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Abstract

An efficient method is proposed to evaluate the Vapour–Liquid Equilibrium
(VLE) curve for complex multi-parameter technical and reference thermody-
namic equations of state, in connection with Computational Fluid Dynamics
(CFD) simulations of compressible flows of real gases. Differential algebra tech-
niques are used to obtain an approximation of the VLE curve from the reference
equation of state of carbon dioxide. Seven fourth-order Taylor polynomials are
required to approximate the VLE curve for a reduced pressure between 0.7 and
1, with an error on density below 0.04%, except near the critical point where the
error is around 0.1%. The proposed approach is proved to be a suitable alterna-
tive to standard Look-Up Table (LUT) techniques, with comparable accuracy
and computational burden. Moreover, the explicit use of the model analytical
expression in the determination of the polynomial expansions allows to reduce
the number of expansion poles and it will possibly simplify the approximation
of different fluids, including mixtures.

Keywords: Vapour–liquid equilibrium, Reference equation of state, Technical
equation of state, Carbon dioxide, Differential Algebra, Computational fluid
dynamics, Look-Up Table

1. Introduction

In most engineering applications, the numerical simulation of compressible
flows is usually carried out under the assumption of an ideal gas. The ideal
gas model is the paradigm of the majority of aeronautic and aerospace prob-
lems, such as the analysis of the flow-field around transonic-cruise aircraft and
hypersonic re-entry vehicles or in turbomachinery applications. However, the
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ideal-gas approximation is not suitable for situations where the conditions of the
fluid in terms of pressures and temperatures are close to the Vapour Liquid Equi-
librium (VLE) curve or are of an order of magnitude close to the critical-point
values. Remark that for some fluids the ideal gas model provides inaccurate
results from an engineers’ viewpoint at pressures near 1 bar already.

To account for so-called real gas effects, including two-phase flows and critical
point phenomena, real-gas fluid models are to be included in Computational
Fluid Dynamics codes. If fluid continuity and thermodynamic equilibrium can
be assumed, an analytical thermodynamic equation of state (EOS) is sufficient
to compute all real-gas properties required by the CFD solver, including e.g.,
the pressure, the temperature, the speed of sound and transport properties.
The inclusion of such an EOS usually results in a significant increase of the
computational costs, as discussed, e.g., in [1]. Due to the evaluation of non-
ideal gas properties at each time step, the computational time increases, with
respect to ideal gas simulations, up to three/four orders of magnitude for an
explicit CFD code and one order of magnitude for an implicit one, since the
latter usually requires a lower number of iterations to reach the steady state.
For modern reference or technical multi-parameter EOS, see [2, 3, 4, 5], the
computational burden related to EOS evaluations can be the main limiting
factor of using CFD simulations.

Modern thermodynamic models are usually written in terms of a thermo-
dynamic potential, to guarantee thermodynamic consistency and stability of all
derived quantities. This is for example the Helmholtz free energy, which is writ-
ten as a function of the temperature and of either the density or specific volume.
The analytical expression of both technical and reference EOS generally includes
a number of empirical functional terms, whereby these fluid-specific parameters
are computed by fitting the functional relation to experimental data. In the
case of a simpler technical EOS, the uncertainty associated to the evaluation
of thermodynamic properties is within 1-2%, a range that is deemed sufficient
for technical applications. Reference equations of state compute thermodynam-
ics properties within the accuracy of the experimental measurements they are
based upon [6].

The direct evaluation of the thermodynamic model, where any given prop-
erty is computed from the two so-called natural variables—the temperature and
density in the case of the Helmholtz potential—amounts to the direct evalua-
tion of an algebraic non-linear function and therefore requires negligible CPU
time. On the contrary, inverse evaluation, where one or both independent vari-
ables are not the natural ones, requires the (numerical) solution of an algebraic
non-linear equation or a 2×2 system of algebraic non-linear equations. Unfortu-
nately, the latter is usually the situation encountered in CFD, since typically the
internal energy and the density are the independent variables. In particular, the
identification of the fluid phase—be it vapour, liquid or two-phase—amounts to
solving a 2× 2 system of algebraic non-linear equations for the saturated liquid
and vapour values of the density. Moreover, the evaluation of each term in the
system requires the solution of inner inverse problems for the pressure and the
temperature.
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The identification of the fluid phase is mandatory to determine whether
single-phase or two-phase models are to be applied and therefore in CFD com-
putations such a test is carried out for all grid points and for all time steps;
as a consequence, a significant reduction of the computational burden can be
obtained by introducing a computationally efficient approximation of the VLE
curve. Moreover, in inverse evaluations, the phase check is to be carried out at
each sub-iteration.

So-called ancillary equations can be used to estimate the density and pres-
sure along the VLE curve as a function of the temperature [2]. The functional
form is valid for a given class of fluids and it includes a variable number of pa-
rameters fitted on VLE experimental data of the considered fluid. Alternatively,
Look-Up Tables (LUT) can be used to compute saturated density and pressure
along the VLE curve. LUT are tables containing the thermodynamic properties
of the fluid, computed with accurate equations of state in a discrete number of
points of the thermodynamic plane. The thermodynamic state in other points,
including the VLE curve, can be retrieved by interpolation of these data. In the
approximate evaluation of the thermodynamic properties of the fluid, particular
care must be taken in guaranteeing thermodynamic stability [7]. As explained
in [8], thermodynamic stability requires that the thermodynamic variables com-
puted through the approximate model satisfy the constraints posed by Maxwell
relations.

Thermodynamic consistency is also to be guaranteed in the approximate
framework. Consider the evaluation of the pressure P from the temperature T
and density ρ by means of the pressure EOS P = Π(T, ρ) provided by the model.
If T = θ(P, ρ) is the temperature EOS, then P ≡ Π(θ(P, ρ), ρ). On the contrary,
if the functions Π and θ are substituted by their approximate counterparts Π̃
and θ̃, so that P = Π̃(T, ρ)± ǫΠ and T = θ̃(P, ρ)± ǫθ, with ǫ the approximation
error, one in general has P 6= Π̃(θ̃(P, ρ), ρ). The difference P − Π̃ can be easily
reduced by increasing the accuracy of the approximation Π̃: however, due to
the high non-linearity of real gas thermodynamics and the number of inverse
evaluations of the thermodynamic model in CFD computations, a relatively
accurate approximation can produce significant inconsistencies that may even-
tually prevent the CFD solver to reach convergence. In the following, we will
refer to the difference P − Π̃ as a measure of the thermodynamic consistency of
the approximation.

In the present paper a novel technique for approximating the VLE curve
is presented, which is at the same time computationally efficient and accurate.
Differential algebra (DA) techniques are used, which allow to represent and
operate on functions through their Taylor series expansions rather than their
point-wise evaluations. For conciseness, this paper reports only the polynomial
approximation of the VLE curve associated to the technical and the reference
EOS of carbon dioxide, though the presented procedure was applied to four
different fluids with comparable results.

The present paper is organized as follows. Section 2 describes the thermo-
dynamic modelling of the VLE problem and reports also the reference EOS
of carbon dioxide. Section 3 gives a brief explanation of DA techniques and
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their application to the VLE problem. More specifically, sections 3.1 and 3.2
describe the algorithm for computing an approximate solution of the VLE sys-
tem in terms of deviation from a reference temperature. Finally, the obtained
results are presented and discussed in section 4. A summary of the work and
an indication of possible further developments are presented in section 5.

2. Vapour-Liquid Equilibrium from thermodynamic models

The VLE curve of carbon dioxide is reported in Figure 1, where the density-
temperature (ρ-T ) thermodynamic planes is shown. With reference to Figure 1,
each isotherm T = T̄ < TC, with TC the critical temperature, intersects the VLE
curve at two points. The corresponding values of the specific volume vL = 1/ρL

and vV = 1/ρV, vL < vV, are called the saturated liquid and saturated vapour
states, respectively. At T = T̄ < TC, if v < vL the fluid state is liquid; if vL ≤
v ≤ vV the liquid and vapour phase co-exist; if v > vV the fluid is in the vapour
phase. At the critical pressure, vL ≡ vC ≡ vV. Above the critical temperature
and pressure, no phase transition can occur by iso-thermal compression of a gas.
In the following, the subscript L, V and C refer respectively to thermodynamic
properties along the liquid side, the vapour side and the critical state.

The saturated values of the specific volume can be computed by the following
2× 2 system of non-linear equations, [7]

{

P (T̄ , vV) = P (T̄ , vL)

µ(T̄ , vV) = µ(T̄ , vL)
(1)

which states that the pressure P and the chemical potential µ of saturated
vapour and saturated liquid are equal at the same temperature T̄ < TC.

The solution of the system (1) requires the specification of a thermodynamic
model, which allows to compute P and µ from the temperature and the specific
volume. Note that the definition of the VLE curve depends on the chosen
thermodynamic model and therefore consistency issues may possibly arise if a
different, simplified, model is used to compute the VLE curve.

In the present work, the reference EOS for carbon dioxide proposed by Span
and Wagner in 1996 is considered [2]. This model allows to compute the re-
duced Helmholtz energy α = a/RT , with a specific Helmholtz energy and R
gas constant, as a function of the reduced density δ = ρ/ρC and the inverse
of the reduced temperature τ = TC/T . The function α is written as the sum
of a so-called ideal-gas contribution (indicated by the superscript ID) and of a
second term describing the residual or real-gas behaviour (R) as follows

α (τ, δ) = αID (τ, δ) + αR (τ, δ) . (2)

The ideal-gas term αID of the Helmholtz energy solely depends upon the isobaric
heat capacity in the ideal-gas state, i.e. CID

P , and it reads

αID(δ, τ) =
hID

0 τ

R T C

−
sID

0

R
− 1 + ln

(

δ τ0
δ0 τ

)

−
τ

R

τ
∫

τ0

CID

P

τ2
dτ +

1

R

τ
∫

τ0

CID

P

τ
dτ (3)
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where hID

0 and sID

0 are the enthalpy and the entropy of the ideal gas in the
reference state τ0 and δ0 [9].

Considering now the real-gas correction αR ≡ α−αID, the latter is described
by a function composed by 42 polynomial, exponential and Gaussian bell-shaped
terms as follows

αR (τ, δ) =
7

∑

i=1

ni δ
di τ ti +

34
∑

i=8

ni δ
di τ ti exp (−δci)

+
39
∑

i=35

ni δ
di τ ti exp

[

−αi (δ − ǫi)
2 − βi (τ − γi)

2
]

+
42
∑

i=40

ni∆
bi δ exp

[

−Ci (δ − 1)2 −Di (τ − 1)2
]

(4)

where ni, di, ti, αi, βi, ǫi, γi, ai, bi, ci, Ai, Bi and Ci, i = 1, . . . , 42 are
substance-dependent constants and where

∆ =

{

(1− τ) +Ai

[

(δ − 1)
2
]

1

2βi

}2

+Bi

[

(δ − 1)
2
]ai

.

The numerical values of all constant parameters in (4) can be found in [2].
This equations was obtained through optimization of the functional form and
simultaneous fit of high-accuracy experimental data of different thermodynamic
properties. The resulting EOS is able to reproduce data within their experi-
mental uncertainty, therefore it belongs to the class of reference EOS.

Since the function α(τ, δ) is a thermodynamic potential, all thermodynamic
properties of the fluid can be calculated by evaluating its partial derivatives,
see [7]. Some useful relations between common thermodynamic properties and
partial derivatives of the reduced Helmholtz energy are listed in [3, Table II].
From relations in [3, Table II], it is possible to express the system (1) as











ln

(

ρL

ρV

)

+ αR(τ , δL)− αR(τ , δV) + δL α
R

δ (τ , δL)− δV αR

δ (τ , δV) = 0

δL [1 + δL α
R

δ (τ , δL)]− δV [1 + δV αR

δ (τ , δV)] = 0 .

(5)

The system (5) provides the implicit definition of the VLE curve of carbon
dioxide both under the reference and the technical Span-Wagner EOS.

2.1. Ancillary equations

Different types of so-called ancillary equations were proposed to approxi-
mate the VLE curve and avoid direct solution of system (5). These functions
are generally composed of exponential terms and contain a variable number of
parameters that are determined through correlations of experimental or refer-
ence data.
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Table 1: Coefficients of the ancillary equations (6), representing VLE curve of carbon dioxide.

a1 1.682959 b1 -1.605071 c1 -6.978589
a2 0.897143 b2 -2.926083 c2 1.216980
a3 0.353873 b3 -7.379254 c3 -7.025053
a4 -6.476158 b4 -6.000816 c4 197.311927

b5 -453.936079 c5 -6488.004466

In the present work, the following set of ancillary equations were used to
obtain the values of density and pressure along the VLE curve as functions of
temperature:

ρL

ρC

= 1+ a1θ
1

3 + a2θ
2

3 + a3θ
7

3 + a4θ
20

3 (6a)

ρV

ρC

= exp
[

b1θ
1

3 + b2θ
2

3 + b3θ
5

3 + b4θ
8

3 + b5θ
22

3

]

(6b)

P

PC

= exp
[

c1θ + c2θ
1.5 + c3θ

3.5 + c4θ
7 + c5θ

10.5
]

(6c)

where θ = 1 − T/TC. The constant parameters ai, bi, ci were determined by
linear least-square fits to the reference data reported in [2] and are listed in
Table 1.

2.2. Look-up tables

Thermodynamic Look-Up Tables (LUT) can be used in numerical simula-
tions to reduce computational costs when an accurate thermodynamic model is
required to correctly represent the fluid. For instance, References [10, 11, 12, 13]
discuss LUT applications to take into account real gas effects in turbo-machinery
flows and high-temperature gas effects in simulations of a hypersonic boundary
layer. In [8], Swesty proposed a bi-quintic interpolation scheme for Helmholtz
free energy LUT which guarantees that thermodynamic consistency is fulfilled.

In LUT methods, thermodynamic properties are computed during a pre-
processing step by mapping the thermodynamic region of interest onto a bi-
dimensional grid. In the CFD simulation, the required thermodynamic variables
are computed through an interpolation of these tabulated values. The computa-
tional time and the accuracy depend on grid dimensions, search algorithm and
interpolation scheme.

A one-dimensional LUT is used in the present work to approximate the VLE
curve of carbon dioxide. The values of density and pressure are continuously
retrieved from the LUT for any value of temperature in the computed range.
Two different interpolation algorithms—a linear and a cubic—have been tested,
as in [12].

6



3. VLE approximation using Differential Algebra

This section gives a brief overview of Differential Algebra (DA) and related
techniques adopted in the present work. To introduce the following, it is useful
to recall briefly that in the DA framework, a given function f is represented by
its k-th order Taylor series expansion F , obtained by the extracting operation
indicated by T . More precisely, T is an equivalence relation, and the application
of T corresponds to the transition from the function to the equivalence class
comprising all those functions with identical Taylor series expansion to order
k. The set of equivalence classes can be endowed with well-defined operations,
leading to the definition of so-called truncated power series algebra (TPSA) [14].
For a detailed description of DA techniques the reader is referred to [15].

In the present work, DA techniques and their implementation in the software
COSY-INFINITY by Martin Berz and KyokoMakino [16] are used to solve system
(5), which is a particular case of a system of parametric implicit equations. In
Section 3.1, the procedure to find the solution of a scalar parametric equation
is discussed in more details. In Section 3.2, DA techniques are applied to the
system of parametric non-linear equations (5) to determine the saturation curve.

3.1. Solution of a scalar parametric implicit equation

The parametric non-linear equation

f(x, p) = 0 (7)

where x ∈ R is the independent variable, p ∈ R is a parameter and f ∈ R is
a k -differentiable function, is considered first. In particular, the solution of (7)
amounts to the determination of the function x = x(p) ∈ R|f(x(p), p) = 0 ∀p ∈
R.

DA techniques allow to determine the function x(p) in terms of its Taylor
series expansion with respect to the parameter p. To this purpose, it is necessary
to choose a nominal value of the parameter p∗ and to compute the corresponding
reference solution x∗ of equation (7), namely,

f(x∗, p∗) = 0 . (8)

The solution pair (x∗, p∗) can be obtained by standard solution techniques such
as the Newton-Raphson method. The values are required in order to initialize
the state and the parameter as the so-called k-th order DA variables. In this
respect, DA variables are defined as the sum of the reference values and the
deviations from them

[x] = x∗ +∆x

[p] = p∗ +∆p .
(9)

In the DA framework the function f can be expressed as

∆f = Mf(∆x,∆p) (10)
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where Mf is the Taylor series map of f . This map is origin-preserving since x∗

is a solution of equation (7). Therefore, ∆f represents the deviation of f from its
reference value. The map defined in (10) is then augmented by introducing the
map corresponding to the identity function on the parameter, i.e., ∆p = Ip(∆p).
Finally, the map is inverted by using ad hoc polynomial algorithms implemented
in COSY-INFINITY. Since the goal is to compute the k-th order Taylor series
expansion of the solution of equation (7), the function f is required to have a
null deviation from its reference value, which is zero. Thus, the resulting inverse
map is evaluated for ∆f = 0 as

[

∆x
∆p

]

=

[

Mf

Ip

]

−1 [

0
∆p

]

. (11)

The first row of the map (11) reads ∆x = Mx(∆p) and therefore it describes,
through a k-th order Taylor series polynomial, the function x = x(p). Finally,
the expression of ∆x can be substituted into the first equations of (9) to obtain

[x] = x∗ +Mx(∆p) . (12)

which is the k-th order Taylor series expansion of the solution of the implicit
parametric equation (7). For each ∆p, the approximated solution to (7) can
be computed directly by evaluating this polynomial. The accuracy of the ap-
proximation depends on both the order k of the Taylor series expansion and the
relative variation ∆p with respect to the reference value p∗.

3.2. DA techniques applied to the VLE curve

To apply DA techniques to the solution of system (5), the latter is written
in the following compact form

f (δ, τ) = 0 with δ =

[

δL

δV

]

(13)

where δ is the vector of independent variables and τ is the parameter. The
solution is sought in the reduced pressure range 0.7 ≤ P/PC ≤ 1. Since in the
critical region a small variation of the temperature results in significant changes
in relevant thermodynamic properties, a scale factor σ < 1 is introduced to
guarantee that the variations are of the order of unity. To this purpose, the
initialization of the DA variables (9) is modified as follows

[δL] = δ∗
L
+ σ∆δL

[δV] = δ∗
V
+ σ∆δV

[ τ ] = τ∗ + σ∆ τ

(14)

and therefore the Taylor expansions of the solution are

[δL] = δ∗
L
+ σMδL(∆τ)

[δV] = δ∗
V
+ σMδV(∆τ) .

(15)
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Figure 1: Polynomial approximation of the VLE curve of carbon dioxide obtained using the
reference EOS [2]; black marks indicate the bounds of each polynomial and the overlap regions.

The reference solutions δ∗
L
, δ∗

V
and τ∗ in (15) are computed using the software

FluidProp [17] and RefProp [18]. These tools allow for the computation of the
thermodynamic properties for a large variety of fluids and have implemented
therein different EOS, including technical and reference ones. The approxima-
tion accuracy depends on the order k of the polynomial reconstruction. Second
and third order polynomials prove to be insufficient to represent the VLE curve,
because the coefficients of the Taylor polynomial are of about the same order
of magnitude, thus indicating that higher-order terms may be need to be con-
sidered. The magnitude of the coefficients of fourth-order polynomials obtained
from COSY-INFINITY reduces as the order of the corresponding term increases.
In particular, by selecting a sufficiently small scale factor, fourth-order coeffi-
cients of about 10−7 are obtained. Since the accuracy of the approximations (15)
decreases as the distance from the poles δ∗

L
and δ∗

V
increases, an accurate repre-

sentation of the VLE curve requires the definition of a number of different Taylor
series expansions centred at different values of τ∗. Seven fourth-order polyno-
mials are necessary to accurately represent the VLE curve for 0.7 < PR < 1
within 0.1% of uncertainty. Numerical experiments were performed by consider-
ing higher-order polynomials. In these cases, the accuracy of the approximation
slightly increases, but a larger number of polynomials is required to approximate
the same portion of the VLE curve since the representation error increases very
rapidly with the distance from the poles.

4. Results and discussion

Differential Algebra techniques are now applied to represent the VLE curve
of carbon dioxide obtained from the reference equation of state. Figure 1 shows
the approximation of the VLE curve in the T -ρ thermodynamic plane, compared
with the one obtained by the reference EOS [2]. The bounds of the interval of
validity of each polynomial are indicated by black marks. An overlap of 5%
between the intervals is introduced to facilitate transitions from one polynomial
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Figure 2: Comparison between the approximations of the VLE curve of carbon dioxide ob-
tained by polynomials (present) and ancillary equations. Left: Detail of the VLE curve in
the region near the critical point. Right: Percentage errors on saturated density computed
in both cases: %error = 100(ρ − ρREF)/ρREF, where the subscript REF relates to the values
computed by the software RefProp using the reference EOS [2].
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Taylor polynomial. Left: Percentage errors on saturated density ρS along the vapour side of
the VLE curve. Right: Derivative of specific volume with respect to temperature along the
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Figure 4: Dependence of the computational time on the number of LUT points. The CPU
time refers to the interpolation of 1000 points between T = 292K and T = 298.3K both with
a linear and a cubic scheme. Both quantities are normalized to the respective smallest value
and the dashed line represent the linear dependence.

CPU % Error on ρL % Error on ρV
time Mean Max Mean Max

Reference EOS

RefProp 14.67
Polynomial approximation 1.33 0.00137 0.01180 0.00411 0.03144
LUT linear interpolation 1.33 0.00240 0.00683 0.00816 0.01950
LUT cubic interpolation 1.34 0.00003 0.00012 0.00010 0.00034

Technical EOS

RefProp 14.33
Polynomial approximation 1.00 0.00065 0.00806 0.00154 0.01784
LUT linear interpolation 1.46 0.00247 0.00719 0.00786 0.01857
LUT cubic interpolation 1.46 0.00003 0.00013 0.00009 0.00032

Table 2: Computational time required to evaluate ρL and ρV in 1000 points between T = 292K
and T = 298.3K along the VLE curve of carbon dioxide by the polynomial approximation
proposed in the present work, by the software RefProp [18] and by a LUT method for two
different equations of state. The LUT consists in 150 points—which cover a range of temper-
ature between 231 K and the critical point—computed by RefProp. First rows of the table
refer to the reference EOS [2] and the latter ones to the technical Span-Wagner EOS [5]. The
table reports also the mean and the maximum errors on densities in the considered range,
with respect to the values computed by RefProp. The unit CPU time corresponds to 0.0468 s
on an Intel Core i7–2620M (2.0GHz), with 8 GB RAM. The values of CPU time refer only to
the evaluation of the thermodynamic properties and they do not include the time required by
the determination of the polynomial expansions and by the computation of LUT data.
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to the next one. Inside these overlapping regions, the solution is obtained by
combining the overlapping polynomials through an error function. At the criti-
cal point, the two approximations ρL and ρV for the liquid and vapour densities,
respectively, do not overlap. Moreover, since the polynomial expansions are
not centred at the critical point, the critical value is general different from the
reference one.

Figure 2(right) shows the percentage errors on reduced densities with respect
to the temperature. It can be noticed that the resulting curve approximates
fairly well the reference one. The choice of using seven fourth-order polynomi-
als resulted in a maximum error of 0.1% on reduced densities near the critical
point and 0.04% elsewhere. The errors are larger near the bounds of the va-
lidity regions and, if needed, they can be reduced by using more Taylor series
polynomials.

Figure 2 compares the approximation of the VLE curve obtained by DA
techniques and the one obtained by the ancillary equations (6). The former
yields a smaller deviation from the reference VLE curve than the latter, espe-
cially in the critical region, see Figure 2(left). This is confirmed also by data in
Figure 2(right), which displays the percentage errors on reduced density along
the liquid and vapour sides of the VLE curve.

An evaluation of the computational time is reported in Table 2. The val-
ues of saturated liquid and vapour density in 1000 points between T = 292K
and T = 298.3K have been computed using both the polynomial Taylor series
approximations proposed here and RefProp, using the same reference equation
of state. The computational time does not include the time required by the
computation of the Taylor polynomials but only their evaluation. The proposed
approximation has been proved to be almost ten time faster than the evaluation
by RefProp.

A similar comparison was performed between the proposed approximation
and a LUT-based method [10]. A preliminary analysis was carried out to predict
the dependence of the computational time on the number of points. For this
purpose, different mono-dimensional LUT have been built by means of RefProp
for carbon dioxide, computing the thermodynamic properties with the same ref-
erence EOS in a different number of points within different temperature ranges.
The computational time for LUT evaluation—both with linear and cubic inter-
polation schemes—grows linearly with the number of grid points, as can be seen
in Figure 4, while it seems to be unaffected by the temperature range. This is
probably due to the binary search algorithm used to locate the nearest data val-
ues required by interpolation, which discards half of the range at each iteration.
The comparison between the polynomial approximation and the interpolation of
LUT values has been performed using a table composed by 150 points between
T = 231K and the critical point. This LUT allowed to compute the values
of saturated density in the same 1000 points in the same computational time.
The computational time required by the linear and the cubic interpolation is
reported in Table 2, which summaries also the percentage errors on density.
The two interpolation schemes requires the same computational effort, while
the cubic one yields a reduction of approximately two order of magnitude in the
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percentage errors.
For the reference EOS, the proposed method seems to bring no advantages

in terms of computational time or accuracy with respect to linear interpolation
of LUT data. Nevertheless, a more detailed analysis reveals that the approxima-
tion obtained by Taylor polynomials exhibits a more regular behaviour. This is
displayed by Figure 3(left) which shows the error on density on the vapour side
of VLE curve in the temperature range between T = 292K and T = 298.3K,
which is approximated by only one Taylor polynomial. This behaviour leads
to an inaccurate approximation of the derived quantities. For instance, Figure
3(right) shows the derivative of specific volume with respect to temperature on
the vapour side in the same range of temperatures. It can be noticed that the
derivative of the approximation obtained by the LUT exhibits an oscillatory
behaviour. Such a behaviour, which has been observed also on the liquid side
and for the derivative of the volume with respect to pressure, strongly affects
the thermodynamic consistency. The same derivatives computed by means of
the polynomial approximation present as well discontinuities, but only where
two different polynomials join together, so in a well defined region. The cubic
interpolation of LUT data does not present this drawback.

Similar results have been obtained for technical EOS for different fluids.
More specifically, the present method has been applied also to the VLE curve
obtained using the technical Span-Wagner EOS [3, 4, 5] for four different fluids
(carbon dioxide, butane, methane, propane). In all these cases, seven fourth-
order polynomials have proved to be sufficient to approximate the VLE for
0.7 < PR < 1, with a maximum error on the reduced density of 0.02% for carbon
dioxide, 0.005% for butane, 0.03% for methane and 0.006% for propane. Figure
5 shows the exact and the approximated VLE curve of the four fluids in the
plane T -ρ obtained using the technical Span-Wagner EOS and the percentage
errors on reduced densities. For carbon dioxide only, Table 2 contains also the
comparison between the polynomial and LUT-based approximations applied to
the twelve-parameter technical Span-Wagner EOS. In this case, the polynomial
approximation yields a reduction of the computational cost and an error on
saturated densities comparable to the one obtained by linear interpolation of
LUT.

5. Conclusions

Differential Algebra techniques were applied to approximate the Vapour-
Liquid Equilibrium curve of carbon dioxide obtained from the reference equa-
tion of state of Span-Wagner [2], for a reduced pressure in the interval 0.7 <
P/PC < 1. DA techniques implemented in the software COSY-INFINITY deliv-
ered two sets of seven fourth-order polynomials for the reduced saturated liquid
and vapour density as a function of the inverse reduced temperature. Each
fourth-order polynomial is defined over a limited range of temperature. Errors
on reduced saturated density are less than 0.1% with respect to values computed
with the reference EOS. The maximum value of the error is observed close to the
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Figure 5: Polynomial approximation of the VLE curve of different fluids obtained using the
technical EOS of Span-Wagner [4, 5]; black marks indicate the bounds of each polynomial and
the overlap regions. Left: VLE curve in the T − ρ thermodynamic plane. Right: Percentage
errors on saturated density: %error = 100(ρ − ρSW)/ρSW, where the subscript SW relates to
the values computed by the software RefProp using the technical Span-Wagner EOS. First row
refers to carbon dioxide, the second one to butane, the third one to methane and the fourth
to propane
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boundary of the interval associated to each polynomial, where two neighbouring
polynomials are combined using an error function.

A comparison between the computational time required by evaluating sat-
urated density values using the exact implementation of the reference EOS in
RefProp and the present approach showed that the latter allows for a one-order-
of-magnitude reduction of the computational costs. The polynomial approxima-
tion was found to be more accurate than so-called ancillary equations, though
admittedly the latter are characterized by very simple functional form—which
allows for an almost instantaneous evaluation—and were not devised for accu-
rate CFD computations.

A comparison with a mono-dimensional LUT method showed that the poly-
nomial approximation brings few notable advantages with respect to linear in-
terpolation of LUT data. One of this concerns regularity, at least in the centred
part of the validity region of each polynomial. This allows to compute the
derivative of thermodynamic quantities more accurately and therefore to in-
crease thermodynamic consistency. Furthermore, a similar comparison revealed
that the polynomial approximation offers no advantages in computational time
or accuracy with respect to cubic interpolation, even if it allows to approximate
the VLE curve with a less amount of stored information.

In the opinion of the authors, the polynomial approximation proposed here is
suitable for phase check, especially in CFD code which allows to choose between
different thermodynamic models or in simulations that involve different fluids
or mixtures. The proposed approximation can, in fact, be easy implemented
and the functional form does not change even if thermodynamic model changes.
This possibility could circumvent the drawback of performing time-consuming
phase check in LUT methods.

Further developments will concern a more detailed analysis on the effects
of the polynomial approximation on the thermodynamic consistency and the
implementation of such approximation also to mixtures. Moreover the proposed
approach based on DA techniques will be extended to the approximation of
additional thermodynamic quantities needed in CFD computations, including
further portion of the P -v-T diagram.
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