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1. Introduction

Composite materials are being increasingly used for the produc-
tion of lightweight structures, in order to meet the ever stricter
weight constraints while maintaining adequate safety levels re-
quired. In particular, these materials are being recently taken into
account both for lightweight transportation systems and in the ci-
vil engineering field [1]. In this latter case they are proposed both
for new buildings and for restorations, where their low weight is
an advantage not only for the structure itself, but also regarding
transport and installation costs.

Anyway, the requirements of composites in civil constructions
are very different from the ones of light transport systems. This
is due to the much more large amount of material needed in the
civil constructions, that makes necessary to use cheaper materials
with respect to transport systems like aircrafts, where the need to
reduce the weight in order to increase the transportable load and
to reduce the fuel consumption, makes the mechanical perfor-
mance of the material the most important and desired attribute
of the composites.
Focusing the attention on civil engineering, the ‘‘pultrusion’’
process (deriving from pull- and -extrusion) is particularly attrac-
tive. It allows to create structural profiles of uniform section and of
virtually any length, with a economic and highly automated pro-
duction technique [2], since the process itself involves the extru-
sion of the matrix and the traction of glass fibers. This makes it
possible to correctly align the fibers before the matrix is
polymerized.

Good candidates for the pultrusion process are GFRP (glass-fiber
reinforced polymers), thanks to their lower cost with respect to
carbon fiber.

Anyway, like for most of polymer matrix composites, the use of
these materials is somehow limited by the development of sudden
damage under load. As a consequence, the development of damage
tolerant design procedures, like the ones used for metallic materi-
als, is more difficult.

With reference to polymer composites the ability to develop
such kind design approaches seems to be strictly related to the
development of experimental techniques able to monitor the
behavior of the material and to provide a real-time feedback about
the damage under development.

Research on pultruded materials should also aim to build a pre-
cise structural health monitoring real-time system in order to
widen the knowledge of their complex and interacting damage
modes and thereby their use. Some authors suggest an interaction
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between fiber and matrix degradation, and a phase-like damage
development characterized by a degradation of stiffness and load
bearing capacity. Fatigue damage is thought to be dominated by fi-
ber fracture, matrix degradation and fiber–matrix interface degra-
dation [3,4]. A previous research of the authors of the present
paper has also shown that it is particularly challenging to assess
the damage modes with traditional destructive techniques, like
scanning electron microscope (SEM) imaging and computerized
tomography (CT) scanning [5,6].

Bearing in mind the previous considerations and results, the
development of an experimental technique able to monitor the
progression of damage under load and to distinguish the different
damage modes in their early phase could provide a useful tool for
increasing the knowledge of the failure modes of these materials
under different load conditions, with obvious positive reflect on
the design procedure development, and for increasing the reliabil-
ity of constructions made with these materials, when applied
in situ.

Acoustic Emission (AE) is a quite suitable technique for this pur-
pose [7]. It allows to monitor ultrasonic signals (usually between
50 kHz and 1 MHz) emitted by a material when loaded or subject
to irreversible phenomena (damage, degradation, stress corro-
sion. . .) [8].

AE is traditionally used and standardized as a non-destructive
technique to assess the structural integrity of metallic components
(e.g. pressure vessels and pipelines), but recently it has increas-
ingly spread over as a technique for monitoring composite materi-
als damage [9].

AE is based on the phenomenon that, during damage, energy is
partly released in the form of elastic waves that travel inside the
material and reach the surface, where apposite sensors (mainly
piezoelectric) can detect the high-frequency vibration and convert
it to a voltage–time signal. By using multiple sensors it is also pos-
sible, under some material homogeneity assumptions, to calculate
the signal source location, and therefore to localize the area where
damage is developing. AE also provides a measure of the signal en-
ergy, which has some qualitative and partly quantitative relation-
ship with the energy released by the material [10].

To avoid the management of big amounts of data, AE signals
(‘‘hits’’) are usually characterized by waveform parameters, the
most significant of which are represented in Fig. 1. These parame-
ters can be related to the damage modes that generated the signals.

AE on pultruded materials was used [11] for the testing of high
voltage power line insulators. A preliminary analysis of AE data
was also performed by the authors of this paper [12], even if the
Fig. 1. Acoustic emission signal typical waveform and parameters.
results showed the need of a more extensive and exhaustive anal-
ysis of the data, that can be performed only by using more ad-
vanced signal processing techniques.

In fact, the management of a big quantity of AE data makes of-
ten very difficult to perform a traditional data analysis. In addition,
a problem has to be solved: the necessity to characterize the type
of damage that is responsible of a specific group of signals. Some
authors have traditionally proposed the use of some parameters
(duration, amplitude and energy) to distinguish among different
AE sources [13]; also the frequency content of a signal is consid-
ered to be useful [14], but the application of well-defined criteria
may be very critical when switching to a different material or even
on a different geometry. Kotsikos [15] and Gong et al. [16] have
proposed a classification based on amplitude that identifies high-
amplitude events as fiber breakage and fiber–matrix friction and
pullout, while lower amplitude events are related to matrix micro-
cracking and delamination.

The so-called classification problem can be solved with different
approaches; among them, artificial neural networks (ANN) offer
reasonably reliable solutions [17–19].

In this paper, the damage development in glass-fiber pultruded
materials is considered and assessed by means of the AE technique.
Starting from the results obtained by the authors of this paper in
[12], a technique based on a particular architecture of ANN, the
so called Self-Organizing Map (SOM) is developed and used in con-
junction with the k-means algorithm to elaborate and to separate
the different AE signal sources, relating them to the observed
phases of damage development. A similar approach that involves
unsupervised neural networks and the k-means algorithm has al-
ready been successfully applied to the classification AE signals
[20]; in this study we explore a way to assess the quality of the
classification (and therefore automatically choose the optimal
number of clusters) by using different quality indexes and adding
frequency information to AE input parameters. Also, in this paper,
the feasibility of applying a classifier derived from a single speci-
men to an entire set of specimens with slightly different layups
and with the presence of defects is studied.

After the developed technique is described and applied to
the tensile tests executed, the results are critically discussed
in view of the application of the technique to structural
members.
2. Experimental setup

2.1. Material

The material used in this study is a pultruded E-glass long fiber
reinforced composite. The matrix is a mixture of Leguwal W4 GA
and Synolite 0175-N-1 resins, which account for 57% in weight of
the material. Additionally, to improve the material behavior in
the transverse direction, layers of MAT (randomly oriented long
glass fiber) were added (Fig. 2). Two configurations were consid-
ered: MAT2 (with a top and a bottom MAT layer) and MAT3 (like
MAT2 but with an additional MAT layer in the volume, in this case
called volumat).

In this experimental work, 16 MAT3 and 20 MAT2 specimens
have been analyzed. The experimental procedure has already been
described in [12] but is briefly recalled here for clarity and for mak-
ing easier the understanding of what follows. Specimens were la-
beled with the layup followed by a number starting from 100;
e.g. MAT2_110 represents the 11th MAT2 specimen.

Specimens have been made from rectangular bars in the dog-
bone shape proposed by [21], since it shows a good uniformity in
damage modes and avoids the use of tabs (Fig. 3a). Among them,
two randomly chosen specimens (MAT2_117 and MAT3_112) were



Fig. 2. Schematic drawing of the MAT 3 structure.

Fig. 3. Dogbone-shaped smooth specimen (a) and notched specimen (b) geometry.
machined to obtain a notch as in Fig. 3b, aiming at evaluating dif-
ferences in damage modes and in AE response caused by the notch
itself.
2.2. Experimental tests and measurements

Static tensile tests were carried out on a MTS RT100 electrome-
chanical uniaxial machine, according to ASTM D3039, in displace-
ment control mode. The test speed was set to 2 mm/min. The
specimen elongation was calculated by the testing machine dis-
placement, being the stiffness of the latter higher as compared to
the specimen, thus neglecting the error due to the machine defor-
mation; the load was measured through a 100 kN calibrated load
cell.

AE signals were recorded with a Vallen AMSY-5 system,
connected to a laptop. The load and displacement signals were
connected to the AE system, in order to synchronize the AE
data with the tensile test data. The system was set up with typical
values for short composite samples: duration discretization
time (or hit definition time) = 100 ls; rearm time = 0.2 ms,
pretrigger = 40 ls.

For each specimen, two AE sensors (Vallen VS150M, resonant
type) were connected at a distance of 120 mm using silicone
grease; sensors were then attached to preamplifiers with short
cables to minimize noise pickup, and from the preamplifiers to
the AE system with slightly longer cables. The measurement chain
is represented in Fig. 4.
Before each test, the specimens were mounted in the hydraulic
grips of the machine; then 2 min of noise without applying any
load were acquired to set the noise threshold. For all the tests, a
40 dB noise-rejecting threshold was set.

The system was then set in ‘‘pulsing’’ mode: a sensor emits a
signal, and the other receives it; this enables to calculate the wave
transmission average speed for the material along the fiber axis.
The value was found to be around 3500 m/s, and this was given
as an input to the localization algorithm to get the source position
of AE events.

After specimen preparation, tests were started, and AE signals
were recorded until the specimen fracture. Tests were stopped
when a significant load drop was found, namely 20% of the maxi-
mum load.
3. Definition of the classification procedure with artificial
neural networks

As previously mentioned in this work, a particular architecture
of ANN, called Self-Organizing Map (SOM), is considered (Fig. 5).
This kind of network is of the unsupervised type, i.e. it does not re-
quire a training in which the outputs are known a priori but ar-
ranges its architecture according to the inputs. This property can
be used to classify input vectors based on their relative distance
[22]. When a vector is given as an input to the network, a unique
‘‘winning neuron’’ exists (i.e. the neuron with the highest output).
The neuron corresponds to the classification of the input vector.



Fig. 4. AE measurement chain setup.

Fig. 5. Self-Organizing Map representation.
Classification of AE data with SOM was applied by [23] with suc-
cess in identifying different user-generated signals knowing a pri-
ori the source mechanism.

Usually, the number of neurons in SOM is much higher than the
expected signal clusters. However, looking at the U-matrix (a pla-
nar representation of the distances between neurons) allows to ob-
served some degree of separation between neuron groups.

With such framework, it is therefore possible to create a smaller
number of clusters, as proposed by [24] with simpler clustering
algorithms, like the k-means algorithm. In this way it is possible
to classify an input signal into a smaller number of classes.

The use of the k-means algorithm does not allow to choose a
priori the optimal number of clusters. This is of relevant impor-
tance, and some authors [25] have proposed some indexes to mea-
sure the quality of a given clusterization. In this work, the approach
defined in [26] has been followed and adapted, to use a number of
indexes which take into account different parameters of the clus-
ters and to evaluate the best performing number of clusters. This
kind of approach is of critical importance, because it is quite
straightforward and automatable and could be implemented in
any AE-based structural health monitoring system for assessing
damage in real-time on a structure under workloads.

All the localized signals, which for every test ranged from 1500
to 2500, were considered for the data processing. The inputs cho-
sen for the SOM were:

� A: max amplitude in dB (logarithmic scale with a reference volt-
age of 1 mV at the sensor output);
� D: duration (in ls);
� R: signal rise time (in ls);
� CNTS: number of waveform oscillations;
� E: energy of the waveform envelope, in eu (1 eu = 10�14 V2s);
� FCOG: signal’s Fast Fourier Transform center of mass (in kHz);
� FMXA: signal’s peak frequency (in kHz).

Data points were then normalized between �1 and 1, and the
network was trained with the batch training algorithm.

The clustering procedure proposed in [26] was adapted to use a
slightly modified version of the voting scheme proposed in [27]. In
particular, after the SOM training, the network U-matrix was clus-
tered with the k-means algorithm, using a number of classes c
ranging from cmin to cmax (in this case from 2 to 17).

To decide the optimal number of clusters, the following three
performance indexes were considered and computed:

� Davies–Bouldin [28];
� Silhouette [29];
� Calinski–Harabasz [30].

The use of multiple indexes allows to overcome the limitations
and characteristics of every single parameter; for example the
Davies–Bouldin index gives small values when clusters are far



and compact and is calculated based on similarity between differ-
ent clusters, whereas the Calinski–Harabasz index is proven useful
when the data structure is not known a priori [31], and the Silhou-
ette index provides information about cluster width and
dispersion.

After computing the performance indexes for every considered
number of classes ci, an aggregate index Li was computed, built so
that:
Fig. 6. Full clustering procedure flowchart.
� all the number of cluster are sorted by each performance index
separately (best to worst);
� the best cluster number for each index gets cmax – cmin points;
� the mth cluster number gets cmax – cmin – m points;
� the worst cluster number gets 0 points;
� the points given to each index are then summed for every clus-

ter number.

In this way, if a c number of classes obtain the best value in all
indexes, gets 45 points. The best number cbest is then chosen as the
number that maximizes the aggregate index.

For this experimentation, a single specimen was used for the
SOM training, and then the same network was used to classify
other specimens. This was decided due to avoid overtraining of
the network, and to assess the robustness of the method when
classifying data that the network has never used in the training
phase. This decision was also made to determine whether the
notched specimens were recognizable by a network trained by
AE data from a smooth specimen. A schematic diagram of the pro-
cess is reported in Fig. 6. For the SOM construction, the SOM Mat-
lab Toolbox [32] was used; the map size considered is 20�16,
hexagonal lattice has been used with a sheet structure (i.e. the
map border nodes are not connected). The neighborhood function
used is a Gaussian; the training phase was done with linear initial-
ization of weights and the batch algorithm, thus using the whole
dataset to train the map; the training phase took 3–5 iterations.
The dataset included between 1500 and 2500 signals depending
on the specimen; only localized events were used to help remove
noise.
4. Results and discussion

4.1. Tensile tests

The results of the tensile tests of the dogbone specimens show
the typical behavior of these materials. A first quasi-linear elastic
behavior can be noted, followed by irreversible load capacity
drops. The first of these drops was considered as limit load, being
the irreversible damage unacceptable for any application. More-
over the beginning of this phase coincided to the development of
visible defects/damage on the specimen surface.

The two materials (MAT2 and MAT3) showed uniform behavior,
with an ultimate tensile strength of 340 MPa (standard deviation
equal to 28 MPa), in accordance with previous testing on the same
material [6]. The elastic modulus was found to be different be-
tween MAT2 and MAT3 specimens and of 32500 MPa average for
MAT2 and 29600 average for MAT3 – this can be easily explained
bearing in mind the higher content of long uniaxial fibers for the
MAT2 specimen.
Fig. 7. MAT layer fracture and delamination (a) and explosive delamination (b).



Fig. 8. Acoustic Emission cumulative activity during tests.

Fig. 9. U-matrix for the SOM trained with master specimen data (a) and clusters (b).

Fig. 10. Quality indexes and aggregate index for the master U-matrix clusterization.
The notched specimens had an ultimate tensile test of 272 MPa
(MAT3) and 250 MPa (MAT2). The experimental stress concentra-
tion factor is found to be below 1.4, which is lower than the theo-
retical value of 2.5 (estimated from [33]); this is not unexpected
since the unidirectional fibers bulk is probably less sensitive and
its behavior is far from an isotropic material’s.

The main failure modes observed were delamination and frac-
ture of the upper and lower MAT layers upon the first load drop
(Fig. 7a); by continuing the test further, the failure mode observed
was fiber pull-out and explosive delamination (Fig. 7b).
4.2. AE signal processing

AE activity was found to be uniform in the whole dataset; as it
can be seen in Fig. 8, the cumulate AE activity shows the typical S-
shaped curve already seen by [11]. This can be explained by look-
ing at the energy of the signals, which is higher in the last part,
thus having fewer events with higher energy towards the final
failure.

Data from specimen number MAT3_113 was then used as mas-
ter specimen to train the SOM: it has to be stressed, however, that
changing the master specimen shows no appreciable difference in
the process results.

The U-matrix of the trained SOM is reported in Fig. 9a. Distinct
areas can be clearly seen; however an appropriate algorithm to
choose these areas and a measure of the quality of such a classifi-
cation has to be provided. To perform this evaluation, the k-means
algorithm has been applied to the U-matrix (Fig. 9b).

As previously said, quality indexes and aggregate index for the
different cluster sizes have been computed; results are reported in
Fig. 10. Classification shows that, for this specimen, the Calinski–



Harabasz and Davies–Bouldin indexes identify 4 as the best per-
forming cluster number, while for the Silhouette index the best
is 3, immediately followed by 4. The results of the aggregate index
calculation shows that 4 is the most voted clusters number, and
therefore it is chosen as cbest. Using a different specimen for classi-
fication yields very similar results, identifying always 4 clusters as
the optimal solution, but with small variations on the indexes
values.

Remaining specimens have been classified with the master
specimen SOM, clustered by the k-means algorithm with c = 4. As
a further verification, the performance indexes have been com-
puted for the other specimens to check if the classification quality
changes on different specimens and in particular on the two differ-
ent material layouts. No appreciable dependence on the material
layup or on the specimen number was observed by looking at indi-
vidual indexes in the two groups.

Waveforms were observed through the separate classes and
visually compared to check if the SOM/K-means technique was
able to separate different signals. A representative signal from each
class is shown in Fig. 11.

4.3. Observations on the connection between AE classes and failure
modes

An example of the AE activity curves of the single classes for a
smooth specimen and a notched specimen can be seen in Fig. 12.
For all the other specimens the trend is quite similar. Again we
Fig. 11. Examples of waveforms representative of class 1 (a), 2 (b), 3 (c) and 4 (d).
underline that only localized events were considered, and a num-
ber of AE events ranging between 1500 and 2500 for every test
were recorded.

A comparison of all the curves of AE activity and energy for each
cluster can be seen in Fig. 13. The notched specimens are marked
with a thick line. Observation of the comparative curves in all clas-
ses shows no significant difference between MAT2 and MAT3
specimens.

Cluster 1 (Fig. 13a) shows an S-shaped activity curve that begins
at around 40%–50% of final breakage. Energy release is linear in log
scale, which means there is an exponential increase of energy re-
lease with strain.

Cluster 2 (Fig. 13b) shows a more abrupt energy release in the
final part; it is also strongly related to higher energy and AE activ-
ity in the two notched specimens, which deviate from linearity ear-
lier than 50% of the test, while energy curves for smooth specimens
show an abrupt increase only after 70%–80% of breakage strain.

Cluster 3 (Fig. 13c) is again an S-shaped curve that begins at
about 20% of strain, having thus the earliest onset among all clus-
ters; energy release is somehow uniform (decreasing in log scale).

Cluster 4 (Fig. 13d) shows a knee between 40% and 60% of the
final strain, but the position of the slope change is the most spread
among specimens. The energy release is again exponential.

Energy activity of the notched specimens for clusters 1, 3 and 4
show no appreciable difference from smooth specimens, while in
the same clusters the AE cumulate counts curves show a slightly
lower activity towards the end of the test. AE activity of cluster 3



Fig. 12. AE activity of the single clusters for a smooth (a) and a notched (b) specimen.
shows an early onset and is the first active class in every specimen.
Clusters 4 and 1 have similar shapes, with cluster 1 being slightly
active than cluster 4. Clusters 1, 3 and 4 show a S-shaped curve
with a linear central part, while cluster 2 is almost linear, with
an early begin and an abrupt increase near the limit stress.

Location data of the AE signals along the specimen axis were also
computed. Fig. 14 shows the energy release (colored scale) during a
test (vertical axis) and along the specimen axis (horizontal axis) for a
smooth specimen. The same behavior is found in all smooth speci-
mens. Fig. 15 shows the energy release for a notched specimen.

In particular, cluster 1 shows local high-energy releases around
3/4 of the test; its higher energy release is believed to be connected
to the breakage of the top and bottom MAT layers, which is con-
firmed by visual observation of post-test specimens and location
comparison.
Events of cluster 2 show a linear response with sudden energy
release towards the end of the test. In the case of the notched spec-
imens the same cluster shows a behavior that is distinctly separa-
ble from smooth specimens. In particular this can lead to conclude
that events of that class are related to near-end failure modes, such
as fiber breakage.

Cluster 3 energy distributions has a uniform energy release that
recalls the shape of the specimen, with more energy released in the
smaller areas and less energy released in the larger areas; this
leads to suppose that events in this cluster are related to average
stress phenomena, such as matrix degradation. In the notched
specimens the specimen shape is still recalled with an energy re-
lease concentration around the notch (Fig. 16).

Cluster 4 shows mixed uniform and localized energy release
beginning at 2/3 of the test, but has the least uniform behavior



Fig. 13. comparison of AE activity and energy for all specimens: (a) cluster 1, (b) cluster 2, (c) cluster 3, and (d) cluster 4.



Fig. 14. Energy release for each cluster by x location, specimen MAT3_113.

Fig. 15. Energy release for each cluster by x location, notched specimen MAT3_112.



Fig. 17. Scanning Electron Microscope images of cross-sections from a smooth specimen
region (c) and a far region (d).

Fig. 16. Comparison of AE energy data and smooth (a) and notched (b) specimen
damage.
among specimens. It is found in some cases linked to the delamina-
tion between the MAT layers and the axial fibers layers.

To support these observations, SEM microstructure images
were collected from cross-sections in different positions from a
notched and a non-notched specimen. Observations from a smooth
specimen show that the small cross-section area failure is domi-
nated by matrix cracking (Fig. 17a) and in a position far from the
center is dominated by MAT-fiber interface fracture and bulk frac-
ture (Fig. 17b), while in notched specimens the situation is re-
versed, with a fiber–matrix debond dominated central area
(Fig. 17c) and only matrix crack presence in the farther areas
(Fig. 17d).

Based on these observations, the tensile behavior of the mate-
rial can be divided in four different phases. A first phase in which
no significant AE is detected shows no apparent degradation of
the material; then, at about 20% of limit stress, what is thought
to be matrix degradation phenomena begin and are found through-
out the whole test. At 50% of the limit stress, degradation phenom-
ena of the MAT layers start to occur (which finally lead to MAT
fracture), and towards the end (80% of limit stress) AE that can
be associated to fiber breakage is seen. The onset of the AE activity
of cluster 1 – which is found before cluster 2 (unidirectional fiber
breakage) and after cluster 3 (matrix degradation) – confirm such
linkage, being the stiffness and toughness of the MAT lower than
the fibers’ but higher than the matrix’s one.

Additionally, average AE parameters for each cluster have been
calculated. The results are reported in Table 1. It can be observed
that classes have some overlapping characteristics and some
parameters which are distinctive, like high amplitude for cluster
2. Besides it should be noted that the frequency parameters FMXA
and FCOG are not varying much, mainly because the sensors were
of the resonant type. The values of the computed parameters agree
with the studies of [15,16] which show that high-amplitude events
are associated with fiber breakage and fiber pullout (cluster 2 in
the present work), while low amplitude AE is associated to matrix
microcracking (cluster 3). Medium amplitude events, around 50–
60 dB, are linked to delamination, which is confirmed by the obser-
vation of signals of cluster 4.
in the notch region (a) and in a far region (b) and a notched specimen in the notch



Table 1
Summary of AE cluster parameters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Amplitude (dBae) 54.6 75.2 47.0 55.3
Energy (eu) 0.8 � 103 6.2 � 105 0.08 � 103 1.2 � 103

Duration (ls) 3.5 � 103 5.5 � 103 54 3.7 � 103

Risetime (ls) 0.2 � 103 2.4 � 103 19 3.2 � 103

Counts 36 233 9 46
FCOG (kHz) 277 269 286 283
FMXA (kHz) 266 260 263 261
The observation of individual waveforms is also in good agree-
ment with the findings of [20], showing similar shapes for the dif-
ferent waveforms associated to the corresponding failure modes
(Fig. 11).

5. Conclusions

A technique was developed to automatically classify AE data
with SOM and k-means, choosing the optimal number of clusters
based on multiple quality indexes driven by a voting scheme; the
technique is found to be promising in separating different AE signal
sources which are related to different damage modes. On the basis
of the results, the following conclusion can be drawn:

� The AE classification technique presented in this paper allowed
to successfully identify the different failure modes of this type
of material, providing additional information about their onset
and development during the application of load.
� The classification method is quite robust to material change,

and is able to classify data which was not in the training set
even if the material layup changes slightly.
� Moreover, the ANN was able to identify anomalies in two spec-

imens (the two containing a notch) with a high degree of
confidence.

The ability of separating the different failure modes is of vital
importance in perspective of its application to structural members.
Thresholds based on classes can be defined with this aim and
acceptance or rejection of a structural member can be decided by
only loading it at a percent of the design load (thus reducing the
risk of damaging it). The clustering method offers also a good
way to eliminate the uncertainty associated to some less-danger-
ous AE source classes that are less active than others; this is partic-
ularly useful for the use of AE as a structural health monitoring
technique.
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