
The COMPLEX methodology for UML/MARTE Modeling and design space
exploration of embedded systems
⇑ Corresponding author. Tel.: +34 942 200878; fax: +34 942 201873.
E-mail address: fherrera@teisa.unican.es (F. Herrera).
Fernando Herrera a,⇑, Héctor Posadas a, Pablo Peñil a, Eugenio Villar a, Francisco Ferrero b, Raúl Valencia b,
Gianluca Palermo c

a University of Cantabria, ETSIIT, TEISA Dpt., Av. Castros sn, 39005 Santander, Spain
b GMV, Aerospace and Defence S.A.U., C/Isaac Newton, 11 P.T.M. Tres Cantos, 28760 Madrid, Spain
c Politecnico di Milano, Dipartimento di Elettronica e Informazione, Via Ponzio 34/5, 20133 Milano, Italy
1. Introduction well as for other ESL design activities (i.e., verification and SW syn-
The design of embedded systems is in a highly competitive con-
text. The translation of an efficient design into a successful product
highly depends on becoming the first product in the market with
new complex functionalities fulfilling tight performance con-
straints, and at an affordable price. In this scenario, the task of sys-
tem engineers becomes challenging. They have to do an early
assessment of the design alternatives since about 90% of the overall
cost is determined at the first stages of the design [1]. At the same
time, a right assessment becomes difficult due to the complexity of
applications and platforms. Performance depends on a diverse set
of factors, such as the architecture of the software application,
the architecture of the hardware platform, how the application
functionalities are executed by the processing resources of the
platform, and many parameters such as cache sizes, memory sizes,
etc. This makes Design Space Exploration (DSE) a key design activ-
ity [2] in ESL design for enabling such an early assessment.

A DSE framework has three main requirements: (1) a specifica-
tion methodology suitable for Design Space Exploration (DSE), as
thesis); (2) techniques and tools able to produce fast and suffi-
ciently accurate performance metrics; and finally (3) exploration
strategies able to prune a potentially huge design space.

An important number of methodologies relying on different
techniques for performance estimation and specific exploration
strategies have been proposed. Some of them have also enabled a
high-level input, based on a model which captures the system
architecture and main system parameters. Specifically, there has
been an effort on starting from models based on the Unified Mod-
eling Language (UML) [3], supported by specialized profiles, such
as SysML and MARTE [4]. These approaches effectively joined Mod-
el Based Design (MBD) with Electronic System Level (ESL) design.
However, these methodologies present a number of drawbacks
yet. UML/MARTE methodologies do not present all the features re-
quired for DSE. Specifically UML/MARTE models have to be edited
along DSE iterations, which slows down the exploration, because
they do not provide mechanisms to model and define the design
space in terms of the parameters, architectures and architectural
mappings that the user wants to explore, and in terms of the
performance metrics which need to be constrained. Second, tradi-
tional simulation-based performance estimation technologies are
too slow for exploring DSE systems, while analytical approaches

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.10.003&domain=pdf
mailto:fherrera@teisa.unican.es


have to sacrifice much accuracy. Third, the exploration strategies
propose implementations tightly coupled to the solution of a spe-
cific optimization problem, which makes those DSE frameworks
specific and difficult to extend with enhancements on both, perfor-
mance estimation and exploration techniques. Out of the UML/
MARTE context, and even from the model-based design context,
other works, explained later on in Section 2, have provided ad-
vanced features for DSE including some of the aforementioned
ones. This work has combined, extended and applied many of them
to an UML/MARTE modelling context.

Two main approaches to DSE can be distinguished attending the
way a design point is evaluated, those based on analytical tech-
niques and those based on simulation [5]. Analytical approaches
relying on worst-case workloads and predictable architectures are
suitable for applications which require a high degree of confidence
on constraint fulfilment, e.g. time critical or safety critical applica-
tions. However, these approaches often lead to more inefficient de-
sign solutions and their applicability is limited by modelling
constraints required for the application of the analytical model.

In contrast, a simulation-based DSE approach, like the one pro-
posed in this paper, enables more accurate estimations, and makes
feasible the assessment of performance of complex application mod-
els and advanced architectures, where the development of an analyt-
ical model gets too complex. Therefore, simulation-based DSE is a
suitable solution in domains such as consumer electronics, where it
is necessary to find efficient designs in an affordable design time for
applications with QoS requirements and time-critical (but not safety
critical) constraints, on top of devices with complex architectures
(multiprocessor, memory and communication hierarchies, etc.).

This paper presents the UML/MARTE Modeling and Design
Space Exploration (DSE) framework for embedded systems, devel-
oped in the context of the COMPLEX project [6][7]. In short, we will
refer to this framework as COMPLEX UML/MARTE DSE framework,
to distinguish it from other concepts, techniques and tools devel-
oped in the COMPLEX project, e.g., which include for instance a
Matlab/Simulink front-end, or the support of power management,
and which are not part of the work presented in this paper.

Distinctive aspects of the COMPLEX UML/MARTE methodology
are the following:

� It fits the general MBD-based DSE flow sketched in Fig. 1. In this
approach the user input is a system model supporting compo-
nent-based modelling and separation of concerns, and contain-
ing all the required information for the DSE activity.
� It supports a MBD model of the system working environment.

This way, more efficient solutions are found by tuning them
to the specific working environment. The integration of the
MBD environment model on an accurate simulation-based per-
formance model is automated.
Fig. 1. Generic solution of simulation-based DSE flow implemented.
� The model is captured once and it can be reused for other ESL
design activities, e.g. SW synthesis (single source approach). In
this sense, the model serves also as a specification.
� From the specification, an executable and configurable perfor-

mance model is automatically generated.
� The estimated performance associated to each explored design

point is obtained by relying on native simulation, much faster
than virtualization or Instruction Set Simulators (ISS).
� The technology supports SW and HW estimation; it considers

the impact of different communication types (SW–SW, SW–
HW, etc.,); and supports a generic, RTOS independent API,
which enables the analysis of different architectural mappings
without the need to generate the complete SW stack in each
executing node or to synthesize the HW.
� The performance estimation model and the exploration tool are

kept separated and integrated through a XML-base interface
which enables a modular DSE framework.

In previous work the UML/MARTE methodology for modelling
the system [9] and the stimuli environment [10] has been pre-
sented. In [11], the automatic generation from the UML/MARTE
specification of a performance executable and configurable model
was explained. This performance model relies on the SCoPE tech-
nology [14–16]. The integration of the IP-XACT format in the code
generation [12], and its support as part of the SCoPE front-end was
explained in [13]. In [20] M3SCoPE, which connected the perfor-
mance estimation tools (SCoPE) and the exploration tool (M3Ex-
plorer) [21], was explained. Performance estimation technology
has been improved, so SCoPE+ now supports the performance esti-
mation of different architectural mappings from the same Plat-
form-Independent model (PIM) without the need to generate the
SW stack in each node [17]. Moreover, a fast performance estima-
tion technique for the estimation of performance of the functional-
ity mapped to HW was developed in [19].

In this paper, a complete overview of the COMPLEX
UML/MARTE-based methodology for DSE is given. Moreover, the
paper contributes new aspects not addressed in previous work,
specifically:

� The MOST exploration tool is shown as a main component of
the flow which is smoothly integrated through an XML based
interface. MOST enables the analysis of a huge design space,
which can include different scenarios, without requiring the
edition of the environment model along the DSE loop.
� An extended example (vocoder instead of coder), showing more

significant features and capabilities of the methodology, such as
the capability to explore distinct mappings and considering dif-
ferent scenarios.
� The integration of the HW estimation library in SCoPE+.The co-

simulation of the system with the SystemC environment.

The rest of the paper is structured as follows. In Section 2, the
state of art is reviewed. Section 3 explains the UML/MARTE
modeling:modelling methodology. Then Section 4 explains the
generation of the SCoPE+ executable and configurable performance
estimation model and introduces MOST and its integration in the
flow. Section 5 provides experimental results. Section 6 provides
the main conclusions of this work.

2. State of Art

2.1. Modeling methodologies in UML/MARTE and model-based DSE

Despite the relative recent development of the MARTE profile,
several works have proposed UML/MARTE based methodologies.
The MARTE profile is an OMG standard that offers a rich set of



extensions specifically suited for the specification of embedded
real-time systems. MARTE enables building models containing de-
tailed information about the application, about the platform attri-
butes and its architecture, for enabling performance analysis.

Gaspard2 [22,23] is a design environment for data-intensive
applications which enables a MARTE description of both, the appli-
cation and the hardware platform, including MPSoC and regular
structures. Gaspard2 uses composite diagrams and the MARTE pro-
file for capturing both, application and platform architectures.
Gaspard2 tooling supports the chaining of different model to mod-
el (M2M) transformation tools. This facilitates the generation of
synthesis flows, and also of performance models. Specifically,
Gaspard2 supports the generation of SystemC TLM models at the
Programmers View Time (PVT) level. It enables fast simulations,
which speeds up exploration.

MoPCoM [24] is another design methodology for the design of
real-time embedded systems which supports UML and the MARTE
profile for system Modeling. Specifically, MoPCoM uses the NFP
MARTE profile for the description of real-time properties; the
HRM MARTE profile for platform description; and the Alloc MARTE
profile for architectural mapping. Moreover, MoPCoM defines three
levels of generation. The second level, called Execution Modeling
Level (EML), targets the generation of models for performance anal-
ysis, and it is suitable for obtaining performance figures used in DSE
iterations. However, work reported in [24] mostly focuses on the
Detailed Modeling Level DML level, intended for implementation,
by enabling VHDL code generation. In [25] a solution for automat-
ically synthesizing models combining new communication seman-
tics with standard UML/MARTE real-time management features is
provided. This approach provides a flexible and easy-to-use way
to specify and explore the system’s concurrent architecture.

Co-Fluent methodology [26] captures application and hardware
architecture by means of composite diagrams and SysML blocks.
UML activity diagrams are used to specify application execution
flows. The MARTE HRM profile is used for capturing the HW plat-
form. This methodology uses the <<assign>> stereotype for
expressing allocations. However, they are used for Modeling a sin-
gle allocation, thus a single implementation alternative.

The main limitation of the previous methodologies is that the
exploration of architectural alternatives requires the edition of
the UML/MARTE model and a re-generation of the executable per-
formance model.

In [27], a UML/MARTE based methodology relying on activity
threads is proposed in order to reduce the effort required to capture
the set of architectural mappings. An activity thread is a UML activ-
ity diagram where each path reflects a design alternative, that is,
an architectural mapping.

In [28], a methodology for supporting designers on the evalua-
tion of the HW/SW partitioning solutions, specifically, to identify
design points fulfilling the timing constraints is shown. It proposes
a way to depict in one set of diagrams all possible combinations of
system configurations. By means of annotation of MARTE
non-functional properties and of the application of schedulability
analysis, the design space is restricted to the design points fulfilling
timing requirements. However this methodology neither reports
optimum solutions, nor it relies on automated technologies for
the estimation of performance metrics.

The proposed MARTE based specification methodologies are
still limited for DSE purposes. In these methodologies, the explora-
tion of different platform architectures, of different architectural
mappings, and even a small change in a design parameter (e.g., a
cache size) requires a manual change of the model. Moreover,
when the model is used for producing an executable virtual system
for a simulation-based performance analysis, a regeneration of the
executable model is typically required. Model edition and regener-
ation of the executable performance model are added to the
simulation time, thus increasing the iteration time of the DSE loop
and having a significant impact in the exploration time, up to a
point which can make the exploration of a sufficiently wide design
space unaffordable. Another desirable feature is to enable the cap-
ture of the output performance metrics to be used by the objective
function(s) of the DSE process within the model. Enabling their
capture in the model in a tool independent manner enables the di-
rect relation of such metrics with the performance constraints also
captured in the model. Performance constraints are mandatory,
since they determine the frontier for acceptable solutions.

Moreover, building a modelling methodology suitable for DSE
should not prevent features which have been proven to be useful
for system specification, e.g. model driven engineering (MDE) [29]
principles in the development of HW/SW embedded systems. Pre-
dominant role of SW leverages to target software centric methodol-
ogies [30] where the description of a platform independent model
(PIM) can be fully allocated on default to a SW implementation,
and thus it can be considered as an application model. A component
oriented approach [31] is convenient. In Component-based Soft-
ware Engineering (CBSE) [32], the system is built as a composition
of application components interacting with each other only
through well-defined interfaces. According this approach, compo-
nents are software units that exhibit their interfaces (provided or
required). On this way, the application can be split into clearly sep-
arable and reusable blocks, improving the organization of the prod-
uct as well as its reusability and modularity. This CBSE approach
also allows the designers to distribute the application blocks on
the different processing nodes thanks to the container and connec-
tor concepts defined in [33], which makes the allocation of compo-
nents on the hardware system transparent to the user and improves
the design space exploration and performance estimation.

There are a set of model-based approaches which have tackled
at least part of the aforementioned issues or requirements for DSE.
MILAN [34] enables a model-based approach to capture the appli-
cation and the platform (called resource model). MILAN also intro-
duced the idea of constraint model, distinguishing between
composability rules and constraints on performance, called seman-
tic constraints and design constraints respectively in MILAN. The
framework shows how a model-based approach facilitates the
integration, not only of several simulation tools, but also of several
of several levels of abstraction in the estimation of the perfor-
mance of the design point by relying on a Generic Modeling Environ-
ment (GME) [35].

Koski [37] provides an UML-based interface to describe, as well
as the application and the platform, the design constraints, includ-
ing mapping constraints. The framework also enables the capture
of the cost function by relying on default generic metrics. It also in-
cludes a code generation phase which produces an executable
model for functional validation, as long as functionality is
available.

DESERT [36] is a domain independent tool chain which en-
ables the abstraction of the structural characteristics of the
components available for building up a platform, and enables
the construction of platform templates. Platform templates repre-
sent a set of solutions, that is, a design space in structural
terms. DESERT enables the description of structural and compat-
ibility constraints, which enable to prune the design space and
synthesize a fully specified model fulfilling the aforementioned
constraints.

Recent approaches [38,39] have related exploration to the MDE
fundamental concept of model transformation. In [38], a declara-
tive, relational approach is proposed where typical activities of
the development process (functional partition or the application,
refactoring of the platform architecture or mapping to the plat-
form) are bounded by constraints. In [38], these constraints are for-
malized and implemented as model transformation rules to



support what is called mechanized exploration. The main aim of
mechanized exploration is to support an interactive and incremen-
tal DSE process, capable to present feasible solutions to the user,
which can make decisions and control a gradual refinement of
the model

MODES [39] is a recent proposal which exploits model-to-mod-
el transformation in order to generate an internal representation
model which is not only used for DSE, but also for formal verifica-
tion and co-synthesis. This way, model-based design serves for the
integration of DSE in the design flow. The internal representation
model comprises structural aspects (similar to DESERT) of an appli-
cation model and behavioral aspects through a Control and Data
Flow Graph (CDFG). Moreover, MODES uses UML/MARTE models
for some transformation rules.

In [40], a recent survey of DSE frameworks is used to state a set
of requirements and research challenges in the development of a
meta-framework for design space exploration. Based on them, an
incipient proposal of such a meta-framework, implemented on
GME, is presented. The aim is to facilitate the coding of domain
specific DSE environments. Interesting features refer the support
of an abstract DSE language (ADSEL) [41], or the automatic transla-
tion of the design space model into a mathematical model for
mono-objective optimization, which can be exported to a language
such as MiniZinc [42], which decouples the DSE problem from the
solving solution.

As will be explained in Section 3, the proposed modelling ap-
proach adheres to [28–33] since it is component-based and soft-
ware-centric, and supports MDA features for enabling concurrent
development and industrial development. Moreover, the pro-
posed modelling methodology, is specifically suited for DSE, since
it breaks the limitations of previous methodologies [22–27] to re-
flect in a single model a design space comprising a variety of
parameters and implementation alternatives. Moreover, the pro-
posed methodology enables an efficient search of optimum solu-
tions through accurate and fast simulation of each design
solution, rather than just a filtering of the solutions compliant
with the time constraints based on schedulability analysis. The
most remarkable differences at the modelling level are that our
approach relies on MARTE, and that it is component-based and
supports a very general application model. Previous approaches,
such as MILAN [34], Artemis [53], or Koski [37] rely on streaming
based models, adhering to models of computation such as SDF or
KPN. There are other lacks on features pursued by our approach.
For instance, MILAN requires model refinement for architectural
mapping exploration. DESERT [36] objective is to perform a prune
of the design space in structural terms, before the application of
behavioral, thus simulation-based, analysis methods. MODES
[39] currently targets a static analysis tool for performance
assessment, although authors say that a SystemC simulation tar-
get is also in plan.

2.2. Performance estimation technologies

Currently available simulation technologies present limitations
for fast, sufficiently accurate performance analysis before architec-
tural mapping. Pure functional simulation does not provide perfor-
mance metrics. Thus, no performance information can be obtained
from the direct execution of the C or C++ application code. Matlab-
Simulink models enable the evaluation of different application
architectures, based on components consuming and producing
data at certain rates. This information obtained can serve to infer
constraints on the implementations of these components. How-
ever, it does not reflect any specific implementation [43].

Modular and compositional performance analysis techniques
[44,45] are promising approaches that can provide global timing
and resource utilization properties of the system. These
approaches abstract applications and platform resources to differ-
ent formalisms, such as network calculus [45], or workload models
using formal scheduling analysis techniques and symbolic simula-
tion (Sym/Ta) [46].

Simulation-based performance analysis is still required for
accurate estimation of complex architectures which cannot be eas-
ily abstracted into analytical models. A simulation-based approach
is capable of considering the dynamism of the system at a fine level
of granularity, and it can yield accurate estimations suited to the
most likely conditions of the working environment provided that
an accurate model of such an environment is provided.

However, not all simulation-based techniques are suitable for
DSE. There is a trade-off between the level of abstraction and the
accuracy obtained. Several simulation-based performance analysis
techniques can be distinguished attending the different accuracy-
simulation speed trade-off.

In workload models, the application is conceived as a network of
concurrent activities such as threads or actors connected through
communication media such as channels, shared variables, etc. In this
approach, performance annotations (workloads) are associated to
concurrent activities and channels. The main advantage of this kind
of models is that they can be applied before code development [47].
Workloads can be implementation agnostic and facilitate a first
quantitative approach to the consideration of different targets, e.g.
through SW-like and HW-like workloads. The accuracy can be im-
proved once the code in each concurrent activity is known as then
the execution times and even the power consumption can be esti-
mated from the source code [48] or from a binary counterpart
[49]. Although these approaches can provide very accurate global
performance figures of the system behavior under different archi-
tectural mappings, they miss details which regard to the execution
of the application code in a specific processor architecture, compiler
optimizations, and of the interaction of the processor with other ele-
ments of the platform, e.g. instruction and data caches.

A classical approach to achieve more accuracy has been the use
of instruction set simulators (ISS) for modelling the behavior of
processor models, as core element of a virtual platform [50]. This
virtual platform can contain other elements, such as cache simula-
tors, and bus and HW accelerator models. For SW performance
estimation, specific performance annotations can be associated to
each executed instruction. In order to consider the aforementioned
processor architecture details, cycle-accurate ISS have been devel-
oped. However, they do not provide and acceptable simulation-
speed for a DSE process requiring thousand or million simulations.
Moreover, the portability of these approaches is reduced since ISS
are instruction architecture specific and cycle-accurate ISS proces-
sor architecture specific. Virtualization and source-level models
are more acceptable and promising approaches.

Process virtualization is based on binary translation technology,
e.g. QEMU [51]. Virtualization achieves higher simulation speed
than traditional ISS, for functional simulation. Virtual platforms
based on process virtualization are able to provide enough accu-
racy to ensure the functional and non-functional correctness of
the design. The main drawback of this approach for DSE is that it
requires the development of the complete SW stacks to be exe-
cuted by each processing node. However, such SW stack is often
not available at the beginning of the design process. Moreover,
when the virtualization model is adapted for providing accurate
execution times and power consumption, the simulation speed is
drastically reduced and so the number of simulation runs that
can be afforded at this level of abstraction.

Source-level models can provide more accuracy with short exe-
cution times for design-space exploration. Accuracy is important
to make the design points distinguishable and to validate the deci-
sions taken on then. In a source-level approach, the source code of
a functional model of the system application is instrumented with



a set of annotations. A model of the platform and of the mapping of
the application to the platform enables to determine annotation
values and thus a precise assessment of the impact of each design
alternative. The application model can be as simple as a network of
actors described as Finite-State Machines with several execution
modes [52], or a complete application [53]. There are two main
variants of the source-level approach, the ones based on traces
and native simulation.

A trace-based approach consists of two steps. In a first step, the
source code is analyzed and annotated with a set of commands
which encode the activity of the processor, e.g. executing, access-
ing memory, etc. Then the simulation serves to obtain a sequence
of such commands which is named trace. Traces depend on the in-
put stimuli, but are independent from the specific design solution.
Therefore, traces are extracted only once for a specific stimuli. In a
second phase, an off-line processing of the trace shows the effect
on performance of each design solution. The difference comes be-
cause trace commands are annotated with specific times and
power consumptions depending on the specific architectural map-
ping and platform configuration. Moreover, traces are re-sched-
uled, considering also the specific scheduling policy of the design
solution. When an abstract model of the OS is used, additional
traces have to be considered [54]. Re-scheduling is avoided when
a deterministic model of computation (MoC) is used [52,53].
Trace-based simulation has been proposed as an alternative to vir-
tualization in order to construct accurate virtual platforms for
complex, heterogeneous many-core systems supporting DSE. To
achieve this goal, multiple atomic traces per basic block allowing
an accurate reconstruction of the processor’s behavior have to be
used [55]. Higher accuracy and flexibility in the architectural map-
ping alternatives on a heterogeneous platform comes at the cost of
a more complex analysis of a higher number of traces.

Native simulation technologies have been proposed to generate
virtual platforms at the beginning of the design process [56,57].
The methodology is very similar to trace-based simulation. An exe-
cutable performance model of the system is produced by annotat-
ing the source code of the application model. The fundamental
difference with trace-based simulation is that the code is instru-
mented directly with back-annotated information able to provide
the estimated performance figures, e.g. execution times and power
consumption, during and immediately after the simulation. The
performance estimation and code annotation can be made directly
from the source-code by considering weights associated to source-
level operations. A more precise method is to calculate the anno-
tated weights after cross-compilation. This method is trickier since
it requires a correlation of the original source code with the object
code produced, whose structure can be significantly changed. It
also requires the availability of the cross-compiler. However, last
advances have enabled the application of native estimation to
binary code [58], which has widened its applicability for simula-
tion-based DSE.

While a trace-based approach can save simulations, native sim-
ulation is more general in the support of application models such
as the one proposed in this work. Trace-based approaches, e.g.
[37,53], require relying on a computational model, such as KPN
which ensures the validity of the reused trace when the different
design solutions are explored.

2.3. Design exploration frameworks

Analytical DSE approaches abstract the DSE problem into a
mathematical or formal model, which enables the application of
known solving and optimization techniques and tools. They have
tackled the mapping and scheduling problem in separated phases
[60] due to its NP-complex nature. Later work [61] has proposed
constraint-based programming (CP) to achieve completeness, and
to separate the design problem (constraint modelling) from the
solver engine (constraint solving). Later approaches have enabled
the finding of several mappings to be exploited by a run time
scheduler, like in [62], where each mapping reflects a Pareto opti-
mum considering a throughput-energy trade-off.

Analytical approaches have traditionally relied on simplified
modelling approaches, e.g. the synchronous dataflow (SDF) or the
homogeneous SDF MoCs. The scenario-aware or SA-SDF based ap-
proach in [63] has enabled a better consideration of application
dynamism for analytical approaches. However, it still relies on
worst-case workload estimation techniques, e.g. WCETs [59], and
difficulties are found when advanced architectures which improve
average optimization, but spoil predictability have to be taken into
account. Moreover, analytical DSE techniques have focused on a
limited set of performance metrics, typically throughput, due to
the challenge of finding precise analytical models for them.

Several advanced simulation-based DSE frameworks have been
recently proposed. Sesame [64] is an environment, integrated in the
Daedalus [65] system-level design flow. Sesame selects candidate
architectures using analytical modelling and multi-objective opti-
mization relying on a tool called SPEA2, while it uses simulation
for evaluating the candidate architectures. The interface between
problem-specific and generic parts of the exploration framework
is made explicit by defining an interface called PISA [65].

Multicube [66] and NASA [67] have proposed generic infra-
structures enabling the coupling and combination of different sim-
ulation-based performance estimation and exploration tools for
system-level MPSoC DSE, which avoids recompilation of the exe-
cutable model for each architectural alternative explored. More-
over, NASA proposes a dimension oriented approach, which
consists in the possibility of enabling a concurrent exploration
(co-exploration) of various design dimensions, which potentially
can employ different exploration algorithms. NASA simulation
framework relies on MoCs which avoid deadlock by construction
for facilitating the automation of the exploration. NASA does not
support a MBD front-end.

The exploration algorithm or exploration tool is important in
order not only to avoid the exhaustive exploration of a huge design
space in a limited and feasible time, but also to make it as effective
as possible. Exploration algorithms need some intelligence to de-
cide the experiments to perform in the most efficient way. Tradi-
tional techniques have proposed Design of Experiments (DoEs)
[68], Response Surface Modeling (RSMs), e.g. DPSO [69], and mul-
ti-objective optimization heuristics, such as MOSA [69], NGSA-II
[71] and MOE/AD [72].

The approach shown in this paper has evolved Multicube-Ex-
plorer [20], developed in the context of the Multicube project
[66], towards SCoPE+, a multi-level performance exploration tool,
supporting SW and HW exploration, and implementation agnostic
and component-based application models, directly derived from
the UML/MARTE model. This model is more general than the KPN
front-end of Sesame [64] or NASA [67]. By relying on SCoPE+, thus
on native simulation, the accuracy of the method is ensured with
regard to the trace-based performance estimation methods. As
NASA [67], the proposed approach is in the context of a framework
based on XML-based interfaces, which facilitate the integration of
other performance estimation and exploration tools, and which
avoid the regeneration of the executable model.

3. UML/MARTE Modeling methodology

3.1. Basic features

The system Modeling methodology described in this paper
covers the main demands addressed at the end of Section 2.1. It
follows a component-oriented approach; it is software centric;



and it follows Model Driven Architecture (MDA) concepts. The de-
sign exploration and implementation activities are developed
around the model, which is also amenable to be used for static
analysis and for generating documentation. The methodology also
enables modelling and estimation of implementing application
components in HW (HW mapping). Another remarkable feature
is that the COMPLEX methodology supports the separation of con-
cerns paradigm, keeping the functional and non-functional con-
cerns well-differentiated. This separation is achieved by
providing distinct model viewpoints to the designer, in the shape
of UML packages, each one focused on a relevant aspect of the sys-
tem. In particular, the views supported are the following:

� Data View: captures the data model that is used at system level,
i.e., types of data exchanged at interface level.

� Functional View: defines the functional entities of the system, as
a set of classes implementing and using a group of interfaces.
� Communication and Concurrency (CC) View: copes with the defi-

nition of the different components and their assembly to model the
application architecture. Components wrap instances of the classes
defined in the functional view, delegating the operations of their
provided interfaces on those interfaces. It also captures the non-
functional aspects of system functionality related to the applica-
tion behavior, such as concurrency and real-time constraints.
� Platform Description View: describes both software and hard-

ware resources of the platform.
� Architectural View: describes the platform architecture and the

architectural mapping of the application components onto plat-
form processing resources. It is also the view where the DSE
parameters, rules and constraints that will enable the exploration
of the different architectural solutions are captured.
� Verification View: is user for modelling the system stimuli

environment.

3.2. System Modeling: A single design solution

3.2.1. Description of the Platform Independent Model (PIM)
The initial steps in the methodology consist of identifying the

system functions, modeled through the Data Model view and the
Functional view.

The Data Model view is captured as a UML package with the
COMPLEX <<Dataview>> stereotype applied. A similar procedure
is applicable for the rest of model views. All the information corre-
sponding to a view is captured within a UML package decorated
with a COMPLEX specific stereotype which identifies the view.

The Data Model view contains all the non-primitive data
structures which will be exchanged by model components. Captur-
ing this information in the model prevents incompatibilities. More-
over, it also helps to provided information about complex data
structures, e.g. size, which can be later exploited by the perfor-
mance assessment methodology. UML classes are used to declare
new data types in the model. The MARTE <<CollectionType>> ste-
reotype is used to capture regular structures, i.e. arrays, as shown
in Fig. 2.

System functions are captured by means of the use of UML use
cases and the relations between them. The UML use cases will al-
low the designer to identify the UML interfaces that model the sys-
tem functions and create the UML classes that would implement
them. System functions are modeled by means of UML interfaces
stereotyped with the MARTE <<ClientServerSpecification>> stereo-
type. The operations of <<ClientServerSpecification>> interfaces
might have parameters whose types should have been defined in
the Data Model.

Fig. 3 shows the functional view of an enhanced full rate (EFR)
vocoder system [76]. An EFR vocoder is a compression/decompres-
sion system widely employed in (GSM) mobile telecommunication
to save bandwidth. A vocoder is composed of an encoding branch
and a decoding branch. The encoder is in charge of transforming
raw audio frames into a compressed format, according to a model
of the human voice production, which considers parameters such
as the pitch. The decoder branch performs the inverse operation.
Four classes enclosing Vocoder functionality are shown:
‘‘Audiocontroler’’, ‘‘Coder’’, ‘‘Decoder’’ and ‘‘VoiceActivity’’. These
classes realize services pointed by the operations of the <<Client-
ServerSpecification>> interfaces, captured by means of UML inter-
face realizations. For instance, the VoiceActivity class provides a
functional implementation for detect and reset methods of the VA-
DIF interface. These classes can also use services provided by other
classes, which is modeled by means of UML ‘‘use’’ relationships. For
instance, the ‘‘Coder’’ component uses voice activity detection ser-
vice, by calling the detect method. As shown in Fig. 3, interface
methods declare input and output parameter, whose type is de-
clared in the data view.

Moreover, classes may require interfaces that are provided by
the surrounding environment (i.e. devices connected to the sys-
tem). The COMPLEX <<ExternalInterface>> elements in the bottom
of Fig. 3 model the services that the vocoder requires from the envi-
ronment through the expression of UML usage relationships be-
tween the vocoder classes and those interfaces. Additionally, it is
possible to declare services provided to the environment through
the declaration of UML interface realizations of external interfaces.
This is the case of the CoderCtrlIF interface, which is provided by the
vocoder and thus can be required and used by the environment.

The concurrency and communications (CC) view defines both
the application components and the application seen as an assem-
bly of components communicating through well-defined
interfaces.

In the first step, the application components must be captured.
The CC view contains two kinds of components stereotyped with
either MARTE <<RtUnit>> or MARTE <<PpUnit>> stereotypes. The
former stereotype identifies a component that has its own execu-
tion flow, providing/requiring services to/from others components
by means of its provided and required interfaces. The latter repre-
sents a passive component that provides concurrent or guarded ac-
cess to its services to the former kind of components. The
functional behavior of those components is defined by instantiat-
ing the functional classes as properties of the component and del-
egating the component interfaces on those properties. Components
expose UML Ports decorated with the MARTE <<ClientServerPort>>
and <<RtFeature>> stereotypes for defining the provided or re-
quired interfaces that serve for communicating with other compo-
nents, and for specifying real-time non-functional attributes for
each operation of the interface.

In a second step, the architecture of the platform independent
model (PIM) is captured. As the proposed approach is software
centric, a default implementation is a SW implementation, and
the PIM reflects an application. Thus the PIM architecture is the
application architecture. First, the user has to add to the CC view
an additional UML component decorated with the COMPLEX
<<system>> stereotype which represents the PIM or application.
The application architecture is captured by means of a composite
diagram, where application components, such as the one shown
in Fig. 4, are instanced and interconnected.

As an example, to capture the EFR vocoder PIM, first a
<<system>> component named ‘‘EFRVocoder’’ is declared in the
UML package corresponding to the CC view. The internal structure
of the ‘‘EFRVocoder’’ component is then described through the
UML composite diagram shown in Fig. 5, which reflects the archi-
tecture of the EFR vocoder application. It consist of four component
instances: ‘‘controllerComp’’, ‘‘decoderComp’’, ‘‘coderComp’’, and
‘‘VADComp’’. Each instance, e.g. ‘‘coderComp’’, is an UML property



Fig. 2. Data model of the EFR vocoder.

Fig. 3. Functional View of the EFR vocoder showing interfaces and classes.
typed as a component previously defined in the CC view, e.g. ‘‘Cod-
erComp’’. Component instances are assembled through UML port
to port connectors. The <<system>> component may also define
external ports to interact with the system environment. Those
UML ports are not stereotyped but typed with the interfaces which
have been declared as COMPLEX <<ExternalInterface>> in the
Functional view.

3.2.2. Platform Model and Architectural Mapping (PSM)
The proposed modelling methodology supports the description

of the HW/SW platform within two views, the Platform view and
the Architectural view.

The Platform view contains the declaration of the SW and HW
components which will appear in the platform. These components
are declared by means of UML classes (thus in a UML class dia-
gram) decorated by MARTE sterotypes. An RTOS is declared by
relying on the MARTE <<Scheduler>> stereotype. Declaration of
HW components relies on the MARTE Hardware Resource Model-
ing (HRM) subprofile (i.e. <<HwProcessor>>, <<HwBus>>, <<HwC-
ache>>, <<HwRAM>>, etc.).

The architecture of the platform is captured within the Archi-
tectural view, specifically within a UML component (‘‘archi_sys-
tem’’ in Fig. 6), decorated with the COMPLEX <<system>>
stereotype again. This <<system>> component inherits from the
COMPLEX <<system>> component defined in the CC view, and
therefore it can refer application component instances and ports
(show with the arrow symbol in Fig. 6). The platform architecture,
as reflected in Fig. 6, contains instances of HW and SW components
declared in the Platform view (i.e. RTOS, processors, memories,
etc.), and port to port connections among them. Here, instance spe-
cific values for component attributes (e.g., a processor instance can
be assigned a frequency different from other processor, regardless
the process type is the same) can be also captured.

The architectural view describes also the architectural mapping,
that is, the mapping of application component instances to plat-
form component instances. For it, UML abstraction relationships
decorated with the MARTE <<Allocate>> stereotype are used. It is
noted that the external ports defined in the PIM are now delegated
on specific HW instances which model <<HwIO>> devices.

3.3. Features for DSE: Modeling a design space

The diagram of Fig. 6 models a single implementation since it
shows a fixed architecture, a single architectural mapping, and



Fig. 4. Declaration of the AudioController component in the CC view.

Fig. 5. Architecture of the EFR vocoder Application.
fixed attributes for platform components (e.g. processor frequency,
memory size, etc.). The COMPLEX UML/MARTE modelling
methodology enables the specification of a design space instead
of a fixed solution.
3.3.1. Specification for Design Space Exploration
The COMPLEX UML/MARTE Modeling methodology enables

the specification of a design space which can consist of (a) a
set of possible architectural mappings (allocation space); (b) a
range of values for platform attributes (attribute values space);
and (c) a set of platform architectures (architecture space). En-
abling a parameterization of the model for DSE purposes on
these three aspects enables the description of a wide set of
implementation alternatives, which should cover almost any
exploration need.

An approach where any application component could be
mapped to any targetable platform component, or where each
attribute could take any feasible value would easily lead to an
intractable design space size. In contrast, the proposed methodol-
ogy enables a controlled building of the design space. The idea is
that the user has to explicitly add the constructs that build up
the design space on top of a ‘‘base model’’ like the one presented
in the previous section. Such constructs override fixed attributes
which could clash with them. This way, in an implementation con-
text, the COMPLEX UML/MARTE model can reflect ‘‘one solution’’
through the ‘‘base model’’, which eventually, can be updated with
the values resulting from the DSE process. The same COMPLEX
UML/MARTE model can also reflect a design space in a DSE context
(the one we are focusing in this paper). In general, for DSE pur-
poses, the ‘‘base model’’ does not need to be complete. However,
the ‘‘base model’’ plus the design space captured has to reflect
one or more solutions, which configure the design space.

An explicit description of the design space considering the
aforementioned aspects can still easily lead to a huge design space.
Because of this, the modelling methodology enables shaping and
constraining the design space through the definition of DSE rules
and DSE constraints. Finally, the methodology also enables the def-
inition of the output metrics to be considered in the building of the
goal functions employed by exploration tool in the DSE loop. A
dedicated UML profile, the COMPLEX profile, has been created to
add the necessary semantics that are missing in the MARTE profile
with regard to the aforementioned features. Four entities have
been created to represent the necessary concepts: DSE exploration
parameters, of three possible types (allocation parameters, scalar
parameters and vector parameters), DSE Rules, Constraints and
Estimation parameters (for defining output metrics).



Fig. 6. Architecture of the EFR Vocoder system.

Fig. 7. Specification of a set of architectural mappings.
3.3.2. Definition of the design space
3.3.2.1. Specification of a space of allocations. Architectural map-
ping is a factor with a big impact on performance. This methodol-
ogy enables the description of a set of architectural mappings. This
set is captured through one or more UML comments placed in the
Architectural view, and decorated with the MARTE <<Assign>> ste-
reotype, to specify the allocation itself, and the COMPLEX
<<DseAllocationParameter>>, which provides a name attribute to
the allocation. The name of the configurable allocation can be later
used by the DSE rules to bind the exploration space (see Section
3.3.3).

Fig. 7 shows an example for the EFR vocoder model which mod-
els 27 possible allocations (resulting from the combination of map-
ping application component instances on micro# processing
nodes). Specifically, the combinations arising from considering
the allocation of ‘‘coderComp’’ to any of the processors ‘‘micro1’’,
‘‘micro2’’, and ‘‘micro3’’ and similarly for the component instances
‘‘decoderComp’’ and ‘‘VADComp’’. As shown, it is expressed in a
compact way through a single construct. The assign construct de-
fined a space of allocation solutions which can be explored. Each
of this mapping solutions override any clashing allocation defined
with the <<allocate>> association in the based model.

3.3.2.2. Specification of an space of attribute values. Many platform
attributes can have a significant impact on system performance
(cache sizes, core and bus frequencies, etc.). The proposed method-
ology enables that the user states a subset of the attributes of the
model as DSE parameters. It is done through UML comments which
are associated to the components which contain the attributes
which are being declared as a DSE parameters and thus,
which will be explored. For capturing a DSE parameter, either a
<<DseScalarParameter>> or a <<DseVectorParameter>> COMPLEX
stereotype is applied to an UML comment. These stereotypes en-
able the association of a range of values the attribute they refer
to, and which will override at exploration time the default values
at the base model. That is, the exploration tool will assign one of
the values stated by DSE parameter at exploration time. A variety
of attributes can be defined as DSE parameters, including working
frequencies, sizes, bus widths, etc.

DSE scalar parameters specify a sequential progression associ-
ated to a specific non-functional property. The designer can specify
either minimum, maximum and step values to define possible val-
ues or annotate a specific sequence of values. DSE vector parame-
ters enable modelling vector parameters with constraints on the
possible combinations of the elements.

Fig. 8 shows the Modeling of the platform parameters space for
the EFR Vocoder model. In the example, this space is defined by the
possible values of data and instruction cache memories (1K, 2K,
4 K, 8K and 16K); and by the consideration of different core fre-
quencies, which is specified through other three DSE scalar param-
eters. Thus, the size of the space of platform attribute values in
Fig. 8 example is 5 (core frequencies) � 5 (data cache sizes) � 5
(instruction cache sizes) = 125 design alternatives only for the first
processor, augmented by the frequencies combinations for the
other processors.

3.3.2.3. Specification of several platform architectures. DSE parame-
ters and <<Assign>> comments widen the design space without
changing the platform architecture. However, the user might be
interested in exploring the impact on performance of different plat-
form architectures. The COMPLEX UML/MARTE modelling method-
ology supports the specification of different platform architectures



in the same model. It is done by enabling the specification of several
architectural views, in a similar way as several architectures can be
associated to an entity in VHDL. The designer can include in the DSE
loop solutions where the platform architecture is very different and
thus the alternatives cannot be represented by means of a parame-
terized template. Additionally, it is also possible to capture a cluster
of processors through a single component instance, whose multi-
plicity is associated to a DSE parameter.

3.3.3. DSE rules
DSE rules reflect additional design constraints which enables the

reduction of the size of the design space. They can be used to elim-
inate solutions that might not be feasible because of practical rea-
sons, e.g., certain physical platforms are not available.

DSE rules are logical expressions referring one or more DSE
parameter included in the model. DSE rules create a logical condi-
tion that in case of not being fulfilled discards the design point
from the set of solutions to be explored. DSE rules are specified
as comments with the COMPLEX <<DseRule>> stereotype.

A straightforward application of the DSE rules is over the scalar
DSE parameters. For instance, the user can specify a rule to state
that the instruction and data caches have to take always the same
size in the exploration space, as shown on Fig. 9a.

However, DSE rules can be applied in a more general way, to
state which stimuli environment to explore, or to limit the alloca-
tion space, since the assign constraint can reflect many allocations.
As a simple rule, the allocation space defined by the rule of Fig. 7
can be reduced by the set of rules shown in Fig. 9b stating that
the ‘‘coderComp’’ and ‘‘decoderComp’’ components cannot be allo-
cated to the same processor. This would reduce the allocation
space from 27 to 18 mappings.

3.3.4. Estimation parameters
The methodology allows stating in the model which output

metrics have to feed the exploration loop. They are called estima-
tion parameters in the sense that, in a DSE context, performance
metrics are obtained by means of a performance estimation tech-
nology. There are two types of DSE estimations. DSE Application
Estimations refer to non-functional attributes corresponding to
the application components, e.g. the minimal inter-arrival time of
a sporadic service. DSE Platform Estimations refer to the
performance metrics on the platform resources, e.g. load of CPU,
power consumption, etc. The estimation parameters are
defined in the Architectural View by means of UML comments
stereotyped with the COMPLEX <<DseAppEstimation>> and
<<DsePlatformEstimation>> stereotypes.

Fig. 10 shows how the model states the reporting of two applica-
tion performance metrics of the EFR vocoder to the exploration loop:
the mean and the maximum execution time of the TXControl and of
the RXControl operations (associated to the ‘‘controllerComp’’ com-
ponent). These metrics can be used for the definition of the objective
Fig. 8. Attribute value space fo
function(s). The definition of the objective functions is tool-depen-
dent, and thus delegated to the COMPLEX toolset. Estimation param-
eters can be later referenced to define DSE rules and constraints.

3.3.5. DSE constraints
In the proposed methodologies DSE constraints refer to perfor-

mance constraints. DSE constraints are logic expressions referring
to one or more estimation parameters. That is, DSE constraints sup-
port the reduction of the set of feasible design alternatives by rely-
ing on output metrics. DSE rules directly bound the design space.
DSE rules lead to discard design points, which required no evalua-
tion, that is, no simulation. However, DSE constraints do not pre-
vent the evaluation of design points. They are relevant after each
evaluation (simulation). Specifically, the COMPLEX toolkit, before
completing the DSE loop iteration, reads the output performance
metric and evaluates the logic expression to check the validity of
the design point. If the logic expression is proved to be false the
framework discards such design point from set of feasible solutions
reported. For instance, the DSE constraint of Fig. 11 states that the
system power consumption, a platform performance metric, has to
be reported and that any design solution involving power con-
sumption over 2 W has to be discarded.

3.4. Modeling of the stimuli environment

In the proposed methodology, the environment is captured
through UML elements and by relying on the UTP standard profile.
As shown in the following subsections, the methodology provides a
structured way to capture all the information of the stimuli envi-
ronment model, clearly separating it from the system model. Rele-
vant information of the environment model includes the
declaration of environment components; how the environment
components are interconnected with the system; and how the sys-
tem and environment services are called, that is, if there is any spe-
cific pre-stated order among those service calls. Completing all this
information enables to complete the description of an environment
scenario, which model the input stimuli for a specific use case.

Furthermore, one novel and DSE specific feature of the proposed
methodology is that the same environment model can comprise
several scenarios. In correspondence with this modelling capability,
the COMPLEX UML/MARTE tooling supports the generation of an
executable model where the scenarios to be simulated can be con-
figured. This way, the exploration tool can simulate the perfor-
mance of the system for one scenario, a specific set of scenarios,
or all the scenarios captured in the environment model. This be-
comes only a matter of the explorer configuration script, which
can be easily configured through the COMPLEX UML/MARTE
tooling.

The proposed methodology delegates the inclusion of functional
code to the user after the code generation phase. The injection of
functional code is more practical later on at the SystemC level,
r the EFR Vocoder model.



Fig. 9. DSE Rules.

Fig. 11. DSE constraints.
where the user can simply identify hook functions produced by the
generator of the SystemC stimuli code, and fill them with user-spe-
cific SystemC environment functionality.

3.4.1. Environment structure
The environment model is enclosed within a specific view of the

COMPLEX UML/MARTE model, the Verification view. The
verification view is modeled as a UML package with the COMPLEX
<<VerificationView>> stereotype applied. This way, a tool-inde-
pendent separation of system and verification elements in the
model is achieved.

The verification view declares the whole set of environment ac-
tors as a set of UML components with the UTP <<testComponent>>
stereotype applied (bottom part of Fig. 12).

For instance, in the EFR vocoder environment model:

� The Microphone component provides a fixed number of frames
(N) corresponding from a standard test to the system to be
coded.
Fig. 10. Estimation
� The Transmitter component receives the frames that have been
coded by the coder from the inputs generated by the
microphone.
� The Receiver component emulates the reception of coded frames

to deliver them to the system for decoding.
� The Speaker environment component receives the output of the

decoder.
� The Configurator environment component calls the set_dtx_-

mode configuration service of the vocoder to state if the vocoder
works in continuous or discontinuous mode. In the latter case,
parameters.



the voice activity detection functionality is enabled and the
coder can get a better compression if not voice, but just noise
is detected.

An additional UML component with the UTP <<testContext>>
stereotype is used for the declaration of a top component
(StimuliCompo in Fig. 12) which will be used to model the structure
of the verification environment, and moreover its interconnection
with the system through an associated UML Composite structure
diagram. Fig. 13 reflects the structure of the EFR vocoder verifica-
tion environment and its interconnection with the EFR vocoder
system. It is composed of instances (UML properties) of several
environment components (<<TestComponent>> components).

The system component is captured as a reference to the system
component of the Architectural view. Using a reference to the sys-
tem component of the architectural view keeps the model compact
and saves coherence checks between the verification view and the
system views. The application of the UTP <<SUT>> (System Under
Test) stereotype to the system component instance, facilitates its
identifyication it among environment component instances by
the code generation tool, which does not need to navigate the
whole model.

Port to port interconnections among the system component and
environment components fix which environment components will
implement the services called by the system, and which environ-
ment components will call services provided by the system to
the environment. For instance, in the EFR vocoder model, the
configurator environment component is linked through a port to
the system toCtrl port, to state that the configurator component will
call (thus will use) the set_dtx_mode service provided by the
CodeCtrlIF interface.
3.4.2. Modeling one scenario
In order to complete the description of one scenario, an explicit

scenario declaration has to be done. A scenario is captured as a
UML package belonging to the verification view package, and ste-
reotyped with the COMPLEX <<scenario>> stereotype. Then a
new <<TestContext>> component has to be declared within the
Fig. 12. Declaration of Environment and tes
scenario package. Moreover, the new <<TestContext>> component
must be declared as a specialization of the top <<TestContext>>
component used to capture the structure of the environment and
of the system-environment interconnection (Figs. 12 and 13). The
UML generalization association is use for it, as shown in Fig. 14.

The advantage of this construct is that one description of the
environment structure and its interconnection with the system
can be easily reused for describing several scenarios. Then, in order
to complete the description of the recently created scenario, its
behavior has to be captured.
3.4.3. Modeling the scenario behavior
The scenario behavior refers to the modelling of the interactions

between each environment component and the system
component.

Each interaction is a totally ordered sequence of service calls
between the system and the environment component. Service calls
can be done from the system or from the environment; and can be
synchronous or asynchronous.

The interactions are captured by means of UML sequential dia-
grams. The sequential diagram reflects an ordered sequence of
UML messages. In the proposed methodology, such messages
represent function calls, that is, service calls, owned by
<<ExternalInterface>> elements which are provided either by the
system or by the environment. The sense of the messages states
whether the system calls a function provided by the environment
or, to the contrary, the environment requires a service provided by
the system.

Fig. 15 shows an example of sequence diagram capturing the
interaction between an environment component and the system
component. A UML lifeline references the instance of the system
component (the EFR vocoder), while the other lifeline references
an instance of the environment component (the Microphone). The
getFrame UML message reflects a call from the EFR vocoder to ob-
tain a new raw voice frame. Fig. 15 also shows the possibility for
capturing in a compact way a loop through a UML loop combined
fragment, which in this example bounds the number of frames send
to the ones available by the test (10 frames).
t components in the Verification view.



Fig. 13. Structure for the EFR vocoder environment.

Fig. 14. Declaration of an scenario through a generalization.

Fig. 15. Sequence diagram for the interaction between the EFR Vocoder system
component and the Microphone environment component.
Two different types of UML messages are used: synchronous
messages and asynchronous messages. They enable the specifica-
tion of synchronous and asynchronous services. Synchronous ser-
vices require the return of the function call before continuing the
execution, e.g. because the client expects some output information
from the service call. An UML synchronous message is represented
by a filled arrow head (as the one used in Fig. 15). UML asynchro-
nous messages are represented through an open arrow head.

The sequence diagram graphically represents the order in the
exchange of messages. However this ordering information is not
contained in the XMI file containing the information of the UML/
MARTE model, and which is used as input by code generation tools.
Therefore, in order to keep message ordering information in the
model, a unique order identifier (‘‘i:’’) can prefix the names of
the messages of the sequential diagram. This index is sufficient
when the sequential diagram express the interaction of the system
with a single environment component.

The methodology supports a compact specification of the inter-
actions. Specifically, the example of Fig. 16 shows a sequential dia-
gram that reflects the specification of the interaction between the
EFR vocoder system and the transmitter and receiver environment
components in a scenario which reflects a closed loop configura-
tion, where the transmitter output is directly wired to the receiver
input. In such a case, a single sequential diagram (instead of two)
serves to capture the interaction of the system with the two envi-
ronment components.

The methodology also enables to fix order relationships among
messages exchanged by different environment components with
the system. Specifically Fig. 16 states that the Receiver environment
component will not serve a receiver frame until a previous frame
has been sent by the Transmitter environment component. This
way, the order semantics of the closed loop scenario is modeled.
Since this condition refers to the interaction of the system with
two environment components, a UML combined fragment has been
used.



3.4.4. Modeling several scenarios
The proposed methodology supports the modelling of several

scenarios. That is, a single environment model covers the stimuli
associated with different use cases. As a result, it is possible to per-
form a DSE exploration for a specific use case or a set of use cases,
and to tailor the design for this use case(s). Complementarily, a
wide range of scenarios can be used to validate a single design
them. Each scenario is modeled by means of a scenario package,
which in turn contains the test case component specializing the
top test case component. This test case component contains the
environment structure with the specific interactions which de-
scribe the new scenario.

In Fig. 17 an example of two scenarios for the EFR vocoder case
is shown. The first scenario, ‘‘scenario_FullFuplex’’, reflects a full du-
plex case, where the ‘‘Transmitter’’ and ‘‘Receiver’’ environment
components run in parallel. Thus the codification and decodifica-
tion branches of the vocoder will be able to run in parallel if they
are mapped to different processors, or at least in concurrency if
they are mapped to a single processor with a round-robin schedul-
ing. A second scenario, ‘‘scenario_local_closed_loop’’, reuses the
same structure of environment and connection with the system,
but defines a different interaction (the one shown in Fig. 16) which
emulates the closed loop configuration.

3.4.5. Modeling physical time information
The features presented up to here enable the specification of a

partial order of service calls in the environment. Formally speaking,
this is the most abstract way to specify time constrains in the envi-
ronment model. Furthermore, the proposed methodology enables
the association of physical time information to the environment
model. Specifically, the initiation of each service call can be placed
in a specific physical time stamp. In order to specify it, the MARTE
<<timedProcessing>> stereotype is used. This stereotype is applied
to the UML message resembling the service call placed in physical
time. The stereotype provides the attribute ‘‘start’’, which denotes
an UML Time Event, which in turn is placed in physical time
through an UML Time Expression.

4. Generation of the executable model and exploration

4.1. Complex toolset

The COMPLEX modelling methodology is supported by the
COMPLEX Eclipse Application (CEA) tool which provides an inte-
grated framework for the HW/SW co-design and design explora-
tion. This tool is integrated within the Eclipse framework and
Fig. 16. Sequence diagram for the interaction between the EFR Vocoder an
makes extensive use of the Eclipse Modeling Framework (EMF)
[77] and Model-to-Text facilities [78]. This section aims at provid-
ing a flavour of the most important features of the CEA tool in sup-
porting the COMPLEX modelling methodology.

The CEA tool (shown in Fig. 18) is based on open-source stan-
dards and tools so it guarantees its compatibility with other exist-
ing development environments in the market. Interoperability,
configurability and extendibility are the main features that drove
the development of the tool.

The tool is built around the PapyrusMDT [79] modelling envi-
ronment, which serves mainly as a UML (graphical) model editor
with a set of interesting features supporting the model
development:

� Support for editing any model compatible with the Eclipse
Modeling Framework (EMF) model, in particular UML2 models
and SysML.
� Support for UML profiling by providing extensions to register

UML-based profiles, like the MARTE profile or the COMPLEX
profile.
� High customizability, in particular the modelling palette, fea-

ture highly appreciated by users.

The COMPLEX Eclipse Application provides a set of features to
support the COMPLEX methodology in the development of the
model. They can be listed in the following bullets:

� Automatic generation of the COMPLEX project structure (i.e.
creating COMPLEX views).
� Support to the configuration of the DSE loop and automatic gen-

eration of the necessary inputs to the exploration tool.
� Implementation of set of model analysers for ensuring that the

model is consistent with the defined modelling rules described
in the COMPLEX methodology, and which enforce the separa-
tion of concerns by verifying that each model viewpoint only
specifies the right modelling entities, e.g. the Functional view
only contains classes and interfaces.
� Support for the generation of the performance executable

model:
o which produces a set of text files (i.e. source code, text files,

XML files) with all the information for building the performance
model, which can be used by different performance estimation
back-ends;

o which structures automatically produced source code, separat-
ing the ancillary one from the code amenable for user edition;
d the transmitter and receiver components in a closed loop scenario.



Fig. 17. Several scenarios are supported.

Fig. 18. Snapshot of COMPLEX Eclipse Application.
o which triggers the compilation of the SCoPE+ model, produces
the configuration scripts of the exploration tool, and in sum-
mary enables a smooth integration with the analysis and
exploration tools (i.e. SCOPE+ and MOST tools, respectively),
so that the generation of the performance model executable
and execution of the exploration tool is fully automated
� Implementation of a customized modelling palette that limits

the set of the UML/MARTE design entities to a sub-set for a
given model viewpoint and UML diagram type, as defined by
the posed methodology

Additionally, the tool affords analysis and transformation ex-
tension points by using the existing Eclipse features so that third
party developers may add new analysis or transformation engines
to the existing ones. This feature improves the extensibility of the
tool by allowing adding new functions to interface other tools or
methodologies.
4.1.1. UML/MARTE model editor and code generation
Fig. 19 depicts the design flow where the CEA tool is inscribed.

The UML/MARTE model is produced by the PapyrusMDT editor,
which comprises the PIM, the platform, the architectural mapping,
the description of the design space, and the description of the sti-
muli environment. Additional source code might serve as input to
the application and stimuli environment in the UML/MARTE
model.

If the analysis and/or transformation engines installed in the
tool did not trigger any error, the tool generates the following out-
put artefacts:



� The application source code skeletons, to be implemented by
the user with the actual code. It is noted that the tool generates
the necessary stub code to simulate the actual code with the
non-functional information included in the model. The tool
can also automatically compiler, reference and link source code
complementing the model with functionality (and overriding
the default workloads). It can be also done afterwards, after
code generation.
� The application component containers and connectors (i.e. sup-

ported by the CFAM front-end of SCoPE+) that wrap the applica-
tion functional code into components and implements the non-
functional concerns declared in the model (i.e. cyclic execution
of the application functions, service dispatching).
� The XML files that configure the analysis tool (i.e. SCoPE+ tool).
� The source code and components of the stimuli environment.
� The configuration script that defines the objective functions,

constraints and analysis methods for the exploration tools (i.e.
MOST tool).
� The IP-XACT specification of the hardware platform description

that will serve as input to generate the virtual platform on
which the application will be executed.

4.1.2. Model analysers
The COMPLEX methodology makes use of a sub-set of the UML

modelling entities and MARTE stereotypes for specifying the sys-
tem and the stimuli environment. The UML meta-model imple-
mented using the EMF only validates the UML model against the
OMG UML standard, so it is necessary to enforce that the given
UML/MARTE model follows the modelling rules and constraints
specified in the COMPLEX modelling.

By means of the CEA extension points for analysis, the CEA tool
implements a set of analysis engines that focus their model checks
on specific aspects of the system:

� Compliance of the UML/MARTE model with the COMPLEX com-
ponent model
� Enforcement of the separation of concerns concept by verifying

that all views define the right design entities
� Verification of the model consistency
� Identification of potential issues while model-to-text

transformation
Fig. 19. COMPLEX Eclipse Application i
Prior to the generation of the different output artefacts produced
by the application in Fig. 19, designers should execute each of the
existing analysis engines. In case of any error triggered by the tool,
the framework reports errors and disable the code generation.
4.2. SCoPE+

SCoPE+ is the simulation infrastructure supporting the produc-
tion of the performance model from the text-based representation
of the system, the environment and the design spaced produced by
CEA application. It supports the component-oriented structure of
the COMPLEX UML/MARTE model. In that context, the generation
of the executable model combines four different inputs: the source
code of each component, the integration wrappers (called CFACM
wrappers) that connect the functional components and the simula-
tion infrastructure, a set of XML files describing the HW platform,
the allocation of functional components to HW resources and the
design space; the compilation scripts; and finally, the SystemC
code modelling the environment.

With those inputs, the executable model can be generated, en-
abling the simulation of the system and obtaining different metrics
such as time delays, power consumption or CPU utilization that
can help the designer to evaluate the different configurations
selecting the optimal ones.

A new simulation technology called SCoPE+ has been developed
to give support to the features covered by the modelling method-
ology presented along the paper and for DSE. This simulation tech-
nology extends the previous SCoPE infrastructure ([14–20]) and
provides a new solution oriented to design space exploration.

A set of features made SCoPE suitable for being selected as a
base for the simulation performance estimation framework re-
quired, which led to SCoPE+. SCoPE relies on native simulation,
which enables fast performance assessment of the system. A set
of specific plugins [16,17] made SCoPE a more suitable tool for
DSE. In previous work, we referred to this toolset as M3SCoPE, to
distinguish it from the core of the tool. M3SCoPE enabled the gen-
eration of a highly configurable model supporting an XML interface
compatible with several exploration tools, e.g. MExplorer [21] or
ESTECO [80]. Through those interfaces, the exploration tool can
first configure a new solution and later launch the simulation, to
finally receive the estimated metrics to evaluate the solution.
n the COMPLEX UML/MARTE flow.



M3SCoPE supports run-time generation of the model. That is, the
compiled model is a platform template, which requires a set of
parameters to be passed for defining the specific solution. This
way, the configurable and executable performance model is com-
piled only once and each new model generation and simulation
does not require a re-compilation. This is exploited in the UML/
MARTE COMPLEX flow to fit the general schema of Fig. 1. In the
proposed flow, the UML/MARTE model becomes an executable per-
formance model after the application of a code generation step,
and then a compilation step (as shown in Fig. 19). These two steps
are applied only once, while the generated configurable and exe-
cutable performance model can be simulated multiple times.
Therefore, code generation and compilation overhead is minimized
in the exploration loop. M3SCoPE also added a set of advanced fea-
tures for accuracy. Specifically, instruction cache effects, compiler
optimizations, the effects of the operative system, and processor
allocation were considered. Precise low-level modelling was also
enabled, since it was also possible the modelling of drivers, inter-
rupts, and direct access to HW registers through pointers.

SCoPE+ has been developed as an evolution of the SCoPE core,
and M3SCoPE. SCoPE+ supports an additional set of features re-
quired by the COMPLEX UML/MARTE flow and which configures
an advanced performance estimation toolset. Specifically, SCoPE
has provided support for:

� A component-based and implementation agnostic modelling
API (CFACM API). The CFACM API enables to reflect at a code-
level the component-based COMPLEX UML/MARTE model.
Being implementation agnostic enables the assessment before
the code development phase.
� Multi-level modelling, since CFAMCM implementation agnostic

parts can be merged with RTOS dependent (legacy) code parts
in the same model.
� Modeling of impact on performance of HW/SW communication

dependent on the architectural mapping.
� Data-cache modelling.
� Architectural mapping is supported as configurable parameter.
� Integration of SystemC environment models (compatible with

the ones automatically produced from the COMPLEX UML/
MARTE model).
� Integration of custom HW with performance estimation

models.

We address the latter two aspects in the following sections.
COMPLEX project reports provide more information on the CFACM
API. We address the remaining aspects in the following, but data
cache modelling which is out of the scope of this paper.
4.2.1. Integration of SW and HW performance estimation
methodologies

In order to fulfil complete design exploration, both the param-
eters of the HW platform and the resource allocation have to be ex-
plored. While considering different values on the HW platform
parameters is simple, since it only requires numeric modifications
in the XML files, the exploration of different allocations of the func-
tional components presents a greater challenge. Both the perfor-
mance results and the communication mechanisms must be
modified to evaluate these different allocations.

To solve the generation of different metrics depending on the
resource allocation, a solution based on the use of dynamic li-
braries is applied. Using the compilation scripts generated from
the UML model, multiple libraries are automatically built, combin-
ing the functional source codes and the integration wrappers for
each component. More exactly, one library is generated per func-
tional component and possible allocation of this component to a
different resource to be explored. During the generation of these li-
braries, the original code is annotated with additional information
that enables performing a complete modelling of the code, includ-
ing time modelling, cache access modelling and power modelling.
These annotations are performed both for SW [18] and HW [19]
possible mappings of the functional components, applying differ-
ent techniques to generate the libraries for SW and HW perfor-
mance modelling. As a result of these annotations, metrics about
time and power consumption are obtained for each block of source
code executed. This metrics are applied to the simulation to obtain
complete results for the operation of the entire system.

Once all the required libraries have been generated, the simula-
tion can start. The simulation engine starts reading the XML files
describing the HW platform and component allocations. As a re-
sult, the simulation engine generates the virtual platform and loads
the adequate libraries depending on the selected allocation of the
functional components.

Additionally, the simulation infrastructure has been developed
to support the modelling of different allocations, including map-
ping to HW and SW resources. This support is divided in two parts:
one providing the services required by the functional code to exe-
cute the functionality, and a second part managing the access to
the HW computing resources and therefore the performance
assessments.

For the former part, SCoPE+ has incorporated a new global OS
modelling infrastructure. This infrastructure enables a consistent
execution of the original, implementation agnostic source code
regardless from the allocation or design solution explored. Inter-
nally, the global OS enables shared memory spaces for keeping
an efficient and fast simulation of the model.

For the second part, similar executable models for HW and SW
resources have been created in the simulation engine. These re-
source models provide a common interface to control the execu-
tion of the functional codes, which are simulated in a different
way depending on the nature of the computing resource. For in-
stance, while in SW processors the resource model only allows
the execution of one task at a time, HW resources supports the exe-
cution of multiple tasks in parallel. Therefore, the allocation has an
impact of the execution semantics and as a consequence on the
time performance.

4.2.2. Cosimulation of the system with the SystemC environment
SCoPE operates on top of a SystemC engine, which provides ser-

vices for time modelling, and SystemC threads for HW platform
modelling. However, application task modelling directly relies on
native thread support. In SCoPE, such ‘‘native’’ application model
synchronizes with the SystemC platform model for performance
modelling. Therefore, direct integration of a SCoPE system model
with the high-level and functional SystemC environments gener-
ated from the UML/MARTE model was not possible.

SCoPE+ has solve that gap by providing a set of system-environ-
ment wrappers which translate the functional calls requiring and
providing services from/to the environment into the SystemC
channel accessing the environment model. These system-environ-
ment wrappers are also automatically generated from the UML/
MARTE model at the same time that the component wrappers cor-
responding to the system model are. System-environment wrap-
pers perform three different operations to provide correct
system-environment communication:

� Multiplexing/Demultiplexing of the information transferred as
function arguments into SystemC channel buffers and viceversa.
� Enforcing the execution order specified by UML/MARTE model.
� Performing the different operations required to model the

impact on performance of the high-level system-environment
communication as data transfers in the I/O peripherals asso-
ciated to the high-level I/O, and on the corresponding buses.



Notice that, in the UML/MARTE model, this information is pre-
sent in the Architectural view, as connections between ‘‘high-
level ports’’ and I/O HW component instances (Fig. 6).

The object code of the SystemC environment generated, which
includes the ancillary code generated by CEA, and the functionality
contributed by the user is packaged as a dynamic libraries, in a
similar was as it was done for the application components (for each
mapping alternative). This way, the regeneration of the executable
environment models (which also involves code generation and
compilation) is avoided and performed only once. Moreover, the
the simulation infrastructure can perform simulations automati-
cally with different environments, and the set of environments to
sweep in the exploration be easily configured from the exploration
tool. However, notice that although the environment will not con-
sidered as a parameter to be optimized in general, this framework
would let study, for instance, which environment conditions are
optimize certain metric.

4.3. Exploration tool and interface with the performance model

4.3.1. Most
The Multi-Objective System Tune (MOST) tool enables discrete

optimization specifically designed for enabling design space explo-
ration of hardware/software architectures. MOST is the tool inte-
grated within the COMPLEX UML/MARTE framework for the
automatic design space exploration phase.

MOST drives the designer towards near-optimal solutions to the
architectural exploration problem, by covering DoE, RSM and mul-
ti-objective optimization heuristics introduced in Section 2.2. The
final output of the framework is a Pareto set of configurations
within the design evaluation space of the given architecture and
a large set analysis on the effects of design space parameters onto
the objective functions.

MOST integrates a rich set of advanced and automated explora-
tion strategies [73–75]. MOST provides a command line interactive
interface which enables to construct the exploration strategies.
Moreover, the strategy can be captured as a command script which
is interpreted by MOST, eliminating the need of user intervention
and enabling the batch execution of complex strategies. This has
been exploited in the COMPLEX UML/MARTE flow, to enable an
interface in the CEA tool fast and convenient for novel users. Spe-
cifically, CEA produces a default MOST script performing exhaus-
tive exploration and which relies on a set of performance metrics
which can be selected by the user. The user can select metrics
among a default set of default model independent metrics (e.g., to-
tal power consumption), and from the estimations parameters cap-
tured in the model (Section 3.3.4). For each selected metric, a basic
minimization or maximization goal function is be constructed.

A distinctive aspect of MOST is that it enables to build a global
search strategy considering all the parameterizations exposed by
the COMPLEX UML/MARTE model and explained in Section 3.3.2.
CEA also enables a custom and thus direct edition of the MOST
script, which enables a flexible usage for users which want to de-
scribe a customized search strategy.

4.3.2. Interface with the performance model
In the COMPLEX UML/MARTE framework, to easily interface the

exploration tool with the automatically generated system model, a
modular approach is followed by decomposing the problem in two
main blocks: (i) the exploration tool which is mainly problem inde-
pendent (ii) the performance model, that is completely problem
dependent and exposes to the exploration tool the knobs that
can be used for the optimization.The specific back-ends used in
the implementation presented are MOST, as an exploration tool,
that is an ‘‘optimizer’’ that tries to find the solution of a specific
problem specified in the MOST script (produced from CEA and
the UML/MARTE model) by triggering the SCOPE+ performance
model.

The exploration is automatic since, once the script is configured
and MOST is launched, MOST can autonomously select each new
design point, and because MOST can transfer the configuration
data to the performance estimation tool (SCOPE+), launch it, and
collect the resulting performance metrics.

In the COMPLEX UML/MARTE framework, the exploration tool
and the performance model have adopted and improved the stan-
dard XML interface defined in [21]. In particular, the exploration
tool receives as input an XML description of the design space. Such
XML description is automatically generated from the UML/MARTE
description of the design space (explained in Section 3.3). With
such an information, MOST explores the possible solutions by
using an iterative technique. For each iteration, the executable per-
formance model receives as input a system configuration to be
evaluated. Each configuration assigns specific values for all the
parameters of the model (e.g. core frequency, cache configuration).
The evaluation of the configuration, that is, in this framework, the
simulation of a specific system configuration for a specific scenario,
produces as output the list of system metrics related to the re-
quested configuration (e.g. power, area and delay). The list of met-
rics produced by the system model can be system wide and also
local to a specific component, exposing values such as resource
usage or task execution time.
5. Experimental results

In order to show the capabilities and advantages of the pro-
posed methodology, a design space exploration of the EFR vocoder
model introduced in the previous sections has been done. Indeed,
the model was modified to show a larger and more interesting de-
sign space. It was decided to fix the mapping of some components
to avoid the exploration of equivalent design points and to explore
working frequencies independently, per processor code. The
reason for this was that, in one initial trial, it was observed that
the computational load of the components was not quite balanced
and that the coder took easily ten times more time than the deco-
der to compute.

The UML/MARTE model was captured and the SCoPE+ execut-
able and configurable model was generated. A manual adaptation
of the GSM standard source ANSI-C code of the EFR vocoder was
done just to enable a division of the original code into three
functions (one for the coding functionality, one for the decoding
functionality and one for the activity detection functionality). This
code was directly linked to the executable code generated from the
UML/MARTE model.

The GSM standard source code reused in the experiments relies
on a C model of 16-bits finite precision data types, thus it has a
modelling overhead which would not be present in a C implemen-
tation. However, it ment that on the reports the solutions did not
get below 20 ms (the time constraint associated to transmission
and reception times for this system in reality). The optimization
of such C code, e.g. substitute 16-bits finite precision data types
by float types, would modify EFR vocoder functionality at a bit-le-
vel, and would oblige to develop a more elaborated functional
automatic validation of each design solution (e.g. comparing the
signal to noise ratio of the simulated output with regard to the
one of the reference output). However that costly effort is uninter-
esting to show the validity of the proposed framework. Thus, in-
stead of that, by reusing the ANSI-C reference code, we
implemented a simpler automatic validation of each design solu-
tion through a bit-level comparison of the simulated outputs
against a standard reference output.



Table 1
Time for the full search.

Time Real usr sys usr+sys

Full search 101 m 42.909s 84 m 0.137s 11 m 19.332s 95 m 19.469s

Table 2
Experimental data for calculating the time required by the framework for preparing a
configuration and launching a simulation in a full search mode.

Time for #
Meas.

usr + sys
(average)

usr + sys
(std.dev.)

tDSE: 25 eval. of the same dp 3 40,99s 0.261s
tdp: Simulation of a design

point
6 1,64s 0,010s
The exploration space analyzed has covered different architec-
tural mappings considering the execution of the 4 components of
the vocoder (as the ones presented in Fig. 5) in up to three ARM
processors (as the ones reflected in the architecture of Fig. 6).
The mapping of the Controller and Coder components was re-
stricted to the first ARM core, to explore the effects on performance
of mapping the other two components to any of the other three
processors of the platform. To fix Controller and Coder components
to the first core no specific DSE constraint was required, but it was
enough with two <<allocate>> associations from the Controller and
Coder components to the first ARM code. The mapping alternatives
were reflected through an <<assign>> comment similar to the one
shown in Fig. 7, but removing the coder component from the
‘‘from’’ attribute. Notice that the <<assign>> construct overrode
the fix <<allocate>> associations from the decoder and from the
voice activity detection components. Additionally, as the first core
has a potential higher load, 5 possible frequencies and 5 cache sizes
have been explored for this core. For the other cores, fixed cache
sizes have been defined and three configurable frequencies ex-
plored. Therefore, the number of solutions of the design space was:

NSOLUTIONS EXPLORED ¼ 5ðfreq:ARM1Þ � 5ðcache sizes ARM1Þ
� 3ðfreq:ARM2Þ � 3ðfreq:ARM3Þ � 6ðmappingsÞ

¼ 1350solutions:

Moreover, each of these solutions was checked for two different
environments, a full duplex and a closed loop configuration. There-
fore, the virtual executable and configurable executable generated
with the COMPLEX tooling enabled 2700 different configurations. A
full search (that is, an exhaustive search) was performed, which in-
volved 2700 SCoPE+ simulations. The full search was totally auto-
matic, and required no change on the model or user intervention.
The automatic check validated the functionality of all design
solutions.

The time required for the full search in an Intel(R) Core(TM) 2
Duo CPU E6550 @ 2.33 GHz, CPU frequency 2.000 MHz, 4 MB
cache, and 2 GB of RAM was measured with the Linux time com-
mand and reflected in Table 1. One second of physical time was
simulated for every iteration. The time required for each simula-
tion was variable from 1.6 to 4.5 s depending on the test bench, fre-
quency and number of misses modeled during the simulation.

In order to estimate the average time spent in preparing the
next configuration and launching it, a specific experiment was
done in two steps. First, a specific design solution was simulated
six times independently (without MOST). The result is reported
as tdp in the bottom raw of Table 2. Then, a DSE exploration where
MOST launched 25 simulations was done. In order to ensure that
each simulation of the iteration took the same host time as the
simulation measured in the first step, the XML configuration files
were manipulated to simulate always the solution measured in
the first step and to ignore the configuration generated by MOST.
However, the transfer of such data from MOST to SCoPE + and
the launch of the simulation was measured. The time for simulat-
ing the 25 evaluations is reported as tDSE in the first raw of Table 2.

The average time spent by the COMPLEX framework on prepar-
ing and launching (tpl) the simulation of a design solution was cal-
culated then through the formula tpl = (tDSE – 25⁄ tdp)/25. The result
is 0.4 ms, a negligible time (below the tick timer precision) per
iteration.

A very conservative guess of the time saved in the design explo-
ration through the proposed framework with regard an approach
with performance model re-compilation in the DSE loop can be gi-
ven. If the user managed to reconfigure the performance model,
e.g., manually changing a parameter file, and launch the simulation
in only 2s on average (what can be considered a fast user
performance) then the full search would have taken around 1 h
and a half more time, thus making the exploration to last more
than double time than with the proposed framework, engaging
the engineer with such a boring and error prone task.

Moreover, if it is compared against an approach supporting a
MBD front-end which requires the model editions in at least on
some iteration, involving code generation and recompilation, the
gain is much more apparent. If, for instance, the user managed to
edit the UML model, regenerate the executable performance model
and pass the new arguments in 10 s on average, the full search
would take 7.5 h more. Therefore, a conservative guess let state
that the proposed framework easily reaches DSE speed ups of 1 or-
der of magnitude.

In addition, the proposed framework benefits from the detailed
and user friendly reports generated by MOST, which allows fast
and detailed analysis. As a demonstrative example, we present
some of the reports provided to the designer for the EFR vocoder
by using the proposed DSE framework. Particularly, maximum
and mean times required by receiver and transmitter functions
have been compared, relating them with instructions executed
and power consumed for the different configurations defined in
the design space.

Fig. 20a and b. show the result of the exploration within two
objective spaces: Power-TX_mean_time (power consumption-
mean transmission time) and Power-RX_mean_time (power con-
sumption-mean reception time) respectively. Looking at the figure,
it is possible to see a clear trade-off between power consumption
and transmission (or reception) times. Additionally, in both cases
the solutions result to be clustered into two main sets: one on
the top left corner characterized by a lower power consumption
and higher latency, and one on the bottom right corner character-
ized by a higher power consumption and lower latency. We will
see in the following analysis that this behavior is mainly due to
the ARM1 frequency.

To better clarify the source of the clustered behavior reported
before, Fig. 21 shows the box plot analysis on the POWER objective
for the frequencies of the three ARM cores. These reports make
easy to see a not so evident fact. The trend and sensitivity on power
consumption when increasing the core frequency is similar for
ARM 2 (micro1) and ARM 3 (micro2) cores (Fig. 21b and c). How-
ever, when it comes to the ARM 1 core (Fig. 21.a), the power incre-
ment while passing from the lowest frequency (100 MHz) to the
next frequency (300 MHz) is significant, while further increments
of frequency produce a lighter increment. This is consistent with
the larger amount of functionality mapped to ARM 1 (micro0).

The same step-like behavior in the ARM1 frequency space can
be seen for both TX_max/mean_time and RX_max/mean_time.
Fig. 22 reports the data only for the max metric. The results on



Fig. 20. Exploration results in the (a) Power-TX_mean_time and (b) Power-RX_mean_time spaces.
the mean metrics are the similar (but down shifted). Thus, since
frequency reduction highly affects computing times, the combina-
tion of that figures with maximum and mean delays can enable the
designer to identify the adequate design solutions.

Looking into the allocation parameters, Fig. 23 shows how the
allocation of the decoder component either to the ‘‘micro1’’ or to
’’micro2’’ does not change the average behavior but the distribu-
tion of the RX_max_time (the same effect was observed for the
RX_mean_time) across the different configurations. In fact, map-
ping the decoder into the ‘‘micro1’’ seems to present a more robust
Fig. 21. Box plot analysis for the Power objective on the (a) ARM1 fre
behavior than mapping it on ’’micro2’’, since most of the values for
maximum time are lower than the mean and the maximum value
is smaller than the maximum for the allocation to ‘‘micro2’’.

Additionally, information about impact of cache sizes can be ob-
tained. For example, in Fig. 24, the impact of cache sizes on the
maximum transmission time can be shown. Analyzing the figure
it is possible to see that caches smaller than 2 KB produce a dra-
matic increment on execution times, while caches larger than
4 KB have almost no impact on the result.
quency, (b) ARM2 frequency and (c) ARM3 frequency parameters.



Fig. 22. Box plot analysis for the (a) TX_max_time and (b) RX_max_time objectives on the ARM1 frequency parameter.

Fig. 23. Box plot analysis for the RX_max_time objective on the decoder_alloc
parameter.
6. Conclusions

This paper has presented the COMPLEX UML/MARTE based
methodology for Design Space Exploration of Embedded systems,
a key activity for the design of complex embedded systems. The
methodology integrates key and mature technologies in modelling,
performance estimation and exploration.
Fig. 24. Surface plot for ‘TX_max_time’ with respect t
A UML/MARTE modelling methodology, which integrates ad-
vanced features specifically suited for DSE has been presented.
The methodology consolidates key aspects for industrial model-
ling-based design, i.e. component-based design, separation of con-
cerns and concurrent development, and at the same time it
incorporates features for enabling an efficient DSE flow. In order
to efficiently conjugate model-based design with DSE, some capa-
bilities supported by the methodology, such as modelling of a de-
sign space including architectural mappings, explicit design space
description, and the generic approach presented in Fig. 1, which
avoids the regeneration of the executable performance model are
crucial to avoid exploration speed degradation of orders of magni-
tude, even for small examples. The work has also show that it is
possible to integrate the environment model in the flow, from
the model-base level down to the automatically generated perfor-
mance model. The possibility to consider and explore easily several
environment scenarios facilitates the customization of the design
to a specific set of use cases.

The COMPLEX UML/MARTE framework has practically demon-
strated the generic DSE methodology by relying on the novel CEA
framework, and on advanced tools for performance estimation
(SCoPE+) and exploration (MOST), completing a fully automated
DSE loop which produces an extensive and user-friendly informa-
tion which facilitates user analysis and decisions. Moreover, the
framework proposed is modular and extensible, in order to enable
the reuse of the UML/MARTE model on top of potentially new con-
figurations relying on other back-end performance estimation and
exploration tools.
o DataCache1 and_InstructionCache1 parameters.



Future work will aim a cooperative DSE framework which con-
nects the proposed framework with an analytical DSE framework
to target efficient designs of real-time and mixed-criticality sys-
tems. The support of the domain-oriented co-operative searching
proposed by NASA [67] is also interesting. It would likely require
changes on the exploration part of the proposed framework. The
integration of the proposed DSE framework with a UML/MARTE-
based synthesis framework under development in the context of
the FP7 PHARAON project [81] will also provide a synergistic
UML/MARTE-based design framework.
References

[1] M. Holzer, Design space exploration for the development of embedded
systems, Thesis Dissertation in the TU Vienna, Vienna, Austria, April 2008.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A.J. McNelly, L. Todd, Surviving the SOC
Revolution: A Guide to Platform-Based Design, Kluwer Academic Publishers,
1999.

[3] OMG, Unified Modelling Language™. Available from: <http://www.omg.org/
spec/UML/>.

[4] OMG, UML Profile for MARTE: Modelling and Analysis of Real-Time Embedded
Systems, Version 1.1, Dec., 2012. Available from: <http://www.omgmarte.org>.

[5] T. Kempf, G. Ascheid, R. Leupers, Multiprocessor Systems on Chip, Design Space
Exploration, Springer, 2011.

[6] The COMPLEX project (247999), Codesign and power management in
platform-based design space exploration, Last visited, 2013. Available from:
<http://complex.offis.de>.

[7] K. Gruettner, et al., COMPLEX – COdesign and power Management in PLatform-
based design space EXploration, in: Proc. of the 15th Euromicro Conference on
Digital System Design (DSD’2012), Cesme-Izmir, Turkey, 2012.

[9] F. Herrera, P. Peñil, E. Villar, F. Ferrero, R.Valencia, An embedded system
Modelling methodology for design space exploration, in: III Jornadas de
Computacion Empotrada, I Jornadas SARTECO, 2012.

[10] F. Herrera, P. Peñil, H. Posadas, E. Villar, A model-driven methodology for the
development of SystemC executable environments, in: Proceedings of Forum
of Design Languages, FDL’2012, 2012.

[11] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia, A MDD
Methodology for specification of embedded systems and automatic generation
of fast configurable and executable performance models, in: Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System, Synthesis, CODES+ISSS’12, 2012, pp. 529–538.

[12] F. Herrera, E. Villar, A Framework for the generation from UML/MARTE Models
of IP-XACT HW platform descriptions for multi-level performance estimation,
in: Proceedings of the Forum of Design and Specification Languages 2011
(FDL’2011), 2011.

[13] F. Herrera, P. Peñil, E. Villar, D. Calvo, Enhanced IP-XACT platform descriptions
for automatic generation from UML/MARTE of fast performance models for
DSE, in: 15th Euromicro Conference on Digital System Design, DSD’2012, 2012.

[14] SCoPE website, 2012. Available from: <www.teisa.unican.es/scope>.
[15] P. Botella, P. Sánchez, H. Posadas, Automatic Generation of SystemC SMP

Models for HW/SW Co-Simulation, in: Proc. of XXV Conf. on Design of Circuits
and Integrated Systems, DCIS’10, 2010.

[16] H. Posadas, G. de Miguel, E. Villar, Automatic generation of modifiable
platform models in SystemC for Automatic System Architecture Exploration,
in: Proc. of Design of Circuits and Integrated Systems, DCIS’ 2009, Zaragoza,
Spain, 2009–11.

[17] H. Posadas, E. Villar, Automatic Communication Modelling for early
exploration of HW/SW allocation based on native co-simulation, in: Proc. of
XXVI Conf. on Design of Circuits and Integrated Systems, DCIS’11, 2011.

[18] J. Castillo, H. Posadas, E. Villar, M. Martínez, fast instruction cache modeling for
approximate timed HW/SW co-simulation, in: 20th Great Lakes Symposium
on VLSI (GLSVLSI’10), Providence, USA, 2010–05.

[19] P. González, P. Sánchez, J. González, Hardware performance estimation by
dynamic scheduling, in: Proc. of the Forum on specification and Design
Languages 2011, Oldenburg, Germany, 2011.

[20] H. Posadas, S. Real, E. Villar, M3-SCoPE: Performance Modelling of Multi-
Processor Embedded Systems for fast design space exploration, in: C. Silvano,
W. Fornaciari, E. Villar (Eds.), Multi-objective Design Space Exploration of
Multiprocessor SoC Architectures: the MULTICUBE Approach, Springer, 2011.

[21] Multicube Explorer site. Available from: <http://home.dei.polimi.it/zaccaria/
multicube_explorer_v1/Home.html>.

[22] E. Piel, R.B. Atitallah, P. Marquet, S.Meftali, S. Niar, A. Etien, J.L.Dekeyser, P.
Boulet, Gaspard2: from MARTE to SystemC Simulation, in: Proceedings of the
Design, Automation and Test in Europe (DATE’08), Munich, Germany, 2008.

[23] J.L. Dekeyser, A. Gamatié, A. Etien, R.B.Atitallah, P. Boulet, Using the UML
Profile for MARTE to MPSoC Co-Design, in: First International Conference on
Embedded Systems & Critical Applications (ICESCA’08), Tunis, Tunisia, 2008.

[24] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, J.P. Diguet, A Code-design
approach for Embedded System Modelling and code generation with UML and
MARTE, in: Proceedings of Design Automation and Test in Europe, (DATE’09),
Dresden, 2009.
[25] P. Peñil, H. Posadas, A. Nicolas, E. Villar, Automatic synthesis from UML/MARTE
models using channel semantics, in: Proc. of 5th International Workshop on
Model Based Architecting and Construction of Embedded System ACES-MB
workshop, Models, Innsbruck, Austria, 2012.

[26] T. Robert, V. Perrier, COFLUENT Methodology for UML: UML SysML MARTE
Flow for CoFluent Studio, White paper, 2012. Available from: <http://
www.cofluentdesign.com/index.php/solutions/uml-sysml-marte>.

[27] A.W. Liehr, H.S. Rolfs, K.J. Buchenrieder, U. Nageldinger, Generating MARTE
allocation models from activity threads, in: Languages for Embedded Systems
and their Applications, Lecture Notes in Electrical Engineering, vol. 39, 2009,
pp. 43–56 (Part I).

[28] M. Mura, L.G. Murillo, M. Prevostini, Model-based design space exploration for
RTES with SysML and MARTE, in: Proceedings of the Forum on Specification
and Design Languages 2008, FDL’2008. Stuttgart, Germany, 2008.

[29] S. Kent, Model driven engineering, in: Proceedings of the Third International
Conference on Integrated Formal Methods, ser. IFM ’02, London, UK, Springer–
Verlag, 2002, pp. 286–298.

[30] K. Yamashita, Possibility of ESL: a software centric system design for multicore
SoC in the upstream phase, in: Proceedings of the Asian Pacific Design
Automation Conference (ASP-DAC), Taipei, Taiwan, 2010, pp. 805–808.

[31] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
second ed., Addison-Wesley Professional, 2002.

[32] Panunzio M. Vardanega, Tullio, On Component-based development and high-
integrity real-time systems, in: Proceedings of the 15th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications, ERTCŚ09, Beijing, China, 2009.

[33] M. Panunzio, Vardanega Tullio, A component model for on-board software
applications, in: Proc. of the 36th Euromicro Conf. on Software Engineering
and Advanced Applications (SEAA), Lille, France, 2010.

[34] A. Bakshi, V.K. Prasanna, A. Ledeczi, MILAN: a Model Based integrated
simulation framework for design of embedded systems, in: Proceeding
LCTES ‘01 Proceedings of the ACM SIGPLAN workshop on Languages,
compilers and tools for embedded systems, 2001, pp 82–93.

[35] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G.
Nordstrom, J. Sprinkle, P. Volgyesi, The generic modeling environment, in:
Workshop on Intelligent Signal Processing, vol. 17, Budapest, Hungary, 2001.

[36] S. Neema, J. Sztipanovits, G. Karsai, K. Butts, Constraint-based Design-Space
exploration and model synthesis, in: R. Alur, I. Lee (Eds.), Embedded Software,
Volume 2855 of Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, Berlin/Heidelberg, 2003, pp. 290–305 (Chapter 19).

[37] T. Kangas et al., UML-based multiprocessor SoC design framework, Journal
ACM Transactions on Embedded Computing Systems (TECS) 5 (2) (May 2006)
281–320.

[38] B. Schatz, F. Holzl, T. Lundkvist, Design-space exploration through
constraintbased model-transformation, in: Engineering of Computer Based
Systems (ECBS), 2010 17th IEEE International Conference and Workshops on,
IEEE, 2010, pp. 173–182 (ISBN 978-1-4244-6537-8).

[39] F.A. Nascimento, M.F.S. Oliveira, F.R. Wagner, A Model-driven engineering
framework for embedded systems design, in: Innovations in Systems and
Software Engineering 8(1), 2012.

[40] T. Saxena, G. Karsai, A meta-framework for design space exploration, in:
Engineering of Computer Based Systems (ECBS), 2011 18th IEEE International
Conference and Workshops on. IEEE, 2011, pp. 71–80. ISBN 978-1-4577-0065-
1.

[41] T. Saxena, G. Karsai, Mde-based approach for generalizing design space
exploration, Model Driven Engineering Languages and Systems Lecture Notes
in Computer Science 6394 (2010) 46–60.

[42] MiniZinc website, Last visited 2013. Available from: <http://
www.minizinc.org/>.

[43] J. Ou, V.K. Prasanna, MATLAB/Simulink Based Hardware/Software Co-
Simulation for Designing Using FPGA Configured Soft Processors,
International Parallel and Distributed Processing, Symposium (IPDPS’05).

[44] S. Künzli, A. Hamann, R. Ernst, L. Thiele, Combined approach to system level
performance analysis of embedded systems, in: Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2007 5th IEEE/ACM/IFIP International
Conference on, vol., no., pp. 63,68, Sept. 30 2007-Oct. 3 2007.

[45] S. Perathoner, K. Lampka, L. Thiele, Composing heterogeneous components for
system-wide performance analysis, in: Proceedings of the Design Automation
and Test (DATÉ11) Conference, Grenoble, France, 2011.

[46] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst, System level
performance analysis – the SymTA/s approach, Computers and Digital
Techniques, IEE Proceedings 152 (2) (2005) 148–166.

[47] J. Kreku, K. Tiensyrjä, System exploration, in: D. Soudris, A. Jantsch (Eds.),
Scalable Multi-core Architectures: Design Methodologies and Tools, Springer,
2012.

[48] J. Kreku, K. Tiensyrjä, G. Vanmeerbeeck, Automatic workload generation for
system-level exploration based on modified GCC compiler, in: Proceedings of
the Design Automation and Test in Europe (DATÉ10). Dresden, Germany, 2010.

[49] S. Jaddoe, M. Thompson, A.D. Pimentel, Signature-based calibration of
analytical performance models for system-level design space exploration, in:
P. Stenström (Ed.), Transactions on High-Performance Embedded
Architectures and Compilers IV, Springer–Verlag, 2011.

[50] L. Benini, et al., MPARM: Exploring the Multi-Processor SoC Design Space with
SystemC, Journal of Signal Processing Systems, 2005.

[51] F. Bellard, QEMU, a Fast and Portable Dynamic Translator, USENIX 2005
Annual Technical Conference, 2005.

http://refhub.elsevier.com/S1383-7621(13)00194-X/h0005
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0005
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0005
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0005
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omgmarte.org
http://complex.offis.de
http://www.teisa.unican.es/scope
http://home.dei.polimi.it/zaccaria/multicube_explorer_v1/Home.html
http://home.dei.polimi.it/zaccaria/multicube_explorer_v1/Home.html
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0010
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0010
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0010
http://www.minizinc.org/
http://www.minizinc.org/
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0015
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0015
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0015


[52] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt, J. Teich, ESL power and
performance estimation for heterogeneous MPSoCs using SystemC, in: Proc. of
Forum of specification and Design Languages (FDĹ11), Oldenburg, Germany,
2011.

[53] A.D. Pimentel, The Artemis workbench for system-level performance
evaluation of embedded systems, International Journal of Embedded
Systems, 3(3), 2008.

[54] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty, A. Herkersdorf, High-level
timing analysis of concurrent applications on MPSoC platforms using memory-
aware trace-driven simulations, in: Proceedings of International Conference on
VLSI and System-on-Chip, IEEE, 2010.

[55] R. Leupers, G. Martin, R. Plyaskin, A. Herkersdorf, F. Schirrmeister, T. Kogel, M.
Vaupel, Virtual Platforms: Breaking new grounds, in: Proceedings of the
Design Automation and Test in Europe (DATÉ12), Grenoble, France, 2012.

[56] J. Schnerr, O. Bringmann, A. Viehl, W. Rosenstiel, High-performance timing
simulation of embedded software, in: Proceedings of the Design Automation
Conference (DAĆ08), Anaheim, CA, USA, 2008.

[57] H. Shen, M.-M. Hamayun, F. Pétrot, Native Simulation of MPSoC using
Hardware-Assisted Virtualization, in: IEEE Trans. on Computer-Aided design
of Integrated Circuits and Systems, V. 31, N.7, 2012.

[58] Z. Wang, J. Henkel, HyCoS: hybrid compiled simulation of embedded software
with target dependent code, in: Proc. of 8th IEEE/ACM/IFIP Int. Con. on HW/SW
Codesign and System, Synthesis CODES-ISSŚ12, 2012, pp. 133–142.

[59] R. Wilhelm, et al., The worst-case execution-time problem overview of
methods and survey of tools, in: ACM Transactions on Embedded, Computer
Systems, vol. 7(3), 2008, pp. 36:1–36:53.

[60] S. Stuijk, Predictable mapping of streaming applications on multiprocessors,
Phd thesis, 2007.

[61] A. Bonfietti, M. Lombardi, M. Milano, L. Benini, Throughput constraint for
synchronous data flow graphs, in: Proc. of the 6th International Conference on
Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOŔ09), Berlin, Germany, 2009,
pp. 26–40.

[62] A. Kumar, T. Srikanthan, Accelerating throughput-aware run-time mapping for
heterogeneous MPSoCs, in: ACM Transactions on Design Automation of
Electronic Systems (TODAES), 2012.

[63] S. Stuijk, M. Geilen, T. Basten, A predictable multiprocessor design flow for
streaming applications with dynamic behaviour, in: Proc. of the 13th
Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, DSD ’10, Lille, France, 2010, pp. 548–555.

[64] A. Pimentel, C. Erbas, S. Polstra, A systematic approach to exploring embedded
system architectures at multiple abstraction levels, Computers, IEEE
Transactions on Computers 55 (2) (2006) 99–112.

[65] Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C.
Zissulescu, E. Deprettere, Daedalus: toward composable multimedia MP-SoC
design, in: DAC ‘08: Proceedings of the 45th annual Design Automation
Conference, ACM, New York, NY, USA, 2008, pp. 574–579.

[66] C. Silvano, et al., Multicube: Multi-objective design space exploration of multi-
core architectures, in: VLSI (ISVLSI), 2010 IEEE Computer Society Annual
Symposium on, 2010, pp. 488–493.

[67] Z.J. Jia, A.D. Pimentel, M. Thompson, T. Bautista, A. Nuñez-, NASA: A generic
infrastructure for system-level MP-SoC design space exploration, in:
Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010 8th IEEE
Workshop on, vol., no., pp. 41,50, 28–29, 2010.

[68] D. Sheldon, F. Vahid, S. Lonardi, Soft-core processor customization using the
design of experiments paradigm, in: Proceedings of Design Automation and
Test in Europe, DATE, 2007, Nice, France, 2007, pp. 821–826.

[69] Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria, Discrete Particle Swarm
Optimization for Multi-objective Design Space Exploration, in: Euromicro
Proceedings of DSD’08 – Conference on Digital System Design, Parma, Italy,
2008, pp. 641–644.

[70] K.I. Smith, R.M. Everson, J.E. Fieldsend, C. Murphy, R. Misra, Dominance-based 
multiobjective simulated annealing, IEEE Transactions on Evolutionary 
Computation 12 (3) (Jun. 2008) 323–342. 
[71] K. Deb, S. Agrawal, A. Pratab, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II in Evolutionary Computation, IEEE Transactions on
6(2) (2000) 849–858.

[72] Qingfu Zhang; Hui Li, MOEA/D: a multiobjective evolutionary algorithm based
on decomposition, Evolutionary Computation, IEEE Transactions on, 11(6)
(2007) 712,731.

[73] Giovanni. Mariani, Gianluca. Palermo, Cristina. Silvano, Vittorio. Zaccaria,
OSCAR: an Optimization Methodology Exploiting Spatial Correlation in Multi-
core Design Spaces, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 21 (5) (May 2012) 740–753.

[74] Gianluca. Palermo, Cristina. Silvano, Vittorio. Zaccaria, ReSPIR: a response
surface-based pareto iterative refinement for application-specific design space
exploration, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28 (12) (December 2009) 1816–1829.

[75] Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria, An efficient design space
exploration methodology for multiprocessor SoC architectures based on
response surface methods, in: Proceedings of IEEE IC-SAMOS’08 –
International Conference on Embedded Computer Systems: Architectures,
MOdeling, and Simulation, Samos, Greece, 2008, pp. 150–157.

Further reading

[8] E. Alana, F. Ferrero, A.I. Rodriguez, R. Valencia, E. Conquet, J. Puente, J.
Zamorano, F. Herrera, R. Varona, Component-based technologies for HW/SW
co-design, in: Embedded Real Time Software and Systems- ERTS2, Toulouse,
France, 2012.
[76] ETSI/EN, ETSI/EN 301 245, Digital cellular telecommunications system (phase
2); enhanced full rate (EFR) speech transcoding, 1998a. Available from:
<http://www.etsi.com>.

[77] Eclipse Modelling Framework. Available from: <http://www.eclipse.org/
modeling/emf/>.

[78] Acceleo. Available from: <http://www.eclipse.org/acceleo/>.
[79] Papyrus MDT. Available from: <http://www.eclipse.org/modeling/mdt/

papyrus/>.
[80] ESTECO. Available from: <http://www.esteco.com/home/mode_frontier/

Optimization/DOE.html>.
[81] PHARAON project. Available from: <http://cordis.europa.eu/projects/rcn/

99825_en.html>.

http://refhub.elsevier.com/S1383-7621(13)00194-X/h0020
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0020
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0020
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0030
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0030
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0030
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0030
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0035
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0035
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0035
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0035
http://www.etsi.com
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.esteco.com/home/mode_frontier/Optimization/DOE.html
http://www.esteco.com/home/mode_frontier/Optimization/DOE.html
http://cordis.europa.eu/projects/rcn/99825_en.html
http://cordis.europa.eu/projects/rcn/99825_en.html
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0025
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0025
http://refhub.elsevier.com/S1383-7621(13)00194-X/h0025

	The COMPLEX methodology for UML/MARTE Modeling and design space exploration of embedded systems
	1 Introduction
	2 State of Art
	2.1 Modeling methodologies in UML/MARTE and model-based DSE
	2.2 Performance estimation technologies
	2.3 Design exploration frameworks

	3 UML/MARTE Modeling methodology
	3.1 Basic features
	3.2 System Modeling: A single design solution
	3.2.1 Description of the Platform Independent Model (PIM)
	3.2.2 Platform Model and Architectural Mapping (PSM)

	3.3 Features for DSE: Modeling a design space
	3.3.1 Specification for Design Space Exploration
	3.3.2 Definition of the design space
	3.3.2.1 Specification of a space of allocations
	3.3.2.2 Specification of an space of attribute values
	3.3.2.3 Specification of several platform architectures

	3.3.3 DSE rules
	3.3.4 Estimation parameters
	3.3.5 DSE constraints

	3.4 Modeling of the stimuli environment
	3.4.1 Environment structure
	3.4.2 Modeling one scenario
	3.4.3 Modeling the scenario behavior
	3.4.4 Modeling several scenarios
	3.4.5 Modeling physical time information


	4 Generation of the executable model and exploration
	4.1 Complex toolset
	4.1.1 UML/MARTE model editor and code generation
	4.1.2 Model analysers

	4.2 SCoPE+
	4.2.1 
	4.2.2 Cosimulation of the system with the SystemC environment

	4.3 Exploration tool and interface with the performance model
	4.3.1 Most
	4.3.2 Interface with the performance model


	5 Experimental results
	6 Conclusions
	References
	Further reading




