0.75,
Re = 3000) who performed large eddy simulations of the two-cylinder flow. In particular
a detailed analysis of the switching process was presented by Afgan et al. (2011), showing
that, during the flip-over, an approximately in-phase vortex shedding occurs behind the
two cylinders.
At low Reynolds numbers, the asymmetrical regime has been experimentally investi-

gated by Williamson (1985) using flow visualizations: two different harmonic modes were
identified for Re < 200 and g < 1 and the related vortex dynamics accurately described.
In the first harmonic mode, also termed fundamental mode, inner vortices that form on
the gap side of the two cylinders are squeezed and amalgamated into the stronger vor-
tices shed from the outer shear layers and a single von Kármán street is soon formed
downstream. This is depicted in the sketch reported in figure 1 with the configuration
of the narrow and wide wakes corresponding to an upward gap flow deflection. In the
second harmonic mode the near-wake is characterized by a double vortex street on one
cylinder side and a single vortex street on the outer side of the other cylinder, toward
which the gap flow is deflected. In analogy with the fundamental mode, gap vortices are
distorted and entrained into the thin wake.
The same vortex dynamics that characterizes the fundamental mode, along with the

gap flow flip-over, has been observed experimentally by Wang et al. (2002) at g = 0.7
for 150 6 Re 6 750. In this work the changeover of the gap flow direction is thoroughly
described by tracking the gap vortices through a sequence of flow snapshots. In particular,
the authors show that the changeover phenomenon is associated with the occurrence of
unusually large gap vortices. Conversely, in his work, Williamson (1985) indicates that the
vortex merging process occurs predominantly on one side of the wake without explicitly
mentioning any flip-flopping behaviour. Based on the available information, the origin of
this possible discrepancy is not clear: it could be due for instance to a slight asymmetry
in the experimental apparatus.
The occurrence of the flip-flopping regime has also been investigated by Kang (2003)

exploiting two-dimensional direct numerical simulations (DNS) of the flow. A complex
asymmetric pattern was found to occur for 0.4 . g . 1.5 and 50 < Re 6 160: both
cylinders are characterized by alternate and irregular slow variations of the drag coeffi-
cient that have been related by Kang (2003) to the alternate deflection of the gap flow.
Differently from what has been reported for high Re, a smoother flip-over transition
with a characteristic time scale only one order of magnitude greater than that of vortex
shedding has been observed by this author.
The flip-flopping regime has been often interpreted as a bistable condition between

two dual asymmetric flow states. In their work, Peschard & Le Gal (1996) have proposed
a system of two coupled Landau oscillators to model the dynamics of the considered
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Figure 1. Skecth of the biased gap flow pattern and related vortex dynamics characterizing
the near wake of two side-by-side cylinders during the flip-flopping regime.

flow. In particular, among the other regimes, the model was able to reproduce a bistable
locked state thus establishing a clear analogy to the flip-flopping behaviour. More recently
the bi-stability conjecture has been further supported by Mizushima & Ino (2008) who
performed a linear global stability analysis of the steady symmetric base flow at very low
Reynolds numbers. In their work, in addition to the in-phase and anti-phase harmonic
modes documented by Akinaga & Mizushima (2005), a steady anti-symmetric mode was
described. More precisely, this mode was found responsible for the steady deflection of the
gap flow owing to a pitchfork bifurcation occurring at Re ∼ 55 and within a very narrow
range of gap spacing, i. e. 0.594 6 g 6 0.607. Based on these results, the two authors
conjectured that the gap flow switch-over may be interpreted as a transition between
two dual asymmetric oscillatory flow states originating as secondary instabilities on the
corresponding steady deflected flow. The authors affirm that “Both the oscillatory states

are also stable so that there exists a barrier between the two states. However, the barrier

is easily overcome due to fluctuations which always exist in the flow field”. Accordingly,
a stochastic framework can be used to characterize the flip-flop, similarly to what has
been done by Kim & Durbin (1988) who showed that at high Reynolds numbers the time
interval between two subsequent flip-overs follows a Poisson distribution.
Despite several investigations of the flip-flopping regime, a clear understanding of its

origin is still lacking, thus motivating the present work. We first investigate the flip-flop
instability by means of two-dimensional DNS of the flow for g = 0.7 and Re 6 90.
The selected value of the gap width is indeed consistent with the occurrence of the
flip-flopping behaviour documented in the previously cited experimental and numerical
works. Starting from the unstable symmetrical base flow, the herein performed DNS
analysis indicates that the flip-flop develops as a secondary instability of the two cylinder
wakes from the in-phase synchronized vortex shedding. This motivates a two-dimensional
Floquet stability analysis of the in-phase limit cycle aimed to confirm and explain the
new transition scenario. Starting from the results at g = 0.7, the stability analysis is
then extended to an interval of gap spacing 0.5 < g < 1.4, tracking the neutral curve
associated with the unstable Floquet mode. In order to investigate the region of the
flow which is responsible for the onset of the flip-flop instability, a structural sensitivity
analysis of the unstable Floquet mode is also performed following the approach recently
introduced by Giannetti et al. (2010).
The work is organized as follows. The flow configuration and the governing equations

are introduced in §2 where the structural sensitivity theoretical background is also shortly
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Figure 2. Sketch of the computational domain Ωc employed for numerical investigations of
the flow past the two circular cylinders in side-by-side arrangement.

recalled. The employed numerical procedures are summarized in §3. DNS results are pre-
sented in §4: both the transient evolution to the flip-flopping state and its fully developed
vortex dynamics are described. Then the stability results are introduced in §5. In partic-
ular, §5.1 is devoted to the base flow analysis while in §5.2 the curve of neutral stability is
tracked in the parameter plane. Direct and adjoint eigenfunctions are illustrated in §5.3,
while the related structural sensitivity is examined in §5.4. Finally, some conclusions are
drawn in §6.

2. Mathematical formulation

The two-dimensional flow past two side-by-side circular cylinders of equal diameter
is described using a Cartesian coordinate system which is illustrated in figure 2. The
two cylinder centres are aligned on the y axis and symmetrically placed with respect
to the x axis which is oriented as the free stream. As already mentioned, this flow
configuration is completely described by two parameters: the Reynolds number Re and
the non-dimensional gap spacing between the two cylinder surfaces g. The fluid motion,
in the unbounded domain Ω, is governed by the unsteady incompressible Navier–Stokes
equations which are made dimensionless using the cylinder diameter D∗, the velocity of
the incoming stream U∗

∞
and the constant density ρ∗:











∂U

∂t
+ (U ·∇)U = −∇P +

1

Re
∇2U ,

∇·U = 0,

(2.1)

where U denotes the velocity vector with components U = (U, V ) and P is the re-
duced pressure. The above set of equations is supplemented by no-slip conditions on
solid boundaries while in the far field the flow is assumed to asymptotically approach the
incoming uniform stream.
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2.1. Floquet analysis

In the present investigation we are interested in the linear stability analysis of the in-phase
synchronized vortex shedding of the two cylinder wakes with respect to two-dimensional
disturbances. Following the classical approach of Floquet theory (Coddington & Levin-
son 1955; Bittanti & Colaneri 2009; Drazin 2002), the total flow field Q = {U , P} is
decomposed into the sum of a time-periodic base flow Qb = {U b, Pb} of period T (cor-
responding to the in-phase shedding cycle which is a solution of equations (2.1)) and a
small unsteady perturbation:

U(x, y, t) = U b(x, y, t) + ǫu(x, y, t),

P (x, y, t) = Pb(x, y, t) + ǫp(x, y, t),
(2.2)

ǫ ≪ 1 being the disturbance amplitude, and u and p being the velocity and pressure
disturbances, respectively. Within the Floquet stability analysis framework, the linearized
flow field q = {u, p} is further assumed to have the following form:

q(x, y, t) = q̂(x, y, t) exp(σt), (2.3)

where σ ∈ C is the Floquet exponent while q̂ = {û, p̂} denotes a non trivial, periodic,
complex-valued field having the same period T as the base flow. By introducing (2.2) in
(2.1) with the ansatz (2.3) and after dropping nonlinear terms in ǫ, it easy to verify that
q̂ satisfies the following form of the linearized Navier–Stokes equations (LNSEs):











∂û

∂t
+ σû + L{Ub,Re}û+∇p̂ = 0,

∇· û = 0,

(2.4)

where L{U b,Re} stands for the linearized Navier–Stokes operator :

L{U b,Re}û = (U b ·∇)û+ (û ·∇)U b −
1

Re
∇2û. (2.5)

The above equations are completed by homogeneous boundary conditions on the solid
walls, by appropriate far-field radiation conditions (see Giannetti & Luchini 2007) and
by the time periodicity constraint for q̂. An eigenvalue problem is thus obtained: the flow
is linearly unstable at a given Reynolds number if at least a non-trivial solution of (2.4)
exists such that the norm of the associated Floquet multiplier µ = exp (σT ) is greater
than 1 or, equivalently, if the real part of the associated Floquet exponent λ = Re(σ) > 0.

2.2. Adjoint equations and structural sensitivity

Besides the Floquet modes q̂(x, y, t), in this paper we will make use of properties of the
solution of the adjoint eigenvalue problem. In particular it is assumed that the form of the

flow field adjoint to q(x, y, t) is g+(x, y, t) = ĝ
+(x, y, t) exp (−σt), where ĝ+ = {f̂

+

, m̂+}
is periodic in time with the same period T as the base flow. The adjoint modes therefore
satisfy the following set of equations















∂f̂

∂t

+

− σf̂
+

+ L+{Ub,Re}f̂
+

+∇m̂+ = 0,

∇· f̂
+

= 0,

(2.6)

with homogeneous boundary conditions on the cylinder surfaces, appropriate radiation
conditions in the far field and the periodicity constraint for ĝ+ in time. We refer to Gian-
netti et al. (2010) and Luchini et al. (2007) for the derivation of (2.6) and a discussion on
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the appropriate far-field conditions. The adjoint Floquet mode can be employed to study
the receptivity of the direct Floquet mode to external forcing or to initial conditions (see
Chomaz 2005 and Giannetti & Luchini 2007). In order to identify the regions of the flow
where the instability mechanism develops, we resort here to the same approach employed
by Giannetti et al. (2010) and Camarri & Giannetti (2010) to study the secondary in-
stability of the isolated cylinder wake. This method provides indeed a generalization to
periodic base flows of the wavemaker concept introduced by Giannetti & Luchini (2007)
within a global framework and successively used in many studies to better understand
the nature of the global instabilities arising in different geometries and settings and to
develop appropriate passive and active strategies to control them (see, among others,
Marquet et al. 2008, Giannetti et al. 2009, Marino & Luchini 2009, Meliga et al. 2010,
Pralits et al. 2010, Camarri & Iollo 2010 and Ilak et al. 2011 for cases involving Newtonian
fluids and Lashgari et al. 2012, Haque et al. 2012 for examples involving non-Newtonian
fluids). In particular, using a similar procedure, a structural perturbation of the Floquet
eigenproblem is carried out with the aim of determining the region of the flow having
the role of ‘wavemaker’ in the excitation of the considered global instability. For such
purpose a localized structural perturbation of the linearized momentum equation in (2.4)
is considered. Indicating with LHS the left-hand side of the first equation of (2.4), such
perturbation is assumed to have the following form:

LHS = δ(x − x0, y − y0)C0 · û, (2.7)

where C0 is a generic constant (feedback) matrix, the symbol “ · ”stands for the matrix–
vector product, (x0, y0) are the coordinates of the point where the feedback acts and
δ(x, y) denotes the Dirac delta function. This form of the structural perturbation is in-
deed appropriate to locate the region of the flow which is more sensitive to a feedback
from the velocity field and therefore where the instability mechanism is active, i.e. the
core of the instability (Giannetti et al. 2010). It is important to note that such analysis is
not sufficient per se to explain the physical process underlying the flow instability. Nev-
ertheless it provides useful information to understand and control it. More precisely, in
order to develop effective control strategies using passive devices such as for instance the
splitter plate studied by Kim & Durbin (1988), the structural sensivity to modifications
of the periodic base flow could be examined as well (Marquet et al. 2008). However, the
control of the flip-flopping gap flow is beyond the scope of the present investigation and
therefore the structural sensitivity to base flow modifications has not been considered
here.
By carrying out a perturbation analysis of the variation of the eigenvalue σ caused by

the structural perturbation (2.7), using the properties of the adjoint velocity field f̂
+

,
we obtain that δσ = C0 : S(x0, y0) where the symbol “ : ”stands for double contraction
of the indices and S is the sensitivity tensor of the Floquet mode defined as

S(x, y) =

∫ T+t

t

f̂
+

(x, y, t)û(x, y, t) dt

∫ t+T

t

∫

Ω

f̂
+

· û dΩ dt

. (2.8)

In the above expression, the notation f̂
+

û indicates the dyadic product between the
direct and the adjoint eigenvectors. It is worthwhile to observe that the definition of
the sensitivity tensor is independent of the particular feedback process which is indeed
specified through the entries of the gain matrix C0. Thus the expression (2.8) can be
used to investigate the effects of a generic force-velocity coupling which is localized in
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Figure 3. Flow field vorticity snapshot during in-phase synchronized vortex shedding at
g = 1.5 and Re = 100.

space. Besides the inspection of the different components of the sensitivity tensor, a
more concise way to extract relevant information from S is to choose a norm and build
a spatial sensitivity map, plotting at each spatial point the value ‖S(x, y)‖. Different
norms can be employed on purpose: here the spectral norm is used (i.e. the square root
of the maximum eigenvalue of AHA, AH being defined as the conjugate transpose of
the square matrix A) to study the sensitivity of the Floquet exponent to a force-velocity
coupling in which the force is oriented in the worst possible direction. By examining the
corresponding sensitivity map it is possible to locate flow regions that are responsible
for the largest drift of the Floquet exponent and thus for the arising of the instability
mechanism. In addition, in order to recover phase information, a time impulsive form

of the structural perturbation of the form

LHS = δ((t mod T )− t0)δ(x − x0, y − y0)C0 · û, (2.9)

can be also considered, where the time instant t0 corresponds to the precise phase at which
the structural perturbation is impulsively applied. The resulting drift of the Floquet
exponent σ is then given by δσ = I(x0, y0, t0) : C0 where I denotes the instantaneous
sensitivity tensor defined as

I(x, y, t) =
f̂

+

(x, y, t)û(x, y, t)
∫ t+T

t

∫

Ω

f̂
+

· û dΩ dt

. (2.10)

More details on the derivation and use of the above equations can be found in Giannetti
et al. (2010) and Luchini et al. (2008).

3. Numerical approach

The DNS of the two-dimensional Navier–Stokes equations (2.1) and the related Floquet
stability analysis are carried out on the rectangular computational domain Ωc which is
illustrated in figure 2. In both cases the governing equations are spatially discretized
using a standard second order finite difference scheme on Cartesian staggered grids.
An immersed boundary technique is employed to simulate the cylinder surfaces while
preserving the second order accuracy of the spatial discretization (see Giannetti & Luchini
2007 for further details). At the outlet boundary Γout the fully nonlinear equations are
supplemented with the boundary conditions −P + 2Re−1∂U/∂x = 0 and ∂V/∂x = 0.
Both at the inlet Γin and at the side boundaries Γtop and Γbottom, the vorticity is set to
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C̄D C′

L St

Kang (2003) 1.434 0.271 0.164

Present (M0) 1.409 0.262 0.163

Present (MF ) 1.408 0.266 0.163

Table 1. Comparison of DNS results for the in-phase synchronized vortex shedding regime at
g = 1.5 and Re = 100, being C̄D the mean drag coefficient, C′

L the maximum amplitude of the
lift coefficient fluctuations and St the Strouhal number. Due to vortex shedding synchronization,
all these quantities assume the same value for both cylinders.

zero and the flow perturbation produced by the two cylinders on the uniform stream is
assumed to decay to zero as the leading term in the potential flow around them. More
precisely, on Γin the boundary condition U = 1 + a/r is imposed, where r is the radial
distance from the origin while a denotes a scalar constant whose value is automatically
determined within the numerical procedure. Similarly, on Γtop and Γbottom the boundary
condition V = b/r holds, with the constant b being again implicitly assigned. To compute
the Floquet mode, the above boundary conditions are applied with homogeneous data.
The resulting semi-discretized equations, both for the base flow and the stability analysis,
are advanced in time by the hybrid third-order Runge-Kutta/Cranck-Nicolson scheme of
Rai & Moin (1991): both the diffusive terms and the pressure field are treated implicitly
while the convective terms are treated explicitly. Thus fro each temporal sub-step a
Stokes-like operator is numerically inverted using the sparse LU solver provided with the
free software package UMFPACK (Davis 2004).
The computation of the adjoint Floquet mode is here performed resorting to a dis-

crete adjoint approach. This is achieved in practice by applying the adjoint procedure to
the linearized problem at the code level: in this way the proper boundary conditions for
the adjoint problem are accounted for automatically. Both the direct and adjoint dom-
inant Floquet modes are then computed making use of the ARPACK library (Lehoucq
et al. 1998): forward/backward time marching (over one period) of the direct/adjoint
discretized equations are employed to extract the dominant eigenmodes. As expected,
due to the employed discrete adjoint formulation, the obtained Floquet multipliers for
the direct and adjoint problems are coincident to machine precision.
The results presented in this work have been computed within the range of gap spacing

0.5 < g < 1.4 and Reynolds number 50 < Re 6 90. All the results have been calculated
on a domain Ωc of length Lx = 125 in the streamwise direction and Ly = 100 in the
cross-stream direction. The inlet, the outlet and the lateral boundaries are located at a
distance from to origin equal to Lin = 50, Lout = 75 and Ls = 50, respectively. The whole
computational domain is discretized using 430 × 450 nodes with grid points clustered
near the cylinder surfaces. More precisely, a uniform mesh with the finest grid spacing of
∆x = ∆y = 0.02 is employed within the small rectangular subdomain [−1, 1]× [−2.5, 2.5]
enclosing the two cylinders. Such grid will be referred to as M0. In addition a finer mesh
MF with a similar structure was setup for convergence studies, consisting of 700 × 800
points with a minimum grid spacing of ∆x = ∆y = 0.01
For time integration, a non-dimensional step of∆t = 0.03 is employed, which is reduced

to ∆t = 0.015 when using the MF grid. In order to validate the adopted spatio-temporal
discretization a comparison of the computed DNS results with those reported by Kang
(2003) for selected values of the governing parameters is summarized in table 1. These
DNS have been perfomed setting g = 1.5 and Re = 100 for which an in-phase synchro-
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Figure 4. DNS results of the flow evolution from the steady base flow to the flip-flopping regime
for g = 0.7 and Re = 90, (a,b) or Re = 68.8, (c,d). Pictures (a,c) show the time traces of the drag
coefficient: black and gray lines correspond to forces acting on cylinder 1 and 2, respectively.
The gray shaded area in picture (c) denotes the time window associated with the appearance
of the in-phase vortex shedding cycle during the transient state. Figures (b,c) illustrate the
spectral content of the lift coefficient fluctuations during the fully developed flip-flopping regime
for t ∈ [600, 3000] (Re = 90) (b), and t ∈ [1800, 3000] (Re = 68.8) (d).

nized vortex shedding of the two wakes is found: the inherent flow pattern is illustrated
in figure 3. Both the aerodynamic coefficients and the Strouhal number St show good
agreement with the values reported by Kang (2003): the small discrepancies affecting
C̄D and C′

L can be mainly ascribed to the slightly different formulation of the external
boundary conditions and to the different immersed boundary technique as well as to the
greater Lout size of the rectangular domain, the outlet distance employed by Kang (2003)
being Lout = 30.

4. DNS results

Several numerical simulations have been performed for g = 0.7 while varying the
Reynolds number within the considered range of values. All simulations have been ini-
tialized with the corresponding symmetric base flow which was previously computed by
solving the steady version of (2.1) with standard Newton iterations. For the considered
values of Re and g, the global stability analysis of the steady base flow has shown that
two distinct unstable modes exist (Mizushima & Ino 2008). The first mode is steady and
anti-symmetric (AS) and it has been found responsible for the occurrence of an asymmet-
ric steady solution which is characterized by a deflected gap flow. On the other hand the
second mode, called in-phase mode (IP), is oscillatory and is responsible for the onset of
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Figure 5. Details of CL,1−2 and CD,1−2 time traces for g = 0.7 and Re = 68.8 (see figure 4).
(a,c) Development of the flip-flop instability from the in-phase vortex shedding limit cycle. (b,d)
Fully developed flip-flopping regime: round dots are used in figure (d) to mark the shedding
phases associated with the vorticity snapshots reported in figure 7 while dashed vertical lines
approximately indicate two subsequent gap flow flip-overs corresponding to the squared dots in
figure 6(b).

the in-phase synchronized vortex shedding. Given the adopted numerical discretization
and choice of the initial conditions, the primary flow instabilities are triggered only by
round-off errors. Time traces of lift and drag coefficients have been used to monitor the
dynamical evolution of the flow in order to shed light on the instability cascade leading to
the flip-flopping behaviour. Two representative examples of such analysis are illustrated
in figure 4 for Re = 90 and Re = 68.8.
At Re = 90, a rapid transition from the steady state to the flip-flopping regime, not

shown here, occurs. During the transient, nearly periodic oscillations are established
only for a few shedding cycles while periodicity is lost when the flip-flopping regime
develops, showing a rather irregular behavior of the force signals, as shown in figure 4(a).
In particular, in addition to oscillations of the aerodynamic forces induced by vortex
shedding, both cylinders experience alternate turns of the CD over a time scale that
is appreciably greater than that of the shedding process. The same behavior has been
described by Kang (2003) and associated to the alternate deflection of the gap flow
based on the analogy with the high Reynolds number case. The complexity of the flip-
flop dynamics at Re = 90 is confirmed by inspecting the spectral content of the lift
fluctuations which is depicted in figure 4(b) in terms of the Strouhal number St. Despite
the broadband nature of the spectra, two relevant frequency ranges can be distinguished:
a low frequency band for St . 0.05 and a dominant-frequency range for 0.05 . St . 0.23
smeared around two main peaks at St = 0.12 and St = 0.155. When the Reynolds
number is reduced to Re = 68.8 the dynamical evolution toward the flip-flop can be
better understood. Starting from the steady state solution, the flow state evolves first to
a saddle limit cycle which corresponds to the in-phase vortex shedding and then to the
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Figure 6. Time history of the cross-stream velocity component V (xp, yp, t) at (xp, yp) = (0.5, 0).
(a) In-phase vortex shedding limit cycle at Re = 61.6 and g = 0.7. (b) Fully developed flip-flop-
ping regime at Re = 68.8 and g = 0.7: black and gray round dots refer to vorticity snapshots
in figure 7 (see also figure 5) while the two square dots approximately indicate two subsequent
switching phases of the gap flow deflection.

flip-flopping regime. The periodic solution is established over an interval of 250 time units
(≈ 29 periods) until an instability develops on the limit cycle itself leading to the flip-flop.
Both this transition and the fully developed flip-flopping state are more clearly illustrated
in figure 5. The transition to the flip-flop occurs smoothly as a slow modulation of the
force signals. Lift signals in figure 5(d) are no more in phase or in phase opposition but are
generally out of phase, showing a characteristic beating like waveform. Correspondingly,
vortex shedding induced fluctuations of drag signals are superimposed to a slow carrier
which is approximately in anti-phase between the two cylinders. The relationship between
the slow variations of the drag coefficients and the gap flow deflection is herein confirmed
by probing the cross stream component of the velocity field at (xp, yp) = (0.5, 0). The
sign of V (xp, yp, t) can be assumed indeed as an indicator of the gap flow direction and its
time history is illustrated in figure 6. When in-phase vortex shedding occurs (Re = 61.6),
figure 6(a), gap flow oscillations are periodic and synchronized to the shedding frequency,
as one would expect. Instead, during the flip-flopping regime (Re = 68.8), figure 6(b), the
sign of V (xp, yp, t) changes according to the same low frequency oscillation which affects
the drag coefficients. Thus the gap flow remains weakly deflected toward one cylinder side
for more than one shedding cycle. According to the signal of figure 6(b), the flip-over
time instants (square dots) approximately correspond to the phase at which the drag
coefficient fluctuations change sign, dashed vertical lines in figure 5(b).
The spectral content associated with the flip-flopping regime at Re = 68.8 is illustrated

in figure 4(d). In this case the computed spectrum clearly exhibits three well defined
peaks showing a clear analogy with the results obtained at Re = 90. More precisely, a
low frequency peak is found at St1 = 0.0193 while two dominant peaks are observed at
St2 = 0.1119 and St3 = 0.1312. The dominant harmonic at St2 represents the in-phase
vortex shedding frequency for which St = 0.1139 during the periodic transient. The peak
at St1 is found to correspond to the slow oscillation of the gap flow and force coefficients.
Furthermore the value of St1 seems consistent with that of St = 0.018 found by Kang
(2003) at Re = 100 and g = 1.0. At this point it is worthwhile to observe that the
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harmonic component at St3 can be interpreted as a result of the nonlinear interaction
between the former two modes, since St3 = St1 + St2.
The flip-flopping vortex dynamics at Re = 68.8 is illustrated in figure 7 by means of

vorticity snapshots at subsequent time instants during the vortex shedding and flip-flop
processes. More precisely, the snapshots on the left- and right-hand columns of figure 7
approximately correspond to the same shedding phases but with an opposite deflection
of the gap flow. This is better highlighted by the associated gray/black round markers in
figure 5(d) and 6(b). The flow behind the two cylinders is clearly asymmetrical with the
formation of a narrow and a wide wake according to the direction of the gap flow. Moving
downstream, a single large scale vortex street is soon formed from the outer shear layers
due to the biased merging process of the inner vortices. This is well described by the
sequence of figures 7(a,b,c,d) when the gap flow is deflected downwards. Indeed during
one shedding cycle both counter-rotating inner vortices are weakened and amalgamated
on the upper side of the wake with a mechanism which appears very similar to the vortex
dynamics observed by Wang et al. (2002) and to the asymmetric fundamental shedding
mode described by Williamson (1985) at g = 0.85 and Re = 200. Specular dynamics are
observed in figures 7(f,g,h,i) where the gap flow is directed downward and the gap vortices
are merged on the lower side of the large scale vortex street. The snapshots reported
in figure 7(e,l) approximately correspond to the phase where the gap flow changes its
deflection, as marked in figure 6(b) by squared dots. As reported by Wang et al. (2002),
when the switchover occurs quite large vortices detach from the gap shear layers. In
addition, as can be also observed in the experimental visualizations in the same paper
(figure 7), these larger gap vortices are remarkably convected up to the symmetry axis.

5. Stability and sensitivity results

The DNS results presented in §4 suggest that at low Reynolds numbers the flip-flopping
state originates through an instability of the in-phase synchronized vortex shedding.
To the authors knowledge this transition scenario has not been described in the past
literature where, on the contrary, the flip-flop is often interpreted as the bistable interplay
of two dual asymmetric states. These new results have motivated the following linear
stability and sensitivity investigation of the time periodic in-phase vortex shedding within
the theoretical framework introduced in §2.

5.1. Periodic base flow

The in-phase synchronized vortex shedding of two side-by-side cylinder wakes has been
described by several authors (Williamson 1985; Sumner et al. 1999; Kang 2003). At low
Reynolds numbers, this flow pattern has been mainly observed in the range 1.5 . g . 5
along with the dual anti-phase pattern (Kang 2003). However, differently from this latter
case, the idealized symmetrical double vortex street configuration is not stable and a
single large scale vortex street is instead realized. The inherent vortex dynamics has been
accurately described byWilliamson (1985): like-signed vortices shed at the same time pair
up, merge and rotate around each other leading to the formation of the so called binary

street. An example of such transition is represented in figure 3 by a vorticity snapshot
of the computed flow field at Re = 100 and g = 1.5. When reducing the gap width to
g = 0.7, the resulting in-phase pattern appears still characterized by the formation of a
single large scale vortex street, but the underlying vortex dynamics is different from the
one described by Williamson (1985). This is illustrated in figure 8 where the in-phase
shedding cycle at Re = 61.6 has been represented at different shedding phases φ. During
one period each small gap vortex is entrained between two subsequent big vortices shed
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Figure 7. Flow field vorticity snapshots of the fully developed flip-flopping regime at g = 0.7
and Re = 68.8. Black round dots are used in figure 5(d) and 6(b) to mark shedding phases
corresponding to snapshots (a), (b), (c) and (d) for which a weakly downward deflected gap
flow is observed. Similarly, snapshots (f), (g), (h) and (i) correspond to the gray dots in figure
5(d) and 6(b). Here the gap flow is deflected upward. The snapshots reported in figure (e) and
(l) correspond to the red square dots in figure 6(b) where the gap flow deflection switches from
downward to upward and viceversa, respectively.
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Figure 8. Vorticity snapshots of the periodic base flow for g = 0.7 and Re = 61.6. Different
shedding phases φ among the eight in which the base flow has been equally divided are reported
(see also figure 9): (a) φ = π/2; (b) φ = π; (c) φ = 3π/2; (d) φ = 2π.
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Figure 9. In-phase vortex shedding limit cycle for g = 0.7 and Re = 61.6. (a) Lift coefficient
fluctuations ∆CL = CL(t) − C̄L for cylinder 1 (black lines) and cylinder 2 (gray dashed lines):
black dots are employed to mark shedding phases corresponding to the vorticity snapshots in
figure 8. (b) Strouhal number of the periodic base flow Stb at increasing Reynolds numbers in
the neighborhood of the flip-flop critical threshold: black filled dots denote the unstable periodic
solutions.

from the outer shear layer on the opposite cylinder side. Thus gap vortices are merged
on opposite sides of the outer large scale street. The in-phase synchronization of the
shedding process is confirmed by comparing the time traces of the two lift coefficient
fluctuations ∆CL,1−2 which are shown in figure 9(a).
The T -periodic in-phase flow obeys a reflectional symmetry about the x-axis when time

is advanced of T/2: this is clearly highlighted by selected shedding phases in figure 8.
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Figure 10. Periodic base flow stabilization for g = 0.7 and Re = 62. Base flow Strouhal number
Stb = 1/T , (a), and infinity norm of the residual on the periodicity condition ‖r‖∞, (b), both
plotted as a function of the number of iterations n.

The same spatio-temporal symmetry has been found to characterize the two-dimensional
wake past a single cylinder and following Robichaux et al. (1999) this symmetry is called
reflectional-translation (RT):

{

U(x, y, t) = U(x,−y, t+ T/2),

V (x, y, t) = −V (x,−y, t+ T/2).
(5.1)

In order to perform a Floquet analysis of the in-phase shedding cycle, the inherent peri-
odic base flow has been computed for different values of Re and g based on a preliminary
DNS analysis. In figure 9(b), for instance, the base flow Strouhal number Stb is plotted
in the neighbourhood of the critical flip-flop threshold for g = 0.7 as a function of Re.
As expected, the shedding frequency varies almost linearly and compares well with the
frequency StIP of the unstable in-phase mode: for Re = 61.8, Stb = 0.111 is found while
StIP = 0.1057.
It is worthwhile to note that above the critical flip-flop threshold, the in-phase base

flow cannot be simply recovered by means of standard DNS and a stabilization algorithm
is needed to compute the periodic orbit. In order to stabilize the periodic orbit, several
techniques can be adopted. A quite standard approach is the one proposed by Lust et al.
(1998) which relies on the Recursive Projection method (Shroff & Keller 1993). Another
possibility is to use the Selective Frequency Damping method proposed by Åkervik et al.

(2006) (see also Viaud et al. 2011), provided that the frequency of the periodic base flow
is well separated from the frequency of the unstable mode, as in the present case. In
this paper a different approach has been used for convenience. Basically our stabilization
technique relies on a novel algorithm inspired by the Iterant Recombination method to
accelerate fixed point iterations by correcting the next iteration with a linear combination
of the previous ones (Trottenberg et al. 2001; Luchini 2011). This algorithm is similar to
a GMRES, but it is able to update with continuity the subspace of vectors used to get
the new estimate. The present method works in presence of both steady and unsteady
bifurcations and it has been already used in conjunction with a three-dimensional multi-
grid solver to study the imperfect bifurcation arising in the flow over a rotating sphere
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Figure 11. Floquet exponent σ as a function of Re in the neighborhood of the critical
threshold. (a) Growth-rate λ = Re(σ). (b) Strouhal number StF = Im(σ)/2π.

(Giannetti et al. 2012). As an example of the effectiveness of such stabilization procedure,
figure 10(a) illustrates the convergence history of Stb for the unstable periodic base flow
computed at Re = 62 and g = 0.7, n being the number of iterations. During the iterative
process, each step involves the time integration of equations (2.1) until an ad-hoc scalar
surrogate of the periodicity condition U b(t+T ) = U b(t) is satisfied. Non-periodic pertur-
bations affecting the resulting flow field are then damped by the stabilization algorithm.
The trend of the residual associated with the periodicity condition r = U b(t+T )−Ub(t)
is shown in figure 10(b) by means of its infinity norm, ‖r‖∞: for the considered case 65
iterations are required to achieve ‖r‖∞ < 10−9.

5.2. Neutral stability curve

Based on the DNS results, the Floquet analysis of the in-phase shedding cycle has been
started for g = 0.7 in the narrow range 61 6 Re 6 62 with step increments of 0.2.
Obtained results indicate that a single pair of complex-conjugate Floquet multipliers
becomes unstable above the critical threshold of Rec ∼ 61.74. Both the growth rate
λ = Re(σ) and the nondimensional frequency StF = Im(σ)/2π of the unstable Floquet
exponent are shown in figure 11 as a function of Re. Moreover the Floquet spectrum
computed for Re = 67 and Re = 80 is shown in figure 12(a) and (b), respectively.
As it is evident from the figure, no other modes become unstable by increasing the
Reynolds number up to Re = 80. The frequency StF of the unstable Floquet mode
compares well with the value St1 detected from the DNS analysis at Re = 68.8, figure
4(d), thus confirming that the origin of the flip-flopping instability is a torus (Neimark-

Sacker) bifurcation of the in-phase shedding cycle. The results obtained from the Floquet
analysis for g = 0.7 are summarized in table 2. Starting from these results, the critical
Reynolds number threshold associated with the unstable Floquet mode has been tracked
as a function of the gap spacing in the range 0.5 < g < 1.4. The resulting neutral curve
is depicted in figure 13 where the neutral curve of the IP mode is also reported. The
domain of instability, highlighted by the gray shaded area in the figure, reproduces very
well the parameter region where the flip-flop has been observed by Kang (2003). Also
shown in figure 13 are the nondimensional frequencies associated with both the base
flow, figure 13(b), and the unstable Floquet mode, figure 13(c), as a function of the gap
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Figure 12. Floquet spectrum computed for two values of Reynolds number above the critical
flip-flop threshold at g = 0.7: (a) Re = 67. (b) Re = 80. In each figure 50 multipliers are
reported. The cross is used to denote the unitary multiplier lying on the unit circle, while the
two unstable complex-conjugate multipliers lie outside the unit circle.

Re Stb Re(σ)× 10−3 Im(σ)/2π C̄D C̄L C′

D × 10−2 C′

L

61.0 0.11008 −7.3640 0.019085 1.4776 0.3932 0.8243 0.05431

61.2 0.11032 −5.2779 0.019479 1.4774 0.3929 0.8464 0.05611

61.4 0.11056 −3.2654 0.019861 1.4772 0.3926 0.8677 0.05789

61.6 0.11079 −1.3193 0.020229 1.4769 0.3923 0.8883 0.05964

61.8 0.11102 0.5689 0.020586 1.4766 0.3920 0.9082 0.06136

62.0 0.11125 2.4049 0.020932 1.4763 0.3916 0.9275 0.06306

Table 2. Results of the Floquet stability analysis close to the flip-flop threshold and
aerodynamic coefficients of the corresponding periodic base flow for g = 0.7.

spacing moving along the neutral curve. The nondimensional frequency Stb scales almost
linearly with g up to g ≈ 1.38 where a steep increment is observed. The same steep
increment occurs for StF . This behaviour seems to indicate a change in the properties
of the flow instability which could be related to the change in the bifurcation nature,
from supercritical to subcritical, that is found to occurr in the neighborhood of g = 1.4
through DNS analysis. For 1.4 < g < 2.2 a transition region between the IP mode and
the flip-flop behaviour has been described by Kang (2003). However the Floquet analysis
has not been extended to gap values larger than g = 1.4 owing to the subcritical nature
of the bifurcation whose careful investigation is beyond the scope of the present work.

5.3. Direct and adjoint Floquet mode

The spatio-temporal structure of the unstable Floquet mode has been investigated for
g = 0.7, a value for which the flip-flopping behaviour has been observed experimentally
by Wang et al. (2002) at Re = 150. The vorticity field associated with the direct Floquet
mode û(x, y, t) is illustrated in figure 14 by means of its real component: snapshots
14(a,b,c,d) correspond to the four phases φ = 0, π/4, π/2, 3π/4 among the eight in which
the shedding cycle has been equally divided. The mode is characterized by the opposite
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Figure 13. Results of the Floquet stability analysis in the parameter plane (g,Re). (a) Neutral
curve associated with the unstable Floquet mode (continuous line): the gray shaded area is used
to denote the region of linear instability of the periodic base flow; the dashed line corresponds
to the neutral curve associated with the unstable IP mode on the steady symmetric base flow.
Stb and StF are plotted as a function of g moving along the neutral curve in figure (b) and (c),
respectively.
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Figure 14. Vorticity field of the direct Floquet mode û(x, y, t) (real part) evaluated at g = 0.7
andRe = 61.8. Pictures illustrate four subsequent shedding phases φ among the eight in which
the vortex shedding cycle has been equally divided: (a) φ = 0; (b) φ = π/4; (c) φ = π/2; (d)
φ = 3π/4.
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Figure 15. Spatial distribution of the adjoint Floquet mode at g = 0.7 and Re = 61.8: modulus

of the velocity field ‖f̂
+
‖. Pictures illustrate four subsequent shedding phases φ among the

eight in which the vortex shedding cycle has been equally divided: (a) φ = 0; (b) φ = π/4; (c)
φ = π/2; (d) φ = 3π/4. The remaining phases can be recovered by symmetry.

spatio-temporal symmetry with respect to the base flow:
{

û(x, y, t) = −û(x,−y, t+ T/2),

v̂(x, y, t) = v̂(x,−y, t+ T/2).
(5.2)

Hence, the remaining phases can be easily recovered from those herein illustrated. Al-
though complicated, the depicted time-periodic perturbation field shows a strong corre-
lation with the described flip-flop dynamics. The mode structure results mainly concen-
trated in the near-wake region where an irregular shedding pattern is observed behind
each cylinder. Meanwhile a strong vortical structure develops from the gap flow and be-
tween the two cylinder wakes, being related to the low-frequency deflection of the gap
jet. Indeed its vorticity sign keeps constant over the period T and changes according to
the superposed harmonic variation associated with the imaginary part of the Floquet
exponent. Furthermore, a shedding like mechanism takes place at the downstream edge
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Figure 16. Structural sensitivity map: spectral norm of the sensivity tensor field S(x, y). Pic-
tures illustrate the results obtained for the unstable Floquet mode (see equation 2.8) for g = 0.7
and Re = 61.8 (a), compared with those pertaining to the unstable IP (b) and AS (c) modes
on the steady symmetric base flow computed for the same values of g and Re. Dashed lines are
used to illustrate regions of recirculating fluid associated with the steady base flow (b, c) and
with the period average base flow (a).

of this region and a clock-wise rotating vortex is alternately shed on each cylinder side
during one period T . This mechanism seems to be at the root of the biased merging
process of gap eddies which characterizes the flip-flop vortex dynamics.
The magnitude of the related adjoint field is also represented in figure 15 using the

same shedding phases which have been employed for the direct mode representation.
Regions of maximum receptivity are located close to the outer and inner shear layers

while smaller values of ‖f̂
+

‖ are found also within the gap flow region.

5.4. Wavemaker investigation

In order to provide useful information to investigate the physical nature of the flip-
flopping instability, the instability core has been located by means of the structural
sensitivity analysis described in §2.2. This analysis is not sufficient to unveil the physical
mechanism of instability but it gives precious information about it by localizing the
region of the flow where it is active.
Figure 16(a) shows the sensitivity map computed using the spectral norm of S(x, y)

at Re = 61.8 and g = 0.7. Different tensor norms, such as the trace or Frobenius norm
could have been used as well but would not lead to significantly different results and are
not reported for brevity. With reference to figure 16(a), it is worthwhile to note that the
sensitivity tensor S vanishes almost everywhere except for a sharply localized region in
the near-wake of the two cylinders. According to Giannetti & Luchini (2007) this region
corresponds to the core of the instability mechanism, i.e. the so called wavemaker. In the
present case the wavemaker structure is characterized by four main peaks symmetrically
placed with respect to the x-axis. More precisely the maximum sensitivity is attained
within two elongated lobes in the streamwise direction which are approximately located
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at the edges of the expanding gap jet. This is highlighted in figure 16(a) by superposed
streamlines of the mean base flow whose representation appears indeed consistent with
the meaning of (2.8) as an average sensitivity over the period T . The remaining two
lower peaks are instead located on the outer sides of the two averaged wakes. It is quite
surprising that the map of figure 16(a) shows strong analogies with the corresponding
sensitivity maps of the IP and AS modes which are illustrated in figure 16(b) and 16(c),
respectively. As a matter of fact, the average periodic base flow and the steady base
flow have the same topological structure and similar flow regions are identified by the
wavemaker analysis as the core of the respective instabilities. This is especially true for
the regions of maximum sensitivity in figure 16(a) and 16(c).
In order to recover phase information about the structural sensitivity, the instantaneous

sensitivity tensor (2.10) has been also computed. The spectral norm of I(x, y, t) is plotted
in figure 17 at the same four shedding phases that have been used for the direct and
adjoint mode in figure 14 and 15, respectively. Similarly to the time average sensitivity
map, the norm of I is also sharply localized having two dominant peaks located within
the two vorticity layers of opposite sign developing from the cylinder surfaces in the
gap region. The amplitude and position of such peaks changes with time during the
shedding cycle. More precisely these peaks reach their maximun intensity at the shedding
phase corresponding to the detachment of the gap vortex, figure 17(a), being located just
upstream of the detachment point.

6. Conclusions

The flip-flopping behavior of the flow past two side-by-side circular cylinders has been
often interpreted as a bistable condition between dual asymmetric states. This interpre-
tation was mainly suggested by experimental observations at high Reynolds numbers
indicating that the gap flow flip-over occurs almost randomly and with a characteristic
time scale several orders of magnitude greater than that of the vortex shedding (Kim &
Durbin 1988). More recently, the bistability conjecture has been supported by Mizushima
& Ino (2008) based on the existence of the unstable AS mode on the steady symmetric
base flow. In the present work, a different explanation for the origin of the flip-flop at low
Reynolds numbers is proposed and motivated. The new transition scenario is based on a
numerical analysis of the two-dimensional flow in the range of gap spacing 0.5 < g < 1.4
and Reynolds numbers 50 < Re 6 90 for which the emerging of a flip-flopping pattern
has been first described by Kang (2003).
The transition from the in-phase synchronized vortex shedding to the flip-flopping state

has been first investigated by means of DNS for g = 0.7. Below the critical threshold,
the resulting in-phase vortex shedding is shown to be characterized by the formation of a
single large scale vortex street developing from the outer shear layers. Meanwhile, during
a shedding cycle, the smaller inner vortices are entrained and merged on opposite sides of
the outer wake. With the onset of the flip-flop state the vortex dynamics are substantially
modified. Both gap vortices are amalgamated on the same side of the large scale street
and the merging direction smoothly changes according to a slow harmonic oscillation
which affects both the force coefficients and the gap flow. The related frequency is found
to be one order of magnitude lower than that of vortex shedding and it compares well
with the value reported by Kang (2003) at Re = 100 and g = 1.0.
The global stability analysis of the in-phase periodic base flow has confirmed that a pair

of complex-conjugate Floquet exponents becomes unstable above the critical threshold
of g = 0.7, Re = 61.74 having a frequency which is close to the low St peak extracted
from DNS. Starting from this result, the stability analysis has been extended to cover



22 M. Carini, F. Giannetti and F. Auteri

y

 

 
(a)

−4

0

4

0 0.04

 

 
(b)

0 0.04

y

x

 

 
(c)

−2 2 6
−4

0

4

0 0.04

x

 

 
(d)

−2 2 6

0 0.04

Figure 17. Results of the structural sensitivity analysis at g = 0.7 and Re = 61.8: spectral
norm of tensor I(x, y, t) and vorticity of the base flow (dashed and continuous lines respectively
corresponding to levels going from −1 to −0.1 and from 0.1 to 1 by steps of 0.3). Pictures
illustrate four subsequent shedding phases φ among the eight in which the vortex-shedding
cycle has been equally divided: (a) φ = 0; (b) φ = π/4; (c) φ = π/2; (d) φ = 3π/4. The
remaining phases can be recovered by symmetry.

an entire range of gap spacing. The resulting instability region in the parameter space,
bounded by the Floquet neutral curve, ranges from g ≈ 0.5 to g ≈ 1.4 in the interval of
Reynolds numbers 50 < Re < 74. As compared with the bistability conjecture proposed
by Mizushima & Ino (2008) based on the primary instability of the AS mode (0.594 6
g 6 0.607), this new explanation of the origin of the flip-flopping behaviour seems to be
more realistic. In fact it is relevant on a wider range of gap spacing, where the flip-flop
occurs (0.2 . g . 1.2). Moreover, the Floquet instability region agrees very well with
the region where the flip-flop behavior has been observed by Kang (2003) using DNS.
Eventually, a correlation is found between the spatio-temporal pattern of the unstable
Floquet mode and the nonlinear flip-flop dynamics for g = 0.7.
The instability core is also identified according to the structural sensitivity analysis

introduced by Giannetti et al. (2010). The flip-flop wavemaker results mainly localized in
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the gap flow region and a striking similarity is found by comparing the average sensitivity
map to the sensitivity map of the AS mode.
It must be noted that the relationship between the low and high Re flip-flop appears

mainly qualitative: a clear connection between the two regimes cannot be easily estab-
lished, but this point is beyond the scope of this work. Nevertheless, our analysis provides
a clear evidence that the origin of the flip-flopping pattern at low Re has to be ascribed
to the instability of the in-phase shedding cycle and not to the bistable interplay of two
asymmetric states.

REFERENCES
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