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Abstract

This paper discusses the impact of different models of
aerodynamic loads on rotorcraft-pilot couplings stability us-
ing a robust stability analysis approach. The aeroelasticity of
the main rotor of a helicopter is formulated using aerodynamic
models based on blade element/momentum theory and bound-
ary element method coupled to a finite element model of the
blade. The resulting linearized models are used to determine
stability limits according to the generalized Nyquist criterion,
associated with the accelerations of the pilot’s seat caused by
the involuntary action of the pilot on the control inceptors.The
resulting stability curves are discussed considering examples
of involuntary pilot transfer functions from the literature.

Keywords Rotorcraft Aeroelasticity· Robust Stability·
Rotorcraft-Pilot Couplings

1 Introduction

Robust stability analysis techniques enable the evaluation of
the stability margins of systems with respect to uncertain pa-
rameters [1,2]. Their application to rather heterogeneousas-
pects of system dynamics is the result of their generality and
versatility [3–7]. Many aspects of rotorcraft aeroservoelas-
ticity may benefit from robust stability analysis, especially
when intrinsically uncertain aspects of the model must be
addressed; for example, the constitutive properties of lead-
lag dampers in the study of ground resonance [8, 9], or the
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involuntary dynamics of the pilot in the study of Rotorcraft-
Pilot Couplings (RPC) [10,11].
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Fig. 1 Feedback loop between nominal plantG(s) and uncertainty op-
erator∆(s,p).

The theory stems from the consideration that by writing
the dynamics of a stable system in the form of a feedback
loop, as shown in Figure 1, where the uncertainty∆(s,p) is
concentrated in the feedback path of the loop, the stabilityof
the closed loop system can be analyzed by simply looking
at the eigenlocus of the loop transfer function, according to
the Generalized Nyquist Criterion (GNC). This, in turn is
written as a multiplicative function of a portion of the partof
the system that is considered certain,G(s), by the part that is
considered uncertain,∆(s,p), namelyH(s) =∆(s,p)G(s).

When any of the eigenvalues of the loop transfer ma-
trix H(jω) reaches the point(−1+ j0) in the Argand plane
(the complex plane), the system becomes unstable. The dis-
tance of the eigenvalues of the nominal plant from the point
(−1+ j0) represents a powerful, yet intuitive measure of the
stability margin of the system, which is defined for each fre-
quency.

The aerodynamic forces acting on the rotor may repre-
sent a significant source of uncertainty, owing to local three-
dimensional and compressibility effects, Blade-Vortex Inter-
action (BVI), and so on. When the aeroservoelasticity of the
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overall vehicle is of concern, often using Ritz-like reduced
order models to describe the structural dynamics of the sys-
tem, the generalized unsteady aerodynamic loads may be
computed from relatively sophisticated, yet uncertain mod-
els. As long as the source of the uncertainty can be somehow
identified, e.g. in the form of amplitude and phase of the
transfer functions relating the airframe motion to the loads
transmitted by the rotor to the airframe, appropriate margins
with respect to the stability of the overall aeroservoelastic
system can be determined.

In detail, the proposed approach makes it possible to
determine how sensitive the stability of the system is with
respect to uncertainties in the modeling of the main rotor
aeroelasticity (with particular attention to the aerodynamic
contribution). In fact, significant sensitivity would indicate
that a refinement and an improvement of the quality of the
modeling is mandatory. Otherwise, as long as the impact
of the uncertainty is minimal, relatively inaccurate models
could be tolerated, being the quality of the aeroelastic (aero-
dynamic) modeling not essential for the purpose of the anal-
ysis.

This work originates from the need to analyze Rotorcraft-
Pilot Couplings (RPC) within the research project ARIS-
TOTEL1, partially supported by the European Commission
within the 7th Framework Programme. The possibility to
limit the complexity of the analysis of critical components
of the aeroservoelastic system is in fact of paramount im-
portance to reduce the computational cost and to make it
possible to focus on essential aspects of the problem.

The robust stability analysis requires to act on Linear
Time Invariant (LTI) models of the plant. In the present anal-
ysis, the aeroservoelasticity of the helicopter is modeledin
the MASST environment, developed at Politecnico di Mi-
lano [12, 13]. The aeroelastic LTI model of the main rotor
is developed by the University ‘Roma Tre’, starting from
validated computational tools for rotor aeroelastic response
analysis [14] and subsequently applying the methodology
presented in Ref. [15] for identification and finite-state mod-
eling of the aerodynamic operator regarding rotors in arbi-
trary steady flight. This approach requires the prediction of
a set of harmonic perturbation responses by an aeroelastic
solver, and the accuracy of the identified model in describing
the unsteady loads transmitted by the rotor to the airframe is
strictly connected to that of the aerodynamic solver applied
within the aeroelastic tool.

The proposed approach is applied to a rotorcraft model
jointly developed by Politecnico di Milano and University
‘Roma Tre’ within the project ARISTOTEL. Applying two
independent quasi-steady sectional aerodynamic formulations
and a Boundary Element Method (BEM) potential-flow so-
lution within the aeroelastic solver [14], stability boundaries
are computed in the space of the pilot biodynamic feedthrough

1 http://www.aristotel.progressima.eu/

functions, which represent the formally uncertain feedback
operator in the analysis. The stability boundaries resulting
from the different aerodynamic models are compared, to un-
derstand how sensitive they are to the complexity level in
aerodynamics modeling. In fact, both the involuntary behav-
ior of the pilot and the aeromechanics of the vehicle present
some degree of uncertainty; however, the uncertainty of the
pilot’s behavior is intrinsic, as different subjects may behave
differently even in similar conditions, and even the same
subject may behave differently under different conditions,
whereas the uncertainty in the aeromechanical properties of
the vehicle is essentially related to the degree of approxima-
tion introduced in the numerical models.

2 Robust Stability Analysis

Robust stability analysis is based on the assumption that the
transfer matrixG(s) between the input vectoru(s) and the
output vectory(s) of a system characterized by a set of un-
certain parametersp,

y(s) = G(s,p)u(s), (1)

under broad assumptions can be cast as
{

y
η

}

=

[

G11 G12

G21 G22

]{

u
ζ

}

(2)

using a Linear Fractional Transform (LFT) [16], where a
negative feedback loop can be established on the transfer
matrix∆ of the uncertain part,ζ =−∆η, yielding

y(s) =
(

G11−G12∆(I +G22∆)−1G21

)

u(s), (3)

as shown in Fig. 1. Them parameters collected in vectorp
are uncertain but bounded; they belong to the set

P = {p : p = p0+δp, δp ⊂ R
m}, (4)

wherep0 corresponds to the nominal parameters of the air-
craft without uncertainty.

Under the assumption that the baseline systemG, with
∆≡∆0, is stable, and that∆ itself is stable for allp ∈ P,
the stability of the uncertain system of Eq. (3) can be studied
by considering that of the transfer matrix

H(jω) = G22(jω)∆(jω), (5)

which plays the role of the loop transfer function in classical
feedback control theory [2]. The stability of the transfer ma-
trix of Eq. (5), in turn, can be studied using the GNC by con-
sidering the distance of the eigenvalues of the loop transfer
matrix H(jω) from the point(−1+ j0) as a function of the
uncertain parameters, whose limit values are found by re-
quiring such distance to vanish, namely det(I +H(jω)) = 0.
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Fig. 2 Nyquist eigenloci: distance of transfer matrix eigenvalues from
point (−1+ j0) in the complex plane.

The perturbation of thei-th eigenvalueλi(H0(jω)) of the
reference systemH0 = G22∆0 can be expressed as

λi(H(jω)) = λi(H0(jω))+ρejθ , (6)

where the complex numberρejθ represents an arbitrary per-
turbation of thei-th eigenvalue of modulusρ and argument
θ , as shown in Figure 2.

Whenλi(H(jω)) = −1 the stability limit is reached for
eigenvalueλi, since the loop transfer function corresponding
to that eigenvalue for any further perturbation would circle
about point(−1+ j0). As a consequence, the stability mar-
gin, as a function of the frequencyω, is

ρi(ω)ejθi(ω) =−(λi(H0(jω))+1). (7)

For each frequencyω, the critical directionθi(ω) represents
the direction fromλi(H0(jω)) to (−1+ j0) andρi(ω) rep-
resents the magnitude of the eigenvalue perturbation that
leads to instability when it occurs along the critical direc-
tion (Fig. 2).

The most critical eigenvalue among those of matrixH0

is the one whose distance is the smallest among those com-
puted for all eigenvalues. However, depending on the struc-
ture of the uncertainty, the sensitivity of the eigenvaluesof
matrix H0 to uncertain parameters may determine their ac-
tual criticality. The distance of the eigenvalues from the point
(−1+ j0) can be transformed into frequency-dependent bound-
aries for the uncertain parameters using the notion of left,
vLi, and right eigenvectors,vRi, respectively solutions of the
eigenvalue problems

HvRi = vRiλi (8a)

HT vLi = vLiλi, (8b)

with VT
L = V−1

R when all left and right eigenvectors are col-
lected in matricesVL andVR, respectively, since by defini-
tion

vT
LiHvRi = λi. (9)

Considering an additive uncertainty∆=∆0+δ∆, the left
and right eigenvectors of the nominal system can be used to
express the critical condition as

vT
LiH(jω)vRi

= (v0Li +δvLi)
T (H0(jω)+δH lim(jω))(v0Ri +δvRi)

∼= λ0i +vT
0LiδH lim(jω)v0Ri =−1, (10)

whereδH = G22δ∆, andδH lim indicates the perturbation
of H at the verge of stability. Equation (10) expresses a
first-order approximation of the eigenvalue change, since the
contribution associated with the eigenvector changesδvLi

andδvRi is second-order with respect toδλi according to a
generalization of Rayleigh’s quotient.

In fact, considering terms in Eq. (10) only up to first-
order, one obtains

vT
LiH(jω)vRi

∼= vT
0LiH0v0Ri +vT

0LiH0δvRi +δvT
LiH0v0Ri +vT

0LiδHv0Ri

= λ0i +λ0i
(

vT
0LiδvRi +δvT

Liv0Ri
)

+vT
0LiδHv0Ri, (11)

sincevT
0LiH0 = λ0ivT

0Li andH0v0Ri = v0Riλ0i. However, since
the eigenvectors can be arbitrarily normalized asvT

LivRi ≡ 1,
then

vT
LivRi

∼= vT
0Liv0Ri +vT

0LiδvRi +δvT
Liv0Ri +δvT

LiδvRi, (12)

which yieldsvT
0LiδvRi + δvT

Liv0Ri = −δvT
LiδvRi; as a con-

sequence, the first-order terms associated to perturbations
of the eigenvectors are equivalent to terms that are second-
order in the perturbation of the eigenvalues. Note that, from
the comparison of Eqs. (6), (9) and (10) it is possible to
gather thatρejθ ∼= vT

0LδH(jω)v0R. According to Eq. (10) one
obtains

ρi(ω)ejθi(ω) ∼=−1−λ0i = vT
0LiδH lim(jω)v0Ri. (13)

When the parameter change implies a non-negligible change
in the eigenvectors, the problem

vT
LiH lim(jω)vRi =−1, (14)

as in Eq. (10) but without any approximation, must be solved
to determine the value of the parameter perturbation that
takes the system to the verge of stability. An approach based
on continuation can be used; its discussion is outside the
scope of this work.

Whenρ(ω)<mini(ρi(ω)) ∀ω, stability is granted. Oth-
erwise, it is necessary thatθ 6= θk, wherek indicates the
eigenvalue corresponding to mini(ρi). This can be stated as

ρ(ω)ejθ(ω) < ρk(ω)ejθk(ω), k : ρk = min
i
(ρi(ω)), (15)

where operator(·) < (·) applied to complex numbers com-
pares their moduli when the argument is the same.
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Further margins can be considered by requiring the un-
certain bounds to allow some residual distance from point
(−1+ j0). This can be obtained by first computing the criti-
cal directionθi that leads from pointλ0i to point(−1+ j0),
namely

d =−
1+λ0i

‖1+λ0i‖
= ejθi . (16)

Then, a new uncertainty amplitudêρi, that leaves a pre-
scribed margiñρ along the critical direction, is considered,

ρ̂i = ρi − ρ̃. (17)

This corresponds to considering the distanceρi of the i-th
eigenvalue from the point(−1+ j0), along the critical direc-
tion θi, as shown in Figure 2, and restricting the limit value
such that, when at the boundary, a residual distanceρ̃ re-
mains.

3 Problem Description

An aeroservoelastic model of a helicopter representative of
the Messerschmitt-B̈olkow-Blohm (MBB) BO105 has been
developed in MASST using the technical data reported in [17,
18]. This helicopters has been selected because it is consid-
ered representative of small-size, hingeless helicopters. Its
general characteristics are summarized in Table 1.

Table 1 BO105 general characteristics.

Parameter Value Units
Gross weight 2055.0 kg
CG station 3318.0 mm
Max. flight speed 140.0 kts
Main rotor radius 4.9 m
Main rotor solidity 7.02 %
Main rotor lock number 4.31 n.d.
Main rotor angular velocity 424.0 rpm
Main rotor flap frequency 1.1 /rev
Main rotor lag frequency 0.68 /rev

3.1 Rotor Aeroelasticity Subproblem

From the point of view of the interaction with the rest of
the vehicle, the Main Rotor (MR) contribution is expressed
in terms of a LTI aeroelastic operator. For a given steady
flight condition, it relates forces and moments produced by
the rotor at the MR attachment point,fMR, to the components
of motion at that point (displacements and rotations),xMR,
and to the MR controls,δMR = {θ0;θ1c;θ1s}, namely

fMR = HxMR(jω)xMR +HδMR(jω)δMR. (18)

Note that the rotation components of the motion are point
functions in that they include both rigid-body motion and
deformation effects of the airframe. In practice, these loads
are evaluated in the frequency domain for a set of discrete
frequencies and for a given set of trim points, ranging from
hover to forward flight at different speeds. Variations of the
aeroelastic solver applied to sample matricesHxMR andHδMR

enables one to carry out sensitivity analyses of the predicted
dynamic behavior of the coupled rotorcraft-pilot system with
respect to uncertainties in main rotor aerodynamic (and struc-
tural, eventually) modeling.

3.1.1 The Aeroelastic Solver (in brief)

A beam-like model [15] is used to describe the structural dy-
namics of rotor blades. It is based on the nonlinear bending-
torsion formulation presented in Ref. [19], that is valid for
straight, slender, homogeneous, isotropic, nonuniform, twisted
blades, undergoing moderate displacements. The radial dis-
placement is eliminated from the set of equations by solving
it in terms of local tension, and thus the resulting structural
operator consists of a set of coupled nonlinear differential
equations governing the bending of the elastic axis (lead-lag
and flap deflections) and the rotation of the cross-sections
(blade torsion). If present, the effects of blade pre-cone an-
gle, hinge offset, torsion offset and mass offset are included
in the model, as well as the kinematic effects due to hub
motion.

Combining this structural dynamics model with a model
describing the distributed aerodynamic loads yields the aeroe-
lastic formulation. In this work, the rotor aerodynamic loads
are simulated either through a quasi-steady, sectional model
with wake-inflow corrections taking into account the three-
dimensional trailing vortices influence (see, for instance, Ref.
[14]), or through a BEM solver for free-wake, potential flows.
In particular, the BEM computational tool considered is based
on the formulation suited for the prediction of BVI effects
presented and validated in Refs. [20, 21], and therefore is
applicable to a wide range of rotor flight configurations, in-
cluding descent patterns. The blade pressure distribution,
p, is determined using the Bernoulli theorem and the dis-
tributed forces and torsional moment are obtained by inte-
gration over cross-section profile contours.

The resulting aeroelastic integro-differential formulation
is integrated spatially using the Galerkin approach, and the
time response is computed through a time marching, Newmark-
β numerical scheme.

Once the aeroelastic response is computed, forces and
moments at the MR attachment point are evaluated by inte-
gration of the corresponding aerodynamic and inertial loads
arising along the span of the blades.
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3.1.2 Sampling of the LTI Aeroelastic Operator

For a helicopter rotor in arbitrary steady flight, the aeroelas-
tic model described above is intrinsically nonlinear, withpe-
riodic coefficients. As a consequence, even a single-harmonic,
small perturbation of MR controls or hub motion yields multi-
harmonic loads at the MR attachment point (and thus, can-
not be modeled through a LTI operator). However, as widely
applied in aeroelastic, multiblade-variable analyses of iso-
lated helicopter rotors, for the objectives of the present prob-
lem accurate linearized modeling can be based on the time-
invariant approximation (indeed, it involves I/O quantities
defined in the nonrotating frame).

Following the approach presented in Ref. [15] regard-
ing the LTI modeling of the aerodynamic loads of rotors in
arbitrary steady flight, in this work the MR LTI aeroelastic
model is obtained from the complete aeroelastic solution in
the way herein described:

(i) the time marching aeroelastic solver is used to evaluate
the perturbation loads at the MR attachment point due
to single-harmonic small oscillations of each variable
in xMR andδMR;

(ii) the response harmonic component having the same fre-
quency of the input is extracted;

(iii) the corresponding complex values of the frequency-
response function are determined;

(iv) the process is repeated for a discrete number of fre-
quencies within an appropriate range, so as to get an
adequate sampling of the frequency-response functions
appearing withinHxMR andHδMR.

In other words, the procedure applied is such that only the
constant-coefficient, linear(ized), portions of the operator re-
lating perturbations ofxMR andδMR to fMR are retained [15].

It is worth mentioning that the harmonic components are
obtained through a Fast Fourier Transform (FFT) algorithm,
taking care of the following issues:

(i) the period examined by the FFT starts after that the
aeroelastic transient response to the perturbation is fin-
ished;

(ii) the period examined has to be an integer multiple of
the period of the input harmonic;

(iii) almost periodic loads might arise because of the intrin-
sic periodicity of the aeroelastic system, and hence the
leakage avoidance is assured if, in addition, the exam-
ined period is long enough.

Finally, note that the described approach can only be ap-
plied if the isolated rotor is asymptotically stable for the
steady flight configuration about which the LTI model is
identified.

The transfer functions identified through the aeroelastic
solver based on Blade Element theory and those obtained
using aeroelastic predictions derived from the application of
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Fig. 3 MR vertical force vs. axial hub motion.
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Fig. 4 MR roll moment vs. lateral cyclic pitch.

the BEM solver are compared in Figs. 3 and 4. Figure 3 con-
tains the thrust component of the rotor force as a function of
the axial motion of the hub, while Fig. 4 contains the roll
moment as a function of the lateral cyclic pitch control. In
both cases, the two solutions show a similar trend with re-
spect to frequency. This is expected, since rotor blade elastic
properties have a strong influence on poles and zeroes of the
aeroelastic response function. However, some discrepancies
arise, which imply non-negligible local differences in am-
plitude and phase of the response.

3.2 Airframe Dynamics Problem

The structural dynamics model simply consists of the second-
order equations of the rigid-body and flexible airframe dy-
namics,

Mq̈+Cq̇+Kq = f, (19)

formulated for the modal variablesq. The motion of the
MR attachment point is known in terms of the correspond-
ing modal displacementsxMR = UMRq. As a consequence,
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the frequency domain representation of the airframe dynam-
ics is simply coupled to the MR aeroelastic model using the
Principle of Virtual Work (PVW), namely

δWMR = δxT
MRfMR (20)

= δqT UT
MR (HxMR(jω)UMRq+HδMR(jω)δMR) ,

which yields
(

−ω2M + jωC+K −UT
MRHxMR(jω)UMR

)

q

= UT
MRHδMR(jω)δMR (21)

As long as all the controlsδ are considered, including for
example also the collective pitch of the tail rotor, i.e.δ =

{δMR;δTR}, the problem can be written as

q = Hqδ(jω)δ, (22)

where additional exogenous inputs and disturbances are ne-
glected, since the analysis focuses on coupled pilot-vehicle
stability.

In order to account for the detailed pilot-vehicle inter-
action, actuator dynamics are considered as well. The dy-
namic relationship between the command requested by the
pilot and the actual motion prescribed to the controls is

δ = Hact(jω)η+Hdc(jω)fact, (23)

where vectorη contains the motion of the control inceptors,
while fact represents the force transmitted by the actuators;
Hdc(jω), the dynamic compliance of the actuators, is usually
neglected. Usually, a first- or second-order equation is con-
sidered for the actuator dynamics transfer functionHact(jω).
The bandwidth of the actuators may have an impact on the
interaction between the vehicle and the pilot mainly because
it introduces a delay in the control.

3.3 Involuntary Pilot Model

The involuntary pilot model basically produces control in-
ceptors motion as a function of the motion of the vehicle. In
practice, the inceptor motion involuntarily produced by the
pilot is often associated with the acceleration experienced
by the pilot through the seat. The literature on the subject is
scarce (see for example the work of Mayo on the involuntary
collective motion associated with motion along the vertical
axis, [22], and subsequent work by Masarati et al., [23], and
the work by Parham et al. on the lateral axis, [24]). Analyt-
ical methods based on accurate biomechanical modeling of
the pilot are being developed [25, 26], to support the deter-
mination of transfer function variability.

In general, a complete involuntary pilot model is ex-
pressed in the form

η = Hηx(jω)xpilot, (24)

Table 2 Data for functionHη z̈p (s) based on Mayo’s models [22]

ectomorphic mesomorphic
ωp (radian/s) 21.267 23.567
ξp 0.322 0.282
τp (s) 0.118 0.108

whereη are the involuntary contributions to the motion of
the control inceptors, whilexpilot = Upilotq is the motion of
the seat.

In Mayo’s work [22], the function expressed the abso-
lute acceleration of the hand as a function of the absolute
acceleration of the seat,

z̈hand= Hz̈hand̈zseatz̈seat

=
srp/mp + kp/mp

s2+ s(rp + rc)/mp + kp/mp
z̈seat (25)

The function can be reformulated in order to yield the col-
lective input as a function of the acceleration of the seat by:

– transforming the absolute acceleration of the hand into
its relative counterpart,

z̈hand rel.= z̈hand− z̈seat; (26)

– integrating the output twice,

zhand rel.=
1
s2 z̈hand rel.; (27)

– dividing the output by the length of the collective stick,
namely

η =
1
L

zhand rel.. (28)

The resulting function is

η =−
1
sL

s+1/τp

s2+2ξpωps+ω2
p

z̈seat (29)

The values used in the modified form of Mayo’s formula are
reported in Table 2.

Similar functions can be formulated for the involuntary
longitudinal and lateral cyclic controls resulting from surge
(fore-aft motion) and sway (lateral motion) accelerations.
When discussing numerical results, transfer functions and
frequency response data from the literature are considered;
since the original references did not provide analytical for-
mulas, their interaction with the stability limits will be ana-
lyzed only graphically.

A complete description of the loop closure exerted by
the pilot requires one to consider also the voluntary action.
Since this contribution is band-limited at a crossover fre-
quency of about 2÷3 radian/s (the upper is a hard limit for
typical human behavior, as discussed in [27]), it is not con-
sidered in the present work because its action is about one
decade below typical biomechanical poles, which are in the
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range 20÷25 radian/s, as shown in Table 2, and thus no sig-
nificant interaction is expected with the aeroelasticity ofro-
torcraft. This implies that only results above 1 Hz must be
considered.

3.4 Robust Analysis Problem

The robust stability analysis problem aims at determining
the stability boundaries of the involuntary pilot model, con-
sidering the involuntary pilot as the uncertain element of an
otherwise certain system.

The plant consists in the transfer matrix of the helicopter
from the control inputs to the motion of the pilot seat. In
principle, one may want to consider the nominal controls
that are sent to the main and tail rotor in a conventional he-
licopter design,

δ =

{

δMR

δTR

}

=















θ0MR

θ1cMR

θ1sMR

θ0TR















(30)

However, it may be more appropriate to decouple the uncer-
tain pilot model from the kinematics and dynamics of the
flight controls of a specific vehicle, thus considering as in-
puts the motion of the control inceptors,

η =















ηcollective

ηlongitudinal

ηlateral

ηpedal















. (31)

In this latter case, any gearing ratio between the motion of
the control inceptors, the actuator dynamics and the dynam-
ics possibly associated with an Automatic Flight Control
System (AFCS) in augmented helicopter designs can be in-
cluded in the dynamic model of the vehicle.

As previously mentioned, the output of the plant consists
of the motion of the pilot’s seat,

xpilot = Upilotq, (32)

which, thanks to Eqs. (22) and (23), can be expressed as a
function of the control inceptors,

xpilot = UpilotHqδHactη = Hxηη. (33)

In general, thus, the motion of the seat is represented by a
6×1 vector, whereas the controls consist of a 4×1 vector.
As a consequence, the reduced plant is represented by a 6×4
matrix,G=Hxη. Consequently, the involuntary pilot model
is represented by a 4×6 matrix,∆ = −Hηx. This implies
that the coupled loop transfer matrix,G∆, is structurally
rank deficient.

As discussed in [11], limit reference pilot models are
represented byHηx ≡ 0. In fact, when the pilot is absent,

well balanced control inceptors do not usually move when
the cockpit is subjected to accelerations. At the opposite ex-
treme, an ideal, infinitely stiff pilot that firmly grasps the
inceptors does not produce any involuntary input as a con-
sequence of cockpit accelerations. For this reason, it is de-
sirable to considerHηx = 0 as the reference pilot. In this
case, the reference coupled system is perfectly stable, since
matrixHCL = I +Hηx reduces to the identity, and its eigen-
values are well away from(−1+ j0).

The determination of robust stability consists in:

– determining the stability limits of the vehicle as indi-
cated earlier;

– superimposing the transfer function of the pilot, taking
into account any structure of its uncertainty;

– if the magnitude of the pilot transfer function does not
exceed the magnitude of the vehicle limits, no instability
can occur; otherwise,

– at crossings between the phase of the pilot transfer func-
tion and the vehicle limits, if the magnitude of the pilot
transfer function exceeds that of the vehicle limits, an
unstable condition is met.

This analysis is exemplified and clarified in the following
section.

4 Numerical Results

The aeroelastic model discussed earlier has been used to de-
termine the stability limits with respect to selected invol-
untary pilot inputs. Figures 5–7 contain the stability limits
associated with the main rotor controls as functions of the
motion of the pilot’s seat in three directions. The limits as-
sociated with longitudinal cyclic caused by surge (fore-aft
motion) of the seat are shown in Fig. 5. The limits associated
with lateral cyclic caused by sway of the seat are shown in
Fig. 6. The limits associated with collective caused by heave
of the seat are shown in Fig. 7. Thick dashed lines represent
the extreme values resulting from the three aeromechanics
models; the thin dotted line represents the average value.
The reader is warned that the dashed lines by no means
enclose an envelope of possible boundaries; other models
might result in further stability boundaries outside the areas
surrounded by the dashed lines. Those lines merely define
regions of plausible stability boundaries.

In all cases, the limits are computed using helicopter
models that share the same airframe and controls dynamics,
and differ in the aeroelasticity of the main rotor. In addi-
tion to the two models discussed earlier (blade element and
BEM), a model derived from CAMRAD/JA is used as well.
The stability limits resulting from the three models show rel-
atively similar trends, especially in the band of frequencies
of interest for the present analysis (1 Hz to 8 Hz), where the
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Fig. 5 Stability limits associated with longitudinal cyclic controlinduced by surge acceleration at the pilot’s seat.
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Fig. 6 Stability limits associated with lateral cyclic control induced by sway acceleration at the pilot’s seat.
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Fig. 7 Stability limits associated with collective control induced by heave acceleration at the pilot’s seat.

analysis was refined. At lower and higher frequencies the
limits differ, especially with respect to phase.

In order to illustrate the significance of the stability lim-
its of the vehicle, they are compared with involuntary pilot
models from the literature. In Fig. 5, the model of the invol-
untary longitudinal cyclic input caused by surge acceleration
originally presented in Fig. 19 of Ref. [24] and related to the
V-22 tiltrotor is considered. Unfortunately, no information
about the phase was given in that reference. This function
is used because the control device and the cockpit layout of
the V-22 is similar to that of a conventional helicopter with
respect to the needs of the present work.

In Fig. 6, the model of the involuntary lateral cyclic in-
put caused by sway acceleration presented in Figs. 6 and 11
of Ref. [24] and again related to the V-22 is considered. In
addition, experimental results obtained in the Universityof
Liverpool’s HELIFLIGHT flight simulator [23,28] are con-
sidered.

Finally, in Fig. 7 the previously discussed model of the
involuntary collective resulting from heave accelerationpro-
posed by Mayo [22] is considered. The functions mentioned
above do not specifically refer to the helicopter considered
in the analysis; however, they are representative of pilot/control
device arrangements that are common in helicopters. As such,
they are presented to provide an indication of typical invol-
untary control transfer functions.

Figures 5–7 show that the stability boundaries result-
ing from the different aeromechanical models differ signifi-
cantly in several regions of the frequency range considered
in the plots. However, the differences tend to reduce and
occasionally become negligible in the 2–5 Hz band, which
contains most of the biomechanical models that may poten-
tially adversely interact with the vehicle.

The graphical analysis shows that in the case of the surge
motion of Fig. 5 no adverse interaction is possible, since
the amplitude of the involuntary pilot control is always well
below the limit.

On the contrary, in the case of the sway motion of Fig. 6
an instability can occur because the amplitude of some of the
pilot models overcome some of the vehicle’s limit curves,
and this occurs when the phase of the related pilot curve is
close to the phase associated with the critical direction of
Eq. (16), illustrated in Fig. 2 as ejθi . Such potential instabil-
ity is a consequence of the adverse interaction of the pilot’s
biomechanics with the main rotor regressive lead-lag mode,
whose frequency is about 2 Hz and which is very lightly
damped.

Similarly, in the case of the heave motion of Fig. 7, there
is a slight chance of instability in the higher frequency por-
tion of the frequency band, around 4.5 Hz, where the magni-
tude of the pilot’s curve intersects the lower limit amplitude,
since the phase of the pilot’s curve approaches the phase as-
sociated with the critical direction. In this case, the potential
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instability is a consequence of the adverse interaction of the
pilot’s biomechanical feedthrough with the main rotor con-
ing mode.

It is worth recalling that the present analysis is essen-
tially intended to illustrate the features of the proposed ap-
proach to robust stability analysis, and it does not imply
any specific proneness of this helicopter model to adverse
aeroelastic RPCs. Flight simulator testing of the proposed
numerical models with respect to RPC is underway within
ARISTOTEL to investigate adverse RPC and verify the pre-
dictions presented in this work.

5 Conclusions

A robust stability approach has been presented to study the
proneness of helicopters to Rotorcraft-Pilot Couplings. The
approach has been applied to the analysis of aeroelastic ro-
torcraft models of different complexity in the aerodynamics
of the main rotor, from simple blade element theory to an
original approach based on the Boundary Element Method.
The interaction of the pilot biodynamic feedthrough with
the dynamics of the vehicle has been discussed. Numerical
results related to the comparison of stability limits of the
different models have been discussed. All the aerodynamic
models considered in the analysis show similar trends for
the stability limits. The differences are limited especially in
the frequency band of interest for the involuntary interaction
with the pilot. Further investigation is needed to confirm this
result and to determine whether it also applies to helicopters
of different categories.
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