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1. Introduction

Age-hardenable alloys based on the aluminum-copper system
(known as AA2xxx alloys) exhibit superior creep strength and are
widely used in structural components operating at elevated
temperatures [1,2]. Complex shape parts produced from these
alloys usually exhibit microstructural anisotropy as a result of
processing [3]. Furthermore, the creep properties of age-hardenable
alloys strongly depend on the heat treatment and ageing con-
ditions [4].

For the simulation of processing as well as for structural
analysis a constitutive model is required. Such a model should
reflect deformation, hardening/recovery, ageing and damage
mechanisms for the considered alloy under mechanical loading
and thermal environment. The model must also be compatible
with methods of structural mechanics to enable the finite element
analysis of real components under multi-axial stress state. Unified

constitutive models of inelastic deformation are available for many
high-temperature materials, e.g. heat-resistant steels, nickel-based
alloys and cast irons [5–7]. The basic ingredients include a
constitutive equation for the inelastic strain rate tensor and
evolution equations for internal state variables that capture
changes in the microstructure. One feature of age-hardenable
aluminum alloys is the essential influence of exposure time on
the creep strength at elevated temperature. In [8] a creep con-
stitutive equation with three scalar state variables – the hardening
variable, the ageing variable and the damage variable is developed.
The overageing process is explicitly described by a kinetic equation
according to the Ostwald ripening theory. The material parameters
in constitutive and evolution equations are identified from creep
curves for the aluminum alloy BS 1742 at 150 1C. A similar model is
developed and applied to the analysis of creep age forming
processes in [9]. The material parameters are given for alloys
AA2324 and AA7B04. Creep strength and overageing processes of
aluminum alloys are affected by the shape of precipitates. Kinetic
equations for the coarsening of rod-shaped or plate-shaped
particles are presented and identified for AA2124 in [10].

Several approaches to describe hardening/recovery processes
in aluminum alloys are discussed in the literature. In [8]
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a phenomenological scalar-valued hardening parameter enters the
constitutive equation to capture the primary creep stage. In [11] a
kinematic hardening model with the backstress deviator is applied
to describe creep ratcheting. In [12–14] the mean dislocation
density and the characteristic particle size are used as internal state
variables. The threshold stress is introduced as a sum of dislocation
(Taylor-type) and precipitate (Orowan-type) contributions.

Tertiary creep is usually described by damage, overageing and/
or softening variables and corresponding evolution equations.
In [15,16] a single damage state variable is utilized to reflect all
processes leading to the tertiary creep stage for AA2024. In [8,9]
two independent state variables and kinetic equations are intro-
duced to capture overageing and cavitation processes leading to
accelerated creep.

Aluminium alloys often exhibit anisotropic creep properties as
a result of processing [3]. Anisotropic response can also be induced
during the creep exposure [17]. Origins of anisotropic creep
include elongated grains, crystallographic texture, non-uniform
distribution of particles, oriented grain boundary cavities, etc.
The classical approach to formulate a constitutive equation for aniso-
tropic creep is based on the theory of symmetries and representation
of tensor-valued functions [18,17]. For the assumed symmetry
class, e.g. a transverse isotropy, a creep potential is formulated as a
function of appropriate invariants of the stress tensor. The result-
ing creep constitutive equation includes a number of material
parameters to be identified from experimental creep curves for
different stress states and different loading directions. This
approach provides a general form of a constitutive equation.
However, the identification of all required parameters is usually
not feasible since the required experimental creep curves are
rarely available.

The aim of this paper is to analyze creep behavior of forged
AA2014 alloy and to develop an alternative approach to reflect the
dependence of the creep rates on the loading direction. Basic
microstructural features and creep curves for the temperature
range 130–170 1C and several stress levels in two loading direc-
tions are presented. With the given experimental data origins of
anisotropic creep will be explained with the help of a phase
mixture (composite) model of inelastic deformation. To formulate
the model, constitutive equations for individual phases and an
anisotropic interaction rule will be introduced. With additional
state variables including the normalized dislocation density and
the normalized particle size as well as corresponding evolution
equations, hardening/recovery and overageing processes will be
described. Through a change of variables the model will be
reduced to a set of kinetic equations such that the material
parameters can be identified from families of creep curves for

two loading directions. The results of identification are presented
for the temperature of 150 1C and several stress levels.

2. Basic features of microstructure and creep behavior

The material investigated is an Al–4.4Cu–0.5Mg–0.9Si–0.8Mn
alloy (IADS 2014 grade). An extruded bar from this alloy was
axisymmetrically forged to produce a cave cylinder with the
length of 230 mm and an external diameter of 190 mm. Let us
designate three directions of a cylindrical forging as follows: the
longitudinal (axial) by L, the tangential (circumferential) by T and
the radial by R.

Two sets of 20�20�100 mm3 bars were sampled from the as
supplied forging with their longer side in L and T directions,
respectively. Tension tests were performed at temperatures within
the range 20-170 1C. Creep tests were conducted under constant
load at 130 1C, 150 1C and 170 1C (homologous temperature range
0.44 – 0.49) under stresses that led to a range of times to rupture
from several hours to more than 10000 h. Crept specimens were
diametrally cut in order to investigate microstructure features
along the gauge length.

The investigated forgings were characterized by grains elon-
gated in the main plastic flow path experienced during the
processing. Their mean size of grains was about 300, 80, 50 μm
along the L, T and R directions, respectively. Fig. 1 shows light
optical microscope micrographs of the microstructure of the
forged part in 2014 alloy in different metallographic sections.

Two kinds of coarse intermetallic particles were present in the
microstructure: globular Al2Cu (θ) particles (bright particles in
Fig. 1) and blocky shaped clustered particles containing Fe, Mn, Si
and Cu (darker particles in Fig. 1). These latter secondary phase
clustered particles are elongated in the L direction. In most of the
volume of the forging, macrographic analyzes revealed the large
intermetallic particles longitudinally oriented, suggesting the
same direction of the plastic flow during the processing.

In addition, transmission electron microscopy images pub-
lished in [19] illustrate the presence of θ0 phase, in the form of
rod-like precipitates aligned along the 〈001〉 crystallographic
directions of the α-Al matrix. These precipitates play an important
role in strengthening of the alloy. It was supplied in the T6
condition, that is the solution treatment at 778 K and aging at
433 K for 16 h. During the subsequent creep overageing processes
take place leading to the increase of particles size and distance
between particles with time.

Creep curves for three mentioned temperature levels and for
stresses in the range 200–400 MPa were smoothed to compute
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Fig. 1. Light optical microscope micrographs of the forged part from AA2014 in different metallographic sections.



creep rates over the entire time of testing. From creep rate vs.
creep strain curves the minimum creep rates were obtained. Fig. 2
shows normalized minimum creep rates vs. normalized stress
obtained from creep curves for longitudinal and transverse
specimen.

To normalize the data the Arrhenius function of the tempera-
ture

f ðTÞ ¼ exp � Q
RT

� �
ð1Þ

with apparent activation energy Q, the universal gas constant R
and absolute temperature T is applied. The obtained value
Q¼175.42 kJ/mol is consistent with the data published in [4].
The reference stress σ0 ¼ 320 MPa is introduced to split the ranges
of power law creep and power law breakdown, as shown in Fig. 2.
According to experimental data presented in Fig. 2 the anisotropy
is primarily observable in the power law range. Here the creep rate
in the T direction is 2.43 times higher that the creep rate in the L
direction for the same stress level. In the power law breakdown
regime the corresponding ratio of creep rates takes the value is
within the range 1.1–1.5 depending on the stress level. Such the
difference between L and T data is not essential, if compared to the
usual scatter of experimental data in the creep range, and can be
neglected.

Fig. 3 shows the creep rate vs. time curves for transverse
specimen for T¼150 1C and different stress levels.

It can be observed that the material does not exhibit the
pronounced secondary creep stage. On the contrary, the creep
rate decreases at the beginning, attains a minimum value and
increases up to the final failure. The tertiary creep stage is
controlled by several processes including the ageing of the
strengthening θ0 phase, formation of voids on blocky shaped
particles as well as cross section shrinkage of specimen as a result
of excessive elongation at high stress levels.

Creep strain vs. time curves for longitudinal and transverse
specimen are presented in Fig. 4. The data show that transverse
specimen exhibit the higher creep rate, the higher creep ductility
and the shorter creep life for the same stress and the
temperature level.

3. Constitutive models

3.1. Stress state decomposition and a model for minimum creep rates

In what follows let us assume that the minimum creep rates in R
and T directions are approximately the same and the plane spanned
on R and T directions to be the isotropy plane. Constitutive equations

Fig. 2. Normalized minimum creep rate vs. normalized stress for longitudinal and transverse creep tests of AA2014 at different temperature levels.

Fig. 3. Creep rate vs. time curves in transverse direction of AA2014 for T ¼ 150○ C
and different stress levels.

Fig. 4. Creep rate vs. time curves for longitudinal and transverse directions of
AA2014 for T¼150 1C and σ¼270 MPa.



of transversally-isotropic steady-state creep were applied in [18] to
modeling deep drawing sheets and in [20] to characterize multi-pass
weld metals, for example.

Let eL be the unit vector that designates the direction L, I the
second rank unit tensor and P ¼ I�eL � eL the projector onto the
RT plane. For anisotropic materials different parts of the stress
state cause different creep responses. Therefore let us decompose
the stress state characterized by the stress tensor σ into the three
parts including the tension (compression) along L σLL, the plane
stress state in the RT-plane σp and the out of plane shear
characterized by the shear stress vector τL. Fig. 5 illustrates the
corresponding components of the stress tensor. The decomposi-
tion has the following form

σ ¼ σLLeL � eLþσpþτL � eLþeL � τL ð2Þ
By subtracting the hydrostatic stress state the stress deviator s can
be given as follows

s¼ sLþspþτL � eLþeL � τL; ð3Þ
where

sL ¼ σLL�
1
2
trσp

� �
eL � eL�

1
3
I

� �
; sp ¼ σp�

1
2
trσpðI�eL � eLÞ ð4Þ

With the decomposition (3), the creep potential hypothesis and
the assumption that the volumetric creep rate is negligible, the
constitutive equation can be formulated as follows [18,17]

_ϵc ¼ 3
2
_ε0f ðTÞ

σeq

σ0

� �n 1
σeq

α1sLþα2spþα3ðτL � eLþeL � τLÞ
� �

; ð5Þ

where εc is the tensor of inelastic strains, _ε0, σ0, n and αi, i¼ 1;2;3
are material parameters. The equivalent stress σeq is defined as
follows

σ2
eq ¼

3
2

α1trs2L þα2trs2pþ2α3τL � τL
� �

ð6Þ

To identify the material parameters families of creep curves for
different stress levels for three independent kinds of loading are
required. These include the loading in L and T directions, respec-
tively as well as any kind of loading that leads to non-zero out-of-
plane shear stress. For α1 ¼ α2 ¼ α3 ¼ 1 the von Mises equivalent
stress follows from Eq. (6). Equation (5) reduces to the Norton-
Bailey-Odqvist equation of isotropic creep in the power law range
[21].

For the tensile stress σLL the longitudinal creep rate _εc
TT can be

computed from Eq. (5) as follows

_εc
LL ¼ _ε0f ðTÞ

σLL

σ0

� �n

α
nþ 1
2

1 ð7Þ

The creep rate in the transverse direction for the applied stress
σTT is

_εcTT ¼ _ε0f ðTÞ
σTT

σ0

� �n α1þ3α2

4

� �nþ 1
2

ð8Þ

The function f(T) and the parameter _ε0 can be identified from
minimum creep rate vs. stress data generated from transverse
creep curves, Fig. 2. In this case the parameter α2 can be set to one.
To identify the parameter α1 the ratio of creep rates α for the same
stress level can be computed from Eqs. (7) and (8) as follows

α¼ _εc
TT
_εc
LL
¼ α1þ3

4α1

� �nþ 1
2

ð9Þ

For the given values of αand n, Fig. 2, the solution of Eq. (9) is
α1 ¼ 0:81.

The constitutive model (5) is available in commercial finite
element codes and can be used for the structural analysis. One
limitation is the assumption of the steady-state creep process.
Primary creep and creep transients for the rapid loading changes
as well as tertiary creep due to overageing and damage are not
considered. Although approaches are proposed to generalize the
anisotropic equation (5) by introduction of tensorial state variables
[5], experimental data to identify the large number of material
properties is hardy available. Let us note that additional assump-
tions are required, to identify the parameter α3 in Eq. (6), since
corresponding experimental data, e.g. creep curves under torsion,
are missing.

3.2. Phase mixture model

To develop an alternative model let us analyze the origins of
anisotropic creep for the considered alloy. The following micro-
structural features can be responsible for the observed direction-
dependent creep:

� Crystallographic texture induced by processing
� θ0 particles oriented on specific crystallographic planes
� Elongated grains and grain boundaries

Anisotropic creep properties due to texture and particle orien-
tation effects are documented for many alloys over a wide range of
stress and temperature [18]. From the theoretical point of view the
greatest influence of texture and oriented particles is expected in
the power law breakdown regime where the deformation is
primarily controlled by glide processes in well-defined crystal-
lographic slip planes and diffusion controlled climb processes are

Fig. 5. Stress state decomposition.



not essential [22]. In this regime the influence of texture can also
be analyzed within the crystal viscoplasticity theory by estimation
of creep rates for single crystals and isotropic polycrystals [23].

For low and moderate stress values and longer test durations
grain boundary deformation mechanisms, e.g. diffusion creep and
grain boundary sliding have significant influence on the overall
creep process [22,24,25]. For the loading in L direction a stress
redistribution between grain interiors and grain boundary regions
is expected as a result of different creep rates in different
microstructural zones. On the other hand no essential changes in
the microstructural stress state can be assumed if the material is
loaded in T direction. As a result the difference in the overall creep
rates are observed – T specimen exhibit higher creep rates than L
specimen for the same overall stress level in the power law creep
regime.

Experimental data for the considered alloy show that the ratio
of minimum creep rates in T and L directions in the power law
breakdown regime is in the range of 1.1–1.5. This anisotropy can be
attributed to the texture and particle orientation. In the power law
creep regime the ratio is significantly higher with the value of
2.43. This indicates that the anisotropy is primarily due to
elongated grains and grain boundaries. In what follows constitu-
tive equations of creep within the power law regime will be
developed. For the sake of simplicity, texture and particle orienta-
tion effects will be ignored.

To account for the heterogeneous deformation on the micro-
scale various approaches were recently developed. They include
the micropolar, micromorphic, gradient and other enhanced the-
ories of plasticity, e.g. [26–28]. In this paper we follow and extend
the phase mixture (composite) approach as discussed in materials
science [29,30] and continuum mechanics [6,31]. To this end we
consider a composite with two constituents having different creep
properties. The first constituent is related to the grain interior
while the second one corresponds to grain boundary regions. In
the following derivations we use the subscript A for grain interiors
and B for grain boundary regions, respectively.

The constitutive equations include the elasticity laws for the
constituents

sk ¼ 2Gðϵk�ϵckÞ; σHk
¼ KεVk

; k¼ A; B; ð10Þ
where sk is the stress deviator, ϵk strain deviator, ϵck inelastic strain
deviator, σHk

hydrostatic stress and εVk
is the volumetric strain of

the k-th constituent. G is the shear modulus and K is the bulk
modulus. The rate equations for the inelastic strain deviators ϵck
are assumed as follows

_ϵc
k ¼

3
2
_εvMk

sk
σvMk

; k¼ A; B; ð11Þ

where the von Mises equivalent stress σvMk
and the von Mises

equivalent strain rate _εvMk
are defined as follows

σ2
vMk

¼ 3
2
trs2k ; _ε2vMk

¼ 2
3
trð _ϵc

kÞ2 ð12Þ

The stress tensor and the strain tensor of the composite are
defined by the mixture rules as follows

σ ¼ νAσAþνBσB; ε¼ νAεAþνBεB; νAþνB ¼ 1; ð13Þ
where νk is the volume fraction of the k-th constituent. From
Eqs. (13) and (10) the rules for the for deviatoric parts of stress and
strain states as well as for inelastic parts of strain tensors can be
derived as follows

s¼ νAsAþνBsB; ϵ¼ νAϵAþνBϵB; ϵc ¼ νAϵcAþνBϵcB ð14Þ
An essential ingredient of any phase mixture model is a rule for
the interaction between the constituents. One possibility is the
iso-strain approach as proposed in [29,30] and [6] to develop
creep models of several isotropic materials. To capture anisotropic

creep let us apply the following interaction rule

Δ¼Δc�3
2
Δc

LL eL � eL�
1
3
I

� �
; ð15Þ

with

Δ¼ εB�εA; Δc ¼ ϵcB�ϵcA; Δc
LL ¼ ϵcLLB �ϵcLLA

From Eq. (15) the iso-strain (Voigt-type) rule for the longitudinal
strains εLLk and volumetric strains can be obtained

εLLA ¼ εLLA ¼ εLL; εVA ¼ εVA ¼ εV ð16Þ
With Eqs. (10) and (15) the difference in stress deviators
sΔ ¼ sB�sA can be computed as follows

sΔ ¼ �3GΔc
LL eL � eL�

1
3
I

� �
ð17Þ

From Eq. (17) the iso-stress (Reuss-type) rules for the plane
deviatoric stress states spk and the out-of-plane shear stress
vectors τLk follow

spA ¼ spB ¼ sp; τLA ¼ τLB ¼ τL ð18Þ
Since the bulk moduli of the constituents are assumed to be the
same, Eqs. (10) and (16) provide the equality of hydrostatic
stresses

σHA ¼ σHA ¼ σH

To complete the model the von Mises equivalent creep rate for
each phase should be specified as a function of the corresponding
von Mises equivalent stress, temperature and a set of internal state
variables to characterize changes in microstructure.

The constitutive equation for the matrix material is formulated
as proposed in [32]

_εvMA ¼ a0f 0ðTÞ
σvMA

σ̂

� �n
; ð19Þ

where a0 is the material property and

f 0ðTÞ ¼ exp �Q0

RT

� �
ð20Þ

Let us note that the activation energy Q0 differs from the
corresponding quantity given in Eq. (1) for the minimum creep
rates. Following [32] the drag stress σ̂ can be given as a super-
position of the dislocation density and the particle hardening
contributions as follows

σ̂ ¼MGb ζ
ffiffiffi
ρ

p þχ
1
D

� �
; ð21Þ

where M is the Taylor factor, b is the magnitude of the Burgers
vector, ρ is the mean dislocation density and D is the mean
characteristic size of particles. ζ and χ are weighting factors
characterizing the contribution of Taylor-type hardening due to
dislocations and Orowan-type hardening due to the presence of θ0

phase. According to Eq. (21) the presence of particles influences
the drag stress and consequently the creep rate. The particle
hardening drag stress value is usually lower than the Orowan
stress. This is explained by a variety of dislocation-particle inter-
action mechanisms operating in the creep range, e.g. dislocation
climb over particles [33]. Furthermore, in the creep range the
presence of particles has an influence on both the storage/
immobilization of dislocations and dynamic recovery processes.
To characterize the evolution of the dislocation structure let us
extend the exponential type kinetic equation, proposed in [29], to
account for the influence of particles as follows

_X ¼ CðXn�XÞ _εvMA ; X ¼
ffiffiffiffiffiffi
ρ
ρ0

r
; Xn ¼ X1

D0

D
ð22Þ

where C is a constant, ρ0 is a reference dislocation density, D0 is a
reference characteristic size of particles and X1 is a function of



stress and temperature. According to Eq. (22) the particle coarsen-
ing lowers the saturated dislocation density Xn and contributes to
material softening.

The microstructural stability of age-hardenable Al alloys
depends essentially on the precipitation sequences. For the con-
sidered alloy the high temperature exposure of the matrix is
related to the completion of precipitation of θ0 particles [4]. The
coarsening of θ0 particles is governed by the mass transport
processes associated with the diffusion of Cu in Al. In [4] the
following equation for the mean particle size is utilized

Dm ¼Dm
0 þKðTÞt; KðTÞ ¼ K0exp

�QCu

RT

� �
; m¼ 2 ð23Þ

where K0 is a material property and QCu is the activation energy
for diffusion of Cu in Al. One feature of Eq. (23) is the coarsening
index m which takes the value 2 for rod-like particles. Following
[34] let us introduce the internal state variable Φ¼D0=D. From
Eq. (23) the following kinetic equation can be derived

_Φ ¼ �As

m
Φmþ1; AsðTÞ ¼ A0 exp

�QCu

RT

� �
; A0 ¼

K0

Dm
0

ð24Þ

For the von Mises equivalent creep rate of the phase B let us
apply the following constitutive equation

_εvMB ¼ _εvMA

σvMB

σvM

1
g
; ð25Þ

with g is a function of the von Mises equivalent stress.

3.3. Reduced model

For the stable identification as well as for the use in structural
analysis the phase mixture model should be reduced to a set of
kinetic equations with respect to the macroscopic variables.
To accomplish this let us introduce the backstress deviator β and
the active stress deviator s as follows

β¼ νBðsB�sAÞ; s ¼ s�β ð26Þ
Furthermore let us assume that the creep rate of the composite is
primarily determined by the creep rate of grain interiors

_ϵc � νA _ϵ
c
A ð27Þ

From Eqs. (10)–(18), (25), (26) and (27) the following constitutive
and evolution equation can be obtained

_ϵc ¼ 3
2
_εvM

s
σvM

; σ2
vM ¼ 3

2
trs2; β¼ β eL � eL�

1
3
I

� �
;

_β ¼ Cβ _εcLL� _εvM
β

h1σvM

� �
; ð28Þ

where

Cβ ¼ 3
νB
νA

G; h1 ¼ νB
νA

g

Further reductions can be accomplished by introducing the new
hardening variable H as follows

H ¼ XþμΦ
ð1þμÞΦ; μ¼ χ

ζ
1

D0
ffiffiffiffiffiffiρ0

p ð29Þ

With Eqs. (27) and (29) the constitutive equation (19) takes the
form

_εvM ¼ _ε0f 0ðTÞ
σvM

σ0

1
HΦ

� �n

;
_ε0
σn
0
¼ a0νAMGbζ

ffiffiffiffiffiffi
ρ0

p ð1þμÞ ð30Þ

From Eqs. (22), (24) and (27) the following evolution equation for
the hardening variable H can be derived

_H ¼ CHðH1�HÞ _εvM; CH ¼ C
νA

; H1 ¼ X1þμ
1þμ

ð31Þ

4. Identification

4.1. Summary of constitutive and evolution equations

Let us summarize the introduced constitutive model as well as
material properties to be identified from experimental data. With
Eqs. (28) and (30) the constitutive equation for the creep rate
tensor takes the form

_ϵc ¼ 3
2
_ε0f 0ðTÞ

σvM

σ0

1
HΦ

� �n s
σ vM

; σ2
vM ¼ 3

2
trs2; s ¼ s�β ð32Þ

According to Eq. (32) the creep rate is controlled by three state
variables including the backstress deviator β, the scalar hardening
variable H and the overageing variable Φ. The backstress deviator
characterizes the microstress state in the phase mixture due to
different deformation rates in grains and grain boundary regions.
It takes into account the anisotropy due to elongated grains. The
corresponding evolution equation is derived from the composite
model as follows

β¼ β eL � eL�
1
3
I

� �
; _β ¼ Cβ _εc

LL� _εvM
β

h1σvM

� �
ð33Þ

The variable H defined by Eq. (29) combines the state of disloca-
tion microstructure and the θ0 phase. The hardening/recovery type
evolution equation is

_H ¼ CHðH1�HÞ _εvM ð34Þ

The variable Φ characterizes the overageing state of the θ0 phase.
The corresponding evolution equation has the form

_Φ ¼ �As

m
Φmþ1 ð35Þ

Eqs. (32)–(35) include the material parameters _ε0, σ0, n, CH, m, the
functions of temperature f0, Cβ and As as well as the functions of
stress H1 and h1. The constitutive equation (32) can only be
applied for the power law creep regime. Within this regime h1 is
usually assumed to be constant. Let us note that advanced
response functions of stress and temperature might be required
to capture inelastic behavior in both power law and power law
breakdown regimes [7].

To develop a robust identification procedure explicit expres-
sions for the creep rate as a function of the creep strain and/or
time for a constant uni-axial stress and temperature should be
given. In what follows we derive such functions from Eqs. (32)–
(35) for constant tensile stress in L and T directions.

4.2. Longitudinal direction

With the constant tensile stress σLL applied in L direction the
stress tensor, the stress deviator the von Mises equivalent stress
and the active von Mises equivalent stress are

σ ¼ σLLeL � eL; s¼ σLL eL � eL�
1
3
I

� �
; σvM ¼ σLL; σvM ¼ σLL�β

ð36Þ

The constitutive equation for the creep rate in L direction is
derived from Eq. (32) as follows

_εcLL ¼ _εvM ¼ _ε0f 0ðTÞ
σLL�β
σ0HΦ

� �n

ð37Þ

The evolution Eqs. (33) and (34) take the form

_β ¼ Cβ _ε
c
LL 1� β

h1σLL

� �
; _H ¼ CHðH1�HÞ _εc

LL ð38Þ



Integration of Eqs. (38) yields the backstress and the hardening
variable as functions of the longitudinal creep strain

β¼ h1σLL 1�exp � Cβ
h1σLL

εcLL

� �	 

; H¼H1�ðH1�1Þexpð�CHεcLLÞ

ð39Þ
Integration of Eq. (35) provides the ageing variable within the time
interval ½0; t�

Φ¼ ð1þAstÞ�1=m ð40Þ
Inserting expressions for internal state variables (39) and (40) into
Eq. (37) provides the longitudinal creep rate as a function of stress,
temperature, creep strain and time

_εcLL ¼ _ε0f 0ðTÞ
σLL

σ0

� �n 1�h1þh1exp � Cβ
h1σLL

εcLL

� �

H1�ðH1�1Þexpð�CHεcLLÞ

2
664

3
775
n

½1þAsðTÞt�n=m

ð41Þ

4.3. Transverse direction

With the applied tensile stress σTT the stress tensor, its
deviatoric part, the von Mises equivalent stress and the active
von Mises equivalent stress are

σ ¼ σTTeT � eT ; s¼ σTT eT � eT �
1
3
I

� �
; σvM ¼ σTT ;

σvM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
TT þσTTβþβ2

q
ð42Þ

The constitutive equation for the creep rate in T direction follows
from Eq. (32)

_εcTT ¼ _ε0f 0ðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
TT þσTTβþβ2

q
σ0HΦ

0
@

1
A

n�1

σTT þβ=2
σ0HΦ

ð43Þ

The evolution equation (33) takes the form

_β ¼ �Cβ _ε
c
TT
σTT þ2β
2σTT þβ

1þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
TT þσTTβþβ2

q
σTT þ2β

β
h1σTT

0
@

1
A ð44Þ

The evolution equation (34) can be specified as follows

_H ¼ CHðH1�HÞ _εc
TT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
TT þσTTβþβ2

q
σTT þβ=2

ð45Þ

The approximate analytical solution to Eq. (44) is

β¼ �hTσTT 1�exp � Cβ
2hTσTT

εcTT

� �	 

; hT ¼

2h1
4þ3h1

ð46Þ

The backstress saturation parameter h1 must be identified from
the longitudinal creep curves and takes the values in the range
0rh1r1. From Eq. (46) it follows that the backstress saturation
parameter for the transverse direction is in the range 0rhT r2=7
such that jβjo2=7σTT . Therefore, the backstress evolution has a
minor influence on the creep process for loading in T direction.
The creep behavior of the phase mixture is determined by the
creep rate of grain interiors and the stress redistribution between
the phases is not essential. For the identification the backstress can
be set to zero such that the expression for creep rate takes the
following simplified form

_εcTT ¼ _ε0f 0ðTÞ
σTT

σ0

� �n 1
H1�ðH1�1Þexpð�CHεcTT Þ

	 
n
½1þAsðTÞt�n=m

ð47Þ

4.4. Identification procedure

To find the material parameters in the constitutive and evolu-
tion equations the following step-by-step identification procedure
is performed:

� Experimental creep curves (creep strain vs. time curves) are
smoothed and transformed to the creep rate vs. creep strain
curves and creep rate vs. time curves

� Minimum strain rates as functions of stress and temperature
are processed from experimental data

� The creep exponent in the power law creep regime is deter-
mined from the minimum creep rate vs. stress dependencies

� The overageing process of the considered alloy is discussed in
detail in [4], where the material parameters in Eq. (23) are
identified as follows

K0 ¼ 4:44 � 10�5 m2=s; QCu ¼ 133:9 kJ=mol

The characteristic size of the particles ranges between 0:05 μm
and 0:1 μm [19,35]. Therefore, the bounds for the property A0

can be estimated by Eq. (24)
� With experimental data for creep rates under transverse

loading and Eq. (47) the material properties _ε0, σ0, CH, A0 as
well as functions f0 and H1 are identified by the least
square method

� With experimental data from longitudinal tests and Eq. (41) the
material properties Cβ and h1 are identified by the least square
method.

Fig. 6. Experimental data and model predictions for T direction at T¼150 1C and
different stress levels. (a) Creep rate vs. creep strain, (b) creep rate vs. time.



To verify the results of the identification procedure Eqs. (32)–(35)
are solved numerically for longitudinal and transverse loadings
and the results are compared with experimental data.

Fig. 6 shows results of identification for T direction at constant
temperature T¼150 1C and different stress levels.

Let us note that the backstress has minor influence on the creep
response for the loading in T direction. The creep rate vs. creep
stain, Fig. 6(a) and creep rate vs. time curves, Fig. 6(b) are well
reproduced by the developed model with two scalar state vari-
ables H and Φ. A slight disagreement between the experimental
data and the model is observed in the final stage of the creep
curves before the fracture. Here the experimental creep rates are
higher than the creep rates predicted by the model. One way to
improve the model is the use of an additional damage state
variable and damage evolution equation.

Fig. 7 shows experimental data and results of identification for
L direction. Here only parameters in the backstress evolution
equation were identified from experimental data while equations
for the variables H and Φ were calibrated against creep curves for
T direction previously.

As the results show the backstress together with the hardening
variable H describes well the primary creep stage up to the
minimum creep rates. This confirms that the proposed phase
mixture model is well suitable to reflect anisotropic effects of
inelastic deformation. However, the introduced ageing variable
cannot accurately capture the tertiary creep stage for the loading
in L direction. The experimental creep rates are higher than creep
rates predicted by the model in the most part of the tertiary creep

stage. This disagreement indicates that damage processes control
the tertiary creep rate and are mostly observable for the loading in
L direction. The essential creep cavitation of L specimen was
documented in [3].

Let us give a summary of identified material parameters in Eqs.
(32)–(35) for T¼150 1C

_ε0f 0ðTÞ ¼ 907:4 1=h; σ0 ¼ 320 MPa n¼ 9:94;

H1ðσvMÞ ¼H0
σvM

σ0

� ��k

; H0 ¼ 5:76; k¼ 5:91; CH ¼ 182;

AsðTÞ ¼ 0:0308 1=h; m¼ 2;

h1 ¼ 0:585; Cβ ¼ 6:37 � 104 MPa

5. Conclusions and recommendations

The aim of this paper was to analyze microstructural processes
that lead to anisotropic behavior of forged aluminium alloy
AA2014 and to develop a constitutive model for the creep behavior
under multi-axial stress state.

Based on the results we may conclude as follows:

� The principal origin of the anisotropic creep could be explained
on the basis of a composite structure made from elongated
grains and grain boundary regions

� The phase mixture approach with the anisotropic interaction
rule is applicable to model directionally dependent stress
redistributions for materials with elongated grains

� The proposed model can be reduced to a set of equations with
three internal state variables: the backstress, the dislocation
density hardening variable and the particle overageing variable.
With such a formulation the material parameters can be
identified from creep curves for two loading directions

� The introduced ageing variable and corresponding kinetic
equation describe tertiary creep stage accurately only for T
direction. To capture accelerated creep in L direction an addi-
tional damage state variable is required.

The developed model is able reflect basic features of aniso-
tropic creep deformation for forged AA2014 alloy and can also be
applied for other alloys having microstructure with elongated
grains. It can be utilized inside any commercial finite element
code for the use in structural analysis.

The approach is limited to the power law creep range which is
the case for many industrial applications of forged aluminium
components serviced by intermediate temperatures. The model
can be extended to capture both the power law and power law
breakdown ranges by introduction of appropriate response func-
tions of stress. This would require the use of advanced identifica-
tion techniques [7]. Furthermore, texture and particle orientation
effects should be included in the future on the basis of crystal
viscoplasticity modeling and experimental data for distribution of
crystallographic orientations. To validate the model additional
data from independent creep tests are required. One way is to
compare the model predictions with experimental data for
notched specimen. Furthermore, creep damage processes should
be considered to predict the life-time of specimen and compo-
nents. To this end an appropriate tensor-valued damage variable
and evolution equation should be introduced. For isotropic mate-
rials approaches exist to consider directionally dependent creep
cavitation, e.g. [36]. Further investigations are required to formu-
late and identify anisotropic damage processes for initially aniso-
tropic materials like forged aluminum alloys.

Fig. 7. Experimental data and model predictions for L direction at T¼150 1C and
different stress levels. (a) Creep rate vs. creep strain, (b) creep rate vs. time.
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