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1. Introduction

Road freight transport is a primary source of greenhouse gases (GHGs) emissions such as carbon dioxide (CO2), the 
amount of which is directly proportional to fuel consumption (Kirby et al., 2000). In the United Kingdom and in the United 
States, around a quarter of GHGs comes from freight transportation (DfT, 2012; EPA, 2012). Greenhouse gases mainly result 
from burning fossil fuel, and over 90% of the fuel used for freight transportation is petroleum-based, which includes gasoline 
and diesel. These sources account for over half of the emissions from the transportation sector (Ribeiro et al., 2007).

Demir et al. (2011) have analyzed several models for fuel consumption and greenhouse gas emissions in road freight 
transportation. Specifically, the authors have compared six models and have assessed their respective strengths and weak-
nesses. These models indicate that fuel consumption depends on a number of factors that can be grouped into four catego-
ries: vehicle, driver, environment and traffic. The pollution-routing problem (PRP), introduced by Bektas� and Laporte (2011), 
is an extension of the classical vehicle routing problem with time windows (VRPTW). It consists of routing vehicles to serve a 
set of customers, and of determining their speed on each route segment to minimize a function comprising fuel cost, emis-
sions and driver costs. To estimate pollution, the authors apply a simplified version of the emission and fuel consumption 
model proposed by Barth et al. (2005), Scora and Barth (2006), Barth and Boriboonsomsin (2009). The simplified model 
assumes that in a vehicle trip all parameters will remain constant on a given arc, but load and speed may change from 
one arc to another. As such, the PRP model approximates the total amount of energy consumed on a given road segment, 
which directly translates into fuel consumption and further into GHG emissions. Demir et al. (2012) have developed an 
extended adaptive large neighborhood search (ALNS) heuristic for the PRP. This heuristic operates in two stages: the first 
stage is an extension of the classical ALNS scheme to construct vehicle routes (Pisinger and Ropke, 2007; Ropke and
orte).
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Pisinger, 2006a,b) and the second stage applies a speed optimization algorithm (SOA) (Norstad et al., 2010; Hvattum et al.,
2013) to compute the speed on each arc. In a later study, Demir et al. (2014a) have introduced the bi-objective PRP which
jointly minimizes fuel consumption and driving time. The authors have developed a bi-objective adaptation of their ALNS-
SOA heuristic and compared four a posteriori methods, namely the weighting method, the weighting method with normal-
ization, the epsilon-constraint method and a new hybrid method, using a scalarization of the two objective functions.

The trade-off between minimizing CO2 emissions and minimizing total travel times was studied by Jabali et al. (2012) in
the context of the time-dependent vehicle routing problem. The planning horizon was partitioned into two phases: free flow
traffic and congestion. The authors solved the problem via a tabu search and proposed efficient bounding procedures.
Franceschetti et al. (2013) have later introduced the time-dependent pollution-routing problem where a two-stage planning
horizon was used, as in Jabali et al. (2012). Such a treatment has allowed for an explicit modeling of congestion in addition to
the PRP objectives. The authors developed an integer linear programming formulation in which vehicle speeds are optimally
selected from a set of discrete values. Kopfer and Kopfer (2013) studied the emission minimization vehicle routing problem
while considering a heterogeneous fleet. These authors described a mathematical formulation for the problem and computed
the CO2 emissions based on the payload and on the traveled distance. They presented results of computational experiments
performed on small size instances with up to 10 customers. Kopfer et al. (2014) have analyzed the potential of reducing CO2

emissions achievable by using an unlimited heterogeneous fleet of vehicles of different sizes. Kwon et al. (2013) have con-
sidered the heterogeneous fixed fleet vehicle routing problem with the objective of minimizing carbon emissions. They pre-
sented a mathematical model enabling them to perform a cost-benefit assessment of the value of purchasing or selling
carbon emission rights. CO2 emissions are calculated by fuel consumption which is based on the traveled distance of the
vehicles. An upper limit for the amount of CO2 was considered in order to introduce more flexibility into an environmentally
constrained network. The authors developed tabu search algorithms and suggested that the amount of carbon emission can
be reduced without sacrificing the cost because of the benefit obtained from carbon trading. For other relevant references
and a state-of-the-art coverage on green road freight transportation, the reader is referred to the survey of Demir et al.
(2014b).

In most real-world distribution problems, customer demands are met with heterogeneous vehicle fleets (Hoff et al.,
2010). Two major problems belonging to this category are the fleet size and mix vehicle routing problem introduced by
Golden et al. (1984), which works with an unlimited heterogeneous fleet, and the heterogeneous fixed fleet vehicle routing
problem proposed by Taillard (1999), which works with a known fleet. These two main problems are reviewed by Baldacci
et al. (2008) and Baldacci and Mingozzi (2009). To our knowledge, the fleet size and mix vehicle routing problem combining
time windows with the PRP objectives, has not yet been investigated. We believe there is merit in analyzing and solving the
fleet size and mix pollution-routing problem (FSMPRP), not only to quantify the benefits of using a flexible fleet with respect
to fuel, emissions and the relevant costs, but also to overcome the necessary methodological challenges to solve the problem.

The contributions of this paper are threefold. First, we introduce the FSMPRP as a new PRP variant. The second contribu-
tion is to develop a new metaheuristic for the FSMPRP. Our third contribution is to perform analyses in order to provide man-
agerial insights, using the FSMPRP model and several variants. These analyses shed light on the trade-offs between various
method components and performance measures, such as distance, fuel and emissions, enroute time and vehicle types. They
also highlight and quantify the benefits of using a heterogeneous fleet of vehicles over a homogeneous fleet.

The remainder of this paper is structured as follows. Section 2 presents a background on vehicle types and characteristics.
Section 3 provides a formal description of the FSMPRP and the mathematical formulation. Section 4 contains a detailed
description of the metaheuristic. Computational experiments and analyses are presented in Section 5, followed by conclu-
sions in Section 6.
2. Background on vehicle types and characteristics

Available studies on emission models (e.g., Demir et al., 2011, 2014b) show the significant impact that the vehicle type
has on fuel consumption. In a goods distribution context, using smaller capacity vehicles is likely to increase the total dis-
tance travelled and may also increase CO2 emissions. According to Campbell (1995a,b), if large vehicles are replaced by a
larger number of small vehicles, emissions are likely to increase, even though a heavy duty vehicle which has a larger engine
consumes more fuel per km than a light duty vehicle. According to Kopfer et al. (2014), replacing a large vehicle by several
vehicles of different types may sometimes result in a reduction of CO2 emissions. Vehicle type effects the engine friction fac-
tor, engine speed, engine displacement, aerodynamics drag, frontal surface area and vehicle drive train efficiency; vehicle
curb-weight and payload, i.e., capacity, also play an important role in routing decisions.

In the United Kingdom, the Department of Environment, Food and Rural Affairs (DEFRA, 2007) considers that higher-
power engines do not necessarily result in fuel savings, and although these types of engines usually have a larger residual
value, they may not be financially advantageous. The effects of curb weight and payload on fuel consumption have been
studied by some authors (Bektas� and Laporte, 2011; Demir et al., 2011). The payload of the vehicle has an impact on inertia
force, rolling resistance and road slope force. Demir et al. (2011) point out that when compared with light and medium duty,
heavy duty vehicles consume significantly more fuel, primarily due to their weight. From the perspective of payload reduc-
tion, a study by Caterpillar (2006) has shown that a 4.4% improvement in fuel savings can be reached through a 4500 kg
reduction in payload and in gross weight with respect to an initial weight of 36 tonnes. The corresponding improvement



is 8.8% for an initial weight of 27 tonnes. DEFRA (2012) states that a 17-tonne heavy duty vehicle emits 18% more CO2 per km
when fully loaded, and 18% less CO2 per km when empty, relative to emissions at half-load.

The curb weight and payload constitute the Gross Vehicle Weight Rating (GVWR) of a vehicle. The United States Federal
Highway Administration FHWA (2011) has categorized vehicles into three main types according to the GVWR: light duty,
medium duty, and heavy duty. In practice, the prominent truck companies produce mainly three vehicle types for distribu-
tion (MAN, 2014a; Mercedes-Benz, 2014; Renault, 2014; Volvo, 2014). In our study, we consider the three main vehicle types
of MAN (2014a), shown in Fig. 1, particularly as the market share of the trucks of MAN (2014a) was around 16.3% in Western
Europe in 2013 (Statista, 2013). These three vehicle types, i.e., light duty, medium duty and heavy duty, are called TGL, TGM
and TGX by MAN (2014a). TGL and TGM are Single-Unit Trucks and TGX is a Single-Trailer Truck (FHWA, 2011).

A list of and values for the common parameters (Demir et al., 2012, 2014a; Franceschetti et al., 2013) for all vehicle types
and specific parameters (MAN, 2014a,b,c) for each vehicle type are given in Tables 1 and 2, respectively. For further details on
TGL, TGM and TGX vehicles and their engines the reader is referred to MAN (2014a,b,c).

Daily vehicle fixed costs f h are determined according to the United Kingdom Department for Transport (DfT, 2010). These
costs combine the capital cost and the annual fixed cost, which itself includes depreciation, repairs and maintenance, tires,
insurance and vehicle excise duty. In this paper, we assume that each vehicle route can be completed in one day, so that we
can transform the capital and annual cost values into daily costs.

We use the comprehensive emissions model of Barth et al. (2005), Scora and Barth (2006), and Barth and Boriboonsomsin
(2008) to estimate fuel consumption and emissions for a given time instant. This model has already been successfully
applied to the PRP by Bektas� and Laporte (2011), Demir et al. (2012, 2014a) and Franceschetti et al. (2013). In what follows,
we adapt the comprehensive emissions model to account for the heterogeneous fleet case. The fuel consumption rate FRh

(liter/s) of a vehicle of type h is given by
FRh ¼ nðkhNhVh þ Ph=gÞ=j; ð1Þ
where the variable Ph is the second-by-second engine power output (in kW) of vehicle type h. It can be calculated as
Ph ¼ Ph
tract=ntf þ Pacc; ð2Þ
where the engine power demand Pacc is associated with the running losses of the engine and the operation of vehicle acces-
sories such as air conditioning and electrical loads. We assume that Pacc ¼ 0. The total tractive power requirement Ph

tract (in
kW) for a vehicle of type h is
Ph
tract ¼ ðM

hsþMhg sin hþ 0:5Ch
dqAv2 þMhgCr cos hÞv=1000; ð3Þ
where Mh is the total vehicle weight (in kg) and v is the vehicle speed (m/s). The fuel consumption Fh (in liters) of vehicle
type h over a distance d, is calculated as
Fh ¼ khNhVhkd=v þ Phkchd=v ; ð4Þ
where k ¼ n=jw; ch ¼ 1=1000ntf g and a ¼ sþ g sin hþ gCr cos h are constants. Let bh ¼ 0:5Ch
dqAh be a vehicle-specific con-

stant. Therefore, Fh can be rewritten as
Fh ¼ kðkhNhVhd=v þMhchadþ bhchdv2Þ: ð5Þ
In this expression the first term khNhVhd=v is called the engine module, which is linear in the travel time. The second term
Mhchaijd is referred to as the weight module, and the third term bhchdv2 is the speed module, which is quadratic in speed.
These functions will be used in the objective function of our model.
Fig. 1. Three vehicle types (MAN, 2014a).



Table 1
Vehicle common parameters.

Notation Description Typical values

n Fuel-to-air mass ratio 1
g Gravitational constant (m/s2) 9.81
q Air density (kg/m3) 1.2041
Cr Coefficient of rolling resistance 0.01
g Efficiency parameter for diesel engines 0.45
f c Fuel and CO2 emissions cost (£/liter) 1.4
f d Driver wage (£/s) 0.0022
j Heating value of a typical diesel fuel (kj/g) 44
w Conversion factor (g/s to L/s) 737
ntf Vehicle drive train efficiency 0.45
v l Lower speed limit (m/s) 5.5 (or 20 km/h)
vu Upper speed limit (m/s) 27.8 (or 100 km/h)
h Road angle 0
s Acceleration (m/s2) 0

Table 2
Vehicle specific parameters.

Notation Description Light duty (L) Medium duty (M) Heavy duty (H)

wh Curb weight (kg) 3500 5500 14,000
Qh Maximum payload (kg) 4000 12,500 26,000
f h Vehicle fixed cost (£/day) 42 60 95
kh Engine friction factor (kj/rev/liter) 0.25 0.20 0.15
Nh Engine speed (rev/s) 38.34 36.67 30.0
Vh Engine displacement (liter) 4.5 6.9 10.5
Ch

d Coefficient of aerodynamics drag 0.6 0.7 0.9
Ah Frontal surface area (m2) 7.0 8.0 10.0
3. Mathematical model for the fleet size and mix pollution-routing problem

The FSMPRP is defined on a complete directed graph G ¼ ðN ;AÞ where N ¼ f0; . . . ; ng is the set of nodes,
A ¼ fði; jÞ : i; j 2 N ; i – jg is the set of arcs, and node 0 corresponds to the depot. The distance from i to j is denoted by dij.
The customer set is N 0 ¼ N n f0g, and each customer i has a positive demand qi. The index set of vehicle types is denoted
by H. If a vehicle arrives at customer i before ai, it waits until ai before servicing the node. Furthermore, ti corresponds to the
service time of node i 2 N0, which must start within time window [ai; bi].

The objective of the FSMPRP is to minimize a total cost function encompassing vehicle, driver, fuel and emissions costs. A
feasible solution contains a set of routes for a heterogeneous fleet of vehicles that meet the demands of all customers within
their respective predefined time windows. Each customer is visited once by a single vehicle, each vehicle must depart from
and return to the depot, to serve a quantity of demand that does not exceed its capacity. Furthermore, the speed of each vehi-
cle on each arc must be determined.

The binary variable xh
ij is equal to 1 if and only if a vehicle of type h 2 H travels on arc ði; jÞ 2 A. The formulation works

with a discretized speed function, proposed by Bektas� and Laporte (2011), defined by R non-decreasing speed levels �v r

ðr ¼ 1; . . . ;RÞ. The binary variable zrh
ij is equal to 1 if and only if a vehicle of type h 2 H travels on arc ði; jÞ 2 A at speed level

r ¼ 1; . . . ;R; yj is the service start time at j 2 N 0. The total time spent on a route in which j 2 N 0 is the last visited node before
returning to the depot is defined by sj. Furthermore, let f h

ij be the amount of commodity flowing on arc ði; jÞ 2 A by a vehicle
of type h. Therefore, the total load of vehicle of type h on arc ði; jÞ is wh þ f h

ij. We now present an integer linear programming
formulation for the FSMPRP:
ðFSMPRPÞ Minimize
X
h2H

X
ði;jÞ2A

kf ckhNhVhdij

XR

r¼1

zrh
ij =�v r ð6Þ

þ
X
h2H

X
ði;jÞ2A

kf cchaijdij ðwhxh
ij þ f h

ijÞ ð7Þ

þ
X
h2H

X
ði;jÞ2A

kf cb
hchdij

XR

r¼1

ð�v rÞ2zrh
ij ð8Þ

þ
X
j2N 0

f dsj þ
X
h2H

X
j2N 0

f hxh
0j ð9Þ



subject toX
j2N 0

xh
0j 6 mh 8h 2 H ð10Þ

X
h2H

X
j2N

xh
ij ¼ 1 8i 2 N 0 ð11Þ

X
h2H

X
i2N

xh
ij ¼ 1 8j 2 N 0 ð12Þ

X
h2H

X
j2N

f h
ji �

X
h2H

X
j2N

f h
ij ¼ qi 8i 2 N 0 ð13Þ

qjx
h
ij 6 f h

ij 6 ðQ
h � qiÞxh

ij 8ði; jÞ 2 A; 8h 2 H ð14Þ

yi � yj þ ti þ
XR

r¼1

dijzrh
ij =�v r

6 Mijð1� xh
ijÞ 8i 2 N ; j 2 N 0; i – j;8h 2 H ð15Þ

ai 6 yi 6 bi 8i 2 N 0 ð16Þ

yj þ tj � sj þ
XR

r¼1

dj0zrh
j0=�v r

6 Lijð1� xh
j0Þ 8j 2 N 0 ð17Þ

XR

r¼1

zrh
ij ¼ xh

ij 8ði; jÞ 2 A;8h 2 H ð18Þ

xh
ij 2 f0;1g 8ði; jÞ 2 A;8h 2 H ð19Þ

zrh
ij 2 f0;1g 8ði; jÞ 2 A; r ¼ 1; . . . ;R;8h 2 H ð20Þ

f h
ij P 0 8ði; jÞ 2 A;8h 2 H ð21Þ

yi P 0 8i 2 N 0: ð22Þ
The first three terms of the objective function represent the cost of fuel consumption and of CO2 emissions. In particular,
term (6) computes the cost induced by the engine module, term (7) reflects the cost induced by the weight module and term
(8) measures the cost induced by the speed module. Finally, term (9) computes the total driver wage and the sum of all vehi-
cle fixed costs.

The maximum number of vehicles available for each type is imposed by constraints (10). We consider an unlimited num-
ber of vehicles for each vehicle type h (mh ¼ jN 0j). Constraints (11) and (12) ensure that each customer is visited exactly
once. Constraints (13) and (14) define the flows. Constraints (15)–(17) are time window constraints, where
Mij ¼maxf0; bi þ si þ dij=�vr � ajg and Lij ¼maxf0; bj þ tj þmaxifdijg=�v rg. Constraints (18) impose that only one speed level
is selected for each arc. Finally, constraints (19)–(22) enforce the integrality and nonnegativity restrictions on the variables.
4. Description of the hybrid evolutionary algorithm

This section describes the proposed hybrid evolutionary algorithm, called HEA++, for the FSMPRP. This algorithm builds
on the HEA of Koç et al. (2014), which is itself based on the principles put forward by Vidal et al. (2014). In this paper, we
have additionally developed the Heterogeneous Adaptive Large Neighborhood Search (HALNS) which is used as a main
HIGHER EDUCATION component in the HEA++. An adapted version of the Speed Optimization Algorithm (SOA) (Norstad et al.,
2010; Hvattum et al., 2013) is applied on a solution within the algorithm to optimize speeds between nodes. The combina-
tion of ALNS and SOA has provided good results for the PRP (Demir et al., 2012, 2014a).

The general framework of the HEA++ is sketched in Algorithm 1. We now explain the steps of the algorithm in reference to
each line of Algorithm 1. The initial population is generated by using a modified version of the classical Clarke and Wright
(1964) savings algorithm and the HALNS (line 1). A binary tournament process selects two parents from the population (line
3) and combines them into a new offspring C via crossover (line 4), which then undergoes an improvement step through an
advanced SPLIT algorithm with Speed Optimization Algorithm (SSOA)(line 5). The SSOA considers offspring C as an input, in the
form of a giant tour and then optimally splits it into vehicle routes. In the HIGHER EDUCATION procedure, the HALNS with the SOA
(line 6) are applied to offspring C. If C is infeasible, this procedure is iteratively applied until a modified version of C is fea-
sible, which is then inserted into the population. The probabilities associated with the HIGHER EDUCATION procedure operators
are updated by the adaptive weight adjustment procedure (AWAP) (line 7). The INTENSIFICATION procedure is based on the HAL-
NS and SOA (line 8), and is run on elite solutions. The population size na is limited by np þ no, where np is a constant denoting
the size of the initial population and no is a constant showing the maximum allowable number of offsprings that can be
inserted into the population. A survivor selection mechanism is applied (line 9) if the populations size na reaches np þ no

at any iteration. MUTATION (line 10) is applied to a randomly selected individual from the population with probability pm at
each iteration of the algorithm. The entire population undergoes a REGENERATION (line 11) procedure if there are no improve-
ments in the best known solution for a given number of consecutive iterations t. When the number - of iterations without
improvement in the incumbent solution is reached, the HEA++ terminates (line 13). For further implementation details on



the initialization, parent selection, crossover, AWAP, survivor selection and diversification sections the reader is referred to
Koç et al. (2014).

In what follows we detail the algorithmic features specifically developed for the FSMPRP. The expanded version of the
SOA is presented in Section 4.1, SSOA is described in Section 4.2, and finally, the HIGHER EDUCATION and INTENSIFICATION procedures
are detailed in Section 4.3.

Algorithm 1. General framework of the HEA

1: Initialization: initialize a population with size np

2: while number of iterations without improvement < - do
3: Parent selection: select parent solutions P1 and P2

4: Crossover: generate offspring C from P1 and P2

5: SSOA: partition C into routes
6: HIGHER EDUCATION: educate C with HALNS and SOA and insert into population
7: AWAP: update probabilities of the HALNS operators
8: INTENSIFICATION: intensify elite solution with HALNS and SOA
9: Survivor selection: if the population size na reaches np þ no, then select survivors
10: MUTATION: diversify a random solution with probability pm

11: If number of iterations without improvement ¼ t then
12: REGENERATION: diversify the population with REGENERATION procedures
13: end while
14: Return best feasible solution
4.1. Speed optimization algorithm

The SOA optimizes the speed on each segment of a given route in order to minimize an objective function comprising fuel
consumption costs and driver wages. Demir et al. (2012) adapted the arguments of Norstad et al. (2010) and Hvattum et al.
(2013) to the PRP, which we describe here for the sake of completeness.

The SOA is defined on a feasible path (0; . . . ;nþ 1) of nodes all served by a single vehicle, where 0 and nþ 1 are two copies
of the depot. The speed v i�1, represents the variable speed between nodes i� 1 and i; ei is the arrival time at node i and ei is
the departure time from node i. The detailed pseudo-code of the SOA is shown in Algorithm 2. The SOA starts with a feasible
route with initial fixed speeds, it takes input parameters start node s and end node e;D and T which are respectively the total
distance and total service time, and returns speed-optimized routes. Initially, the speed v i�1, for each link is calculated by
considering the total distance of the route and the total trip duration without the total service time (lines 4–7 of Algorithm
2). The SOA runs in two stages where the main difference between these stages is the optimal speed v�i�1 calculation (line 8 of
Algorithm 2). In the first stage, optimal speeds are calculated as
v� ¼ khNhVh

2bhch
þ f d

2bhkchf c

!1=3

; ð23Þ
which minimizes fuel consumption and driver wage. The first stage fixes the arrival time to the depot and uses this value as
an input to the second stage where optimal speeds are calculated using
v� ¼ khNhVh

2bhch

!1=3

; ð24Þ
which minimizes fuel consumption in the second stage. The speeds are updated (lines 9–12 of Algorithm 2) if the vehicle
arrives before ai and departs before bi or if the vehicle arrives before bi and departs after bi þ ti. If node i is the last customer
before the depot, the speeds are recalculated to arrive at node i at ai (lines 13–14 of Algorithm 2). If v i�1 is lower than v l, then
it is increased to v l, or if it is greater than vu, then it is decreased to vu (lines 15–18 of Algorithm 2). The optimal speed is then
compared with v i�1, if the optimal speed is greater, v i�1 is then increased to the optimal speed (lines 19–20 of Algorithm 2).
The new arrival and departure times at node i are then calculated (lines 21–23 of Algorithm 2). If the departure time is less
than ai þ ti or if the arrival time is greater than bi, the violation is calculated; otherwise, it is set to zero (lines 24–27 of Algo-
rithm 2). At each iteration, the SOA selects the arc with largest time window violation and eliminates the violation.

4.2. The SPLIT algorithm with the speed optimization algorithm

The SPLIT algorithm for heterogeneous vehicle routing problems (Prins, 2009), takes a giant tour as an input and optimally
splits it into vehicle routes. The splitting procedure is based on solving the corresponding shortest path problem. Many
extensions of the SPLIT algorithm have been successfully applied in evolutionary based heuristics for several routing problems



(Prins, 2009; Koç et al., 2014; Vidal et al., 2014). Koç et al. (2014) have developed an advanced SPLIT algorithm for a hetero-
geneous fleet. This algorithm was embedded in the HEA to segment a giant tour and to determine the optimal fleet mix
through a controlled exploration of infeasible solutions (Cordeau et al., 2001; Nagata et al., 2010). Time windows and capac-
ity violations are penalized through a term in the objective function. Here we introduce a new algorithmic feature, the SPLIT

algorithm with the speed optimization algorithm (SSOA) in which we incorporate the SOA within the procedure for comput-
ing the cost of each arc in the shortest path problem.

Algorithm 2. Speed Optimization Algorithm (s; e)

1: Input: violation 0; p 0;D
Pe�1

i¼s di; T  
Pe

i¼sti

2: Output: Speed optimized routes
3: for i ¼ sþ 1 to e do
4: if es 6 as then
5: v i�1  D=ðee � as � TÞ
6: else
7: v i�1  D=ðee � es � TÞ
8: v�i�1  Optimal speed by Eqs. (23) or (24)
9: if ei�1 þ di�1=v i�1 < ai and ei P ai þ ti and i – n then
10: v i�1 di�1=ðai � ei�1Þ
11: else if ei�1 þ di�1=v i�1 < bi and ei P bi þ ti and i – n then
12: v i�1 di�1=ðbi � ei�1Þ
13: if i ¼ n and ei – ei then
14: v i�1 di�1=ðai � ei�1Þ
15: if v i�1 < v l then
16: v i�1 v l

17: else if v i�1 > vu then
18: v i�1 vu

19: if v�i�1 > v i�1 then
20: v i�1 v�i�1
21: ei  ei�1 þ di�1=v i�1

22: if i – nþ 1 then
23: ei ¼ ei þ ti

24: gi  maxf0; ei � bi; ai þ ti � eig
25: if gi > violation then
26: violation gi

27: p i
28: end for
29: if violation > 0 and ep > bp then
30: ep  bp þ tp

31: Speed Optimization Algorithm (s; p)
32: Speed Optimization Algorithm (p; e)
33: if violation > 0 and ep < ap þ tp then
34: ep  ap þ tp

35: Speed Optimization Algorithm (s; p)
36: Speed Optimization Algorithm (p; e)
4.3. HIGHER EDUCATION and INTENSIFICATION

The classical ALNS scheme is based on the idea of gradually improving a starting solution by using both destroy and repair
operators on a given fleet mix composition. The ALNS in Koç et al. (2014) uses nine removal and three insertion operators,
selected from those employed by various authors (Ropke and Pisinger, 2006a,b; Pisinger and Ropke, 2007; Paraskevopoulos
et al., 2008; Demir et al., 2012).

The ALNS is essentially a node improvement procedure and therefore does not explicitly account for the heterogenous
fleet dimension. In this paper, we propose the HALNS which integrates fleet sizing within the removal and the insertion oper-
ators. For the destroy phase of the HALNS, if a node is removed, we check whether the total demand of the resulting route
whether can be served by a smaller vehicle and we update the solution accordingly. For the repair phase of the HALNS, if
inserting a node requires additional vehicle capacity, i.e., if the current vehicle cannot satisfy the total customer demand,
then we consider the option of using larger vehicle.

We redefine seven removal operators for the destroy phase of the HALNS procedure: worst distance, worst time, neigh-
borhood, Shaw, proximity-based, time-based and demand-based. Furthermore, we redefine three insertion operators for the



repair phase: greedy insertion, greedy insertion with noise function and greedy insertion with en-route time. Each operator
has its own specific cost calculation mechanism. Aside from the distance calculations, we account for the difference in the
fixed vehicle cost within each operator.

The removal operators iteratively remove nodes, add them to the removal list Lr , and update the fleet mix composition.
The latter operation checks whether a vehicle with a smaller capacity can serve the route after the node removal. The inser-
tion operators iteratively find the least-cost insertion position for node in Lr , where the cost computation includes the poten-
tial use of larger vehicles due to increasing the total demand of the route. Therefore, the insertion operators insert the nodes
in their best position while updating the fleet mix composition.

For each node i 2 N 0 n Lr , let f h be the current vehicle fixed cost associated with the vehicle serving i. Let DðiÞ be the saving
obtained as a result of using a removal operator on node i, as defined in the ALNS. Let f h�

r be the vehicle fixed cost after
removal of node i, i.e., f h�

r is modified only if the route containing node i can be served by a smaller vehicle when removing
node i. The saving in vehicle fixed cost can be expressed as f h � f h�

r . Thus, the total savings of removing node i 2 N 0 n Lr ,
denoted RCðiÞ, is calculated as follows for each removal operator:
RCðiÞ ¼ DðiÞ þ ðf h � f h�
r Þ: ð25Þ
Given a node i 2 N 0 n Lr in the destroyed solution, we define the insertion cost of node j 2 Lr after node i as Xði; jÞ. Let f h�
a be

the vehicle fixed cost after the insertion of node i, i.e., f h�
a is modified only if the route containing node i necessitates the use of

a larger capacity vehicle after inserting node i. The cost difference in vehicle fixed cost can be expressed as f h�
a � f h. Thus, the

total insertion cost of node i 2 N 0 n Lr is ICðiÞ, for each insertion operator is
ICðiÞ ¼ Xði; jÞ þ ðf h�
a � f hÞ: ð26Þ
Fig. 2 provides an example of the removal and insertion phases of the HALNS procedure.
Koç et al. (2014) developed a two-phase INTENSIFICATION procedure whose main idea is to improve the quality of elite indi-

viduals through intensifying the search within promising regions of the solutions space. Here we introduce an extended ver-
sion of this procedure. We apply the HALNS by applying well-performing operators on the elite solutions. Furthermore, we
apply the SOA on the intensified elite solutions.

5. Computational experiments and analyses

We now summarize the computational experiments performed in order to assess the performance of the HEA++. This
algorithm was implemented in C++ and run on a computer with one gigabyte of RAM and an Intel Xeon 2.6 GHz processor.

We have used the PRP library of Demir et al. (2012) as the test bed. These instances were derived from real geographical
distances of United Kingdom cities and are available at http://www.apollo.management.soton.ac.uk/prplib.htm. From this
library, we have selected the four largest sets containing 75, 100, 150 and 200 nodes. Each set includes 20 instances, resulting
in a total of 80 instances. These PRP instances are coupled with the parameters listed in Tables 1 and 2 for the FSMPRP. All
algorithmic parametric values were set as in Koç et al. (2014), where an extensive meta-calibration procedure was applied to
generate effective parameter values for the standard heterogeneous fleet vehicle routing problem with time windows.

The aim of the computational experiments is fourfold: (i) to analyse the effect of the metaheuristic components (Section
5.1), (ii) to test the efficiency of the algorithm for the solution of the PRP and the FSMPRP (Section 5.2), (iii) to empirically
Fig. 2. Illustration of the HALNS procedure.

http://www.apollo.management.soton.ac.uk/prplib.htm


calculate the savings that could be achieved by using a comprehensive objective function instead of separate objective func-
tions (Section 5.3 (iv) to quantify the benefits of using a heterogeneous fleet over a homogeneous one (Section 5.4).

5.1. Sensitivity analysis on method components

This section compares four versions of the HEA++ the details of which can be found in Table 3. A ‘‘No’’ for HALNS implies
using the ALNS of Koç et al. (2014). Similarly, a ‘‘No’’ for SSOA corresponds to using the SPLIT algorithm without SOA. Using the
four versions, we present four sets of experiments on the 100-node instances.

Table 4 presents the best results of ten runs on the instances for each of the four versions. The first column displays the
instances. The other columns show for each version of the algorithm, the total cost (TC) in £, percentage deterioration in
solution quality (Dev) with respect to the HEA++, and the total computational time in minutes (Time). The rows named
Avg, Min (%) and Max (%) show the average results, as well as minimum and maximum percentage deviations across all
benchmark instances, respectively.

The results clearly indicate the benefits of including the SSOA and HALNS within the HEA++. The HEA++ algorithm is con-
sistently superior to all other three versions on all 20 instances. Version (1) which uses the classical ALNS and SPLIT corre-
sponds to the HEA of Koç et al. (2014), performs worse than all other three versions. The superiority of version (3) over
version (2) confirms the importance of the HALNS component in the algorithm. The computation times for all versions
are of similar magnitude.

5.2. Results on the PRP and on the FSMPRP

To assess the quality of the HEA++, we have compared our algorithm with that of Demir et al. (2012), referred to as DBL12,
by using a homogenous fleet of vehicles with the corresponding vehicle parameters used in the PRP. In Tables 5 and 6, we
present the computational results on the PRP instances with 100 and 200 nodes, respectively. The columns show the number
of vehicles used in the solution (NV) and the total distance (TD). Ten separate runs were performed for each instance as done
by DBL12, the best of which is reported. For each instance, a boldface entry with a ‘‘⁄’’ indicates a new best-known solution.

The results clearly show that HEA++ outperforms DBL12 on all PRP instances in terms of solution quality. The average cost
reduction is 1.60% for 100-node instances, for which the minimum and maximum improvements are 0.32% and 2.33%,
respectively. For 200-node instances, the corresponding values are 1.72% (average), 0.04% (minimum) and 3.88% (maximum).
On average, the Demir et al. (2012) is faster on the 100-node instances, however, this difference is less substantial on the
200-node instances.

Table 7 presents the average results obtained by HEA++ on the 75, 100, 150 and 200-node FSMPRP instances. For each
instance set, the columns display the average fuel and CO2 emissions cost (FEC), driver cost (DC) and vehicle cost (VC). To
evaluate the environmental impact of the solutions, we also report the average amount of CO2 emissions (in kg) based on
the assumption that one liter of gasoline contains 2.32 kg of CO2 (Coe, 2005). For detailed results, the reader is referred to
Tables A.1, A.2, A.3, A.4 in the appendix, where ten runs were performed for each instance and the best one is reported.
We observe that on average, over all benchmark instances, the vehicle fixed cost accounts for 38.8% of the total cost, whereas
the driver cost represents 36.7% of the total, and the fuel and emissions cost accounts for 24.5%.

5.3. The effect of cost components

This section analyzes the implications of using different cost components on the performance measures. To this end, we
have conducted experiments using four different objective functions, which are presented in the rows of Table 8. The exper-
iments were conducted on a 100-node FSMPRP instance, and the best results collected over ten runs are reported for each of
four performance measures which we will now define. In min TD, we consider the objective of minimizing the total distance.
In min FEC, we only consider fuel and emissions cost. This setting also implies minimizing CO2 since this is proportional to
fuel consumption. In min DC, we account only for the driver cost. The min TD + VC objective corresponds to the standard
heterogeneous vehicle routing problems, which consists of minimizing distance and vehicle fixed costs. Finally we present
the FSMPRP objective. Aside from the objective function values, we provide the main cost components in Table 8. In Table 9,
we report the deviations from the smallest cost components shown in Table 8. For example, the minimum value for the total
distance objective (min TD) is 1921.66 km, but the FEC objective yields a solution with a total distance of 2119.87 km,
Table 3
Sensitivity analysis experiment setup.

Version HALNS SSOA

(1) No No
(2) No Yes
(3) Yes No
HEA++ Yes Yes



Table 4
Sensitivity analysis of the HEA++ components.

Instance Version (1) Version (2) Version (3) HEA++

TC Dev Time TC Dev Time TC Dev Time TC Time

UK100_01 1041.82 1.41 5.96 1036.13 0.87 5.28 1035.10 0.77 5.47 1027.10 5.47
UK100_02 1013.75 1.07 4.41 1012.71 0.97 4.27 1007.86 0.50 4.21 1002.87 4.38
UK100_03 948.48 2.99 4.02 942.04 2.33 4.21 925.67 0.60 4.91 920.11 4.65
UK100_04 1001.54 0.92 4.16 1002.47 1.01 4.35 994.98 0.27 4.49 992.32 4.74
UK100_05 955.12 2.47 3.47 944.74 1.40 3.64 939.83 0.88 3.95 931.56 4.21
UK100_06 1053.98 1.49 4.63 1046.18 0.76 4.55 1041.51 0.31 5.19 1038.25 5.63
UK100_07 923.60 1.10 5.39 921.22 0.85 5.41 915.88 0.27 5.47 913.39 5.19
UK100_08 982.33 3.85 3.78 967.55 2.38 4.09 953.08 0.90 4.11 944.51 4.52
UK100_09 933.29 4.53 4.59 909.09 1.99 4.19 898.45 0.83 4.49 891.02 4.69
UK100_10 1008.24 1.87 3.87 992.98 0.36 2.73 991.59 0.22 3.29 989.38 4.19
UK100_11 1054.71 1.87 4.87 1047.71 1.21 3.91 1046.18 1.07 4.19 1034.98 5.13
UK100_12 910.79 3.38 4.26 906.53 2.93 4.27 906.95 2.98 4.52 879.96 4.62
UK100_13 1023.71 2.23 4.46 1021.32 2.00 4.53 1014.79 1.37 4.79 1000.86 4.78
UK100_14 1069.87 1.63 4.69 1063.78 1.06 4.61 1058.20 0.54 4.83 1052.47 5.02
UK100_15 1106.50 2.04 4.57 1091.11 0.66 4.59 1087.32 0.31 4.81 1083.95 5.27
UK100_16 933.25 0.95 4.35 928.36 0.42 4.34 929.98 0.60 4.55 924.42 4.73
UK100_17 1076.11 1.75 3.79 1072.18 1.38 4.29 1066.71 0.88 4.29 1057.33 4.36
UK100_18 956.43 3.52 4.56 935.66 1.37 4.19 924.92 0.23 4.49 922.81 5.01
UK100_19 941.58 1.80 3.67 939.75 1.61 3.81 930.60 0.64 4.99 924.60 4.99
UK100_20 1093.54 3.27 3.43 1070.82 1.22 3.84 1066.49 0.82 4.27 1057.78 4.18

Avg 1001.43 2.21 4.38 992.62 1.34 4.26 986.81 0.75 4.57 979.48 4.79
Min (%) 0.92 0.36 0.22
Max (%) 4.53 2.93 2.98

Table 5
Computational results on the 100-node PRP instances.

Instance DBL12 HEA++

NV TD TC Time NV TD TC Dev Time

UK100_01 14 2914.40 1240.79 1.54 14 2795.08 1212.72⁄ �2.31 4.37
UK100_02 13 2690.40 1168.17 1.64 13 2660.65 1149.16⁄ �1.65 4.67
UK100_03 13 2531.80 1092.73 3.47 13 2487.25 1080.87⁄ �1.10 5.29
UK100_04 14 2438.50 1106.48 2.49 14 2374.23 1085.66⁄ �1.92 5.13
UK100_05 14 2328.50 1043.41 2.65 14 2256.48 1033.19⁄ �0.99 4.93
UK100_06 14 2782.40 1213.61 2.23 14 2733.05 1192.67⁄ �1.76 4.83
UK100_07 12 2463.90 1060.08 1.71 12 2412.54 1044.58⁄ �1.48 4.51
UK100_08 13 2597.40 1106.78 3.49 12 2524.80 1092.67⁄ �1.29 5.67
UK100_09 13 2219.20 1015.46 2.57 13 2204.89 992.36⁄ �2.33 4.97
UK100_10 12 2510.10 1076.56 3.32 12 2432.26 1063.05⁄ �1.27 5.64
UK100_11 15 2792.10 1210.25 1.79 14 2722.22 1200.53⁄ �0.81 4.11
UK100_12 12 2427.30 1053.02 3.44 12 2336.10 1030.17⁄ �2.22 5.64
UK100_13 13 2693.10 1154.83 1.47 13 2589.17 1132.02⁄ �2.01 3.49
UK100_14 14 2975.30 1264.50 1.53 14 2892.45 1241.31⁄ �1.87 4.29
UK100_15 15 3072.10 1315.50 1.85 15 3038.40 1311.36⁄ �0.32 3.87
UK100_16 12 2219.70 1005.03 4.25 12 2203.99 986.57⁄ �1.87 5.97
UK100_17 15 2960.40 1284.81 2.55 15 2860.97 1257.44⁄ �2.18 4.19
UK100_18 13 2525.20 1106.00 1.54 13 2506.71 1088.89⁄ �1.57 4.21
UK100_19 13 2332.60 1044.71 1.52 13 2288.50 1024.17⁄ �2.01 4.19
UK100_20 14 2957.80 1263.06 3.41 14 2915.17 1249.84⁄ �1.06 5.17

Avg 13.4 2621.61 1141.29 2.42 13.3 2561.75 1123.46 �1.60 4.76
Min (%) �2.33
Max (%) �0.32
Processor Xe 3.0 GHz Xe 2.6 GHz
Runs 10 10
corresponding to an increase of 10.31%. It is clear that considering only distance in the objective results in a poor total cost
performance, yielding a 4.11% increase. This increase is more substantial when looking only at the vehicle fixed cost where
min TD is 8.65% higher in terms of VC. With respect to CO2 emissions, the closest objective value is min TD + VC. This result
implies that a substantial gain in CO2 emissions can be achieved by using the TD + VC objective. However, minimizing CO2

emissions yields an average increase of 1.09% in TC. Similar to the TD objective, the DC objective performs poorly on all cost
components, yielding an average increase of 20.67% in the CO2 emissions.



Table 6
Computational results on the 200-node PRP instances.

Instance DBL12 HEA++

NV TD TC Time NV TD TC Dev Time

UK200_01 28 4609.60 2111.70 12.10 28 4545.77 2067.00⁄ �2.16 14.20
UK200_02 24 4444.40 1988.64 17.00 25 4332.62 1953.35⁄ �1.81 15.80
UK200_03 27 4439.90 2017.63 6.74 28 4365.82 1996.13⁄ �1.08 10.40
UK200_04 26 4191.90 1934.13 6.86 26 4151.74 1905.88⁄ �1.48 9.47
UK200_05 27 4861.90 2182.91 15.40 27 4848.28 2151.99⁄ �1.44 16.80
UK200_06 27 3980.40 1883.22 7.51 27 3980.03 1859.40⁄ �1.28 11.50
UK200_07 27 4415.30 2021.95 15.70 27 4276.06 1974.32⁄ �2.41 17.90
UK200_08 27 4664.40 2116.76 7.17 27 4592.54 2088.12⁄ �1.37 9.17
UK200_09 25 4031.10 1894.18 9.22 25 3932.44 1823.50⁄ �3.88 11.70
UK200_10 28 4921.80 2199.95 8.33 27 4847.08 2166.59⁄ �1.54 9.78
UK200_11 27 4099.50 1941.19 14.10 27 4126.44 1908.83⁄ �1.70 16.30
UK200_12 25 4808.50 2105.14 11.90 26 4786.39 2104.40⁄ �0.04 12.80
UK200_13 25 4760.30 2141.26 7.41 25 4734.21 2094.48⁄ �2.23 9.37
UK200_14 27 4369.90 2011.35 7.51 27 4369.86 1994.49⁄ �0.85 10.30
UK200_15 25 4723.90 2110.86 9.04 26 4642.58 2067.48⁄ �2.10 11.40
UK200_16 27 4545.90 2075.83 7.59 27 4497.75 2023.55⁄ �2.58 9.71
UK200_17 26 4972.80 2218.28 6.82 26 4915.18 2165.34⁄ �2.44 8.97
UK200_18 27 4370.30 2004.68 13.20 27 4406.10 2003.75⁄ �0.05 14.00
UK200_19 25 3995.40 1844.90 16.20 25 3946.49 1803.56⁄ �2.29 17.50
UK200_20 27 4805.40 2150.57 8.85 26 4727.98 2114.31⁄ �1.71 11.30

Avg 26.35 4500.60 2047.76 10.40 26.45 4451.27 2013.32 �1.72 12.40
Min (%) �3.88
Max (%) �0.04
Processor Xe 3.0 GHz Xe 2.6 GHz
Runs 10 10

Table 7
Average results on the FSMPRP instances.

Instance TD CO2 FEC DC VC TC Time

75-node 1534.38 345.74 208.63 280.15 296.40 785.185 3.27
100-node 1841.48 414.17 249.93 354.56 375.00 979.484 4.79
150-node 2398.78 550.48 332.18 509.66 536.40 1378.24 7.03
200-node 2857.08 659.39 397.91 642.11 678.30 1720.42 10.4

Table 8
The effect of cost components: objective function values.

Objective TD CO2 FEC DC VC TC

Min TD (total distance) 1921.66 476.64 287.63 379.70 402 1069.31
Min FEC (fuel and emissions cost) 2119.87 371.10 223.91 444.40 370 1038.28
Min DC (driver cost) 2078.14 447.74 270.19 368.90 402 1041.13
Min TD and VC (total distance and vehicle fixed cost) 1994.23 407.14 245.69 410.40 384 1040.06
Min TC (total cost) 2031.46 444.12 268.00 375.10 384 1027.10
In order to quantify the added value of changing speeds, we have experimented with three other versions of the FSMPRP
in which the speed on all arcs is fixed at 70, 85 or 100 km/h. Table 10 presents the results of these experiments. The results
suggest that while optimizing speeds with HEA++ yields the best results, using a fixed speed of 100 km/h deteriorates the
solution quality by only 1.16% on average. This makes sense since high driver costs will make it economical to drive fast.
On the other hand, using a fixed speed of 70 km/h deteriorates the solution value by an average value of 15.19%.
5.4. The effect of the heterogeneous fleet

We now analyze the benefit of using a heterogeneous fleet of vehicles as opposed to using a homogenous fleet, coupled
with using fixed versus variable speeds. To do so, we have conducted three sets of experiments on the 100-node FSMPRP
instances, each corresponding to using a unique vehicle type, i.e., only light duty, only medium duty and only heavy duty
vehicles. This results in three sets of PRP instances which are solved with the HEA++. We have compared these results with



Table 9
The effect of cost components: percent deviation from the minimum value

Objective TD CO2 FEC DC VC TC

Min TD (total distance) 0.00 28.46 28.46 2.91 8.65 4.11
Min FEC (fuel and emissions cost) 10.31 0.00 0.00 20.40 0.00 1.09
Min DC (driver cost) 8.14 20.67 20.67 0.00 8.65 1.37
Min TD and VC (total distance and vehicle fixed cost) 3.78 9.73 9.73 11.2 3.78 1.26
Min TC (total cost) 5.71 19.69 19.69 1.67 3.78 0.00

Table 10
The effect of the speed.

Instance 70 km/h 85 km/h 100 km/h HEA++

TC Dev TC Dev TC Dev TC

UK100_01 1218.01 18.01 1106.60 7.22 1032.10 0.49 1027.1
UK100_02 1154.54 13.31 1044.14 2.47 1018.94 1.60 1002.87
UK100_03 1066.70 13.88 982.49 4.89 936.69 1.80 920.11
UK100_04 1127.40 13.24 1028.27 3.28 995.57 0.33 992.31
UK100_05 1088.10 15.76 1007.40 7.18 939.93 0.90 931.56
UK100_06 1199.17 15.23 1099.62 5.66 1040.71 0.24 1038.25
UK100_07 1078.23 15.33 993.63 6.28 934.92 2.36 913.39
UK100_08 1128.36 14.26 1021.77 3.47 987.51 4.55 944.51
UK100_09 1059.50 17.76 963.49 7.09 899.68 0.97 891.02
UK100_10 1139.41 13.90 1055.82 5.55 1000.32 1.11 989.38
UK100_11 1197.71 14.92 1090.94 4.67 1042.25 0.70 1034.98
UK100_12 1023.51 16.19 942.27 6.97 880.87 0.10 879.96
UK100_13 1154.79 13.52 1054.11 3.63 1017.22 1.63 1000.86
UK100_14 1223.60 14.44 1112.03 4.01 1069.17 1.59 1052.47
UK100_15 1251.53 14.53 1156.86 5.86 1092.8 0.82 1083.95
UK100_16 1066.83 15.08 979.75 5.69 927.05 0.28 924.42
UK100_17 1254.68 17.99 1133.08 6.55 1063.41 0.58 1057.33
UK100_18 1091.80 15.77 991.94 5.18 943.05 2.19 922.81
UK100_19 1073.05 15.07 984.79 5.60 932.53 0.86 924.60
UK100_20 1223.29 15.56 1121.38 5.94 1058.54 0.07 1057.78

Average 1141.01 15.19 1043.52 5.36 990.66 1.16 979.48
Min (%) 13.24 2.47 0.07
Max (%) 18.01 7.22 4.55

Table 11
The effect of using a heterogeneous fleet.

Instance Only light duty Only medium duty Only heavy duty

TC Dev70 Dev85 Dev100 DevV TC Dev70 Dev85 Dev100 DevV TC Dev70 Dev85 Dev100 DevV

UK100_01 1272.20 4.26 13.02 18.87 19.27 1066.34 �14.20 �3.78 3.21 3.68 1385.72 12.10 20.10 25.50 25.88
UK100_02 1236.88 6.67 15.58 17.62 18.92 1051.26 �9.82 0.68 3.07 4.60 1369.21 15.70 23.70 25.60 26.76
UK100_03 1208.80 11.76 18.72 22.51 23.88 928.30 �14.90 �5.84 �0.90 0.88 1209.97 11.80 18.80 22.60 23.96
UK100_04 1261.12 10.60 18.46 21.06 21.31 1013.97 �11.20 �1.41 1.81 2.14 1324.33 14.90 22.40 24.80 25.07
UK100_05 1242.92 12.46 18.95 24.38 25.05 1000.40 �8.77 �0.70 6.04 6.88 1304.31 16.60 22.80 27.90 28.58
UK100_06 1313.98 8.74 16.31 20.80 20.98 1058.53 �13.30 �3.88 1.68 1.92 1374.78 12.80 20.00 24.30 24.48
UK100_07 1130.95 4.66 12.14 17.33 19.24 930.84 �15.80 �6.75 �0.44 1.87 1204.82 10.50 17.50 22.40 24.19
UK100_08 1165.37 3.18 12.32 15.26 18.95 963.72 �17.10 �6.02 �2.47 1.99 1247.78 9.57 18.10 20.90 24.30
UK100_09 1121.13 5.49 14.06 19.75 20.52 918.53 �15.30 �4.90 2.05 2.99 1182.58 10.40 18.50 23.90 24.65
UK100_10 1137.93 �0.13 7.22 12.09 13.05 1034.73 �10.10 �2.04 3.33 4.38 1353.15 15.80 22.00 26.10 26.88
UK100_11 1305.80 8.28 16.45 20.18 20.74 1057.66 �13.20 �3.15 1.46 2.14 1376.04 13.00 20.70 24.30 24.79
UK100_12 1125.91 9.09 16.31 21.76 21.84 895.65 �14.30 �5.21 1.65 1.75 1170.16 12.50 19.50 24.70 24.80
UK100_13 1222.93 5.57 13.80 16.82 18.16 1042.52 �10.80 �1.11 2.43 4.00 1354.65 14.80 22.20 24.90 26.12
UK100_14 1323.30 7.53 15.97 19.20 20.47 1075.34 �13.80 �3.41 0.57 2.13 1400.69 12.60 20.60 23.70 24.86
UK100_15 1360.55 8.01 14.97 19.68 20.33 1087.52 �15.10 �6.38 �0.49 0.33 1417.90 11.70 18.40 22.90 23.55
UK100_16 1103.04 3.28 11.18 15.96 16.19 938.90 �13.60 �4.35 1.26 1.54 1202.76 11.30 18.50 22.90 23.14
UK100_17 1350.89 7.12 16.12 21.28 21.73 1078.64 �16.30 �5.05 1.41 1.98 1412.73 11.20 19.80 24.70 25.16
UK100_18 1141.93 4.39 13.13 17.42 19.19 939.68 �16.20 �5.56 �0.36 1.80 1216.87 10.30 18.50 22.50 24.17
UK100_19 1158.83 7.40 15.02 19.53 20.21 930.64 �15.30 �5.82 �0.20 0.65 1192.37 10.00 17.40 21.80 22.46
UK100_20 1283.81 4.71 12.65 17.55 17.61 1081.08 �13.20 �3.73 2.09 2.16 1396.63 12.40 19.70 24.20 24.26

Avg 1223.41 6.65 14.62 18.95 19.88 1004.71 �13.6 �3.92 1.36 2.49 1304.87 12.50 20.00 24.00 24.90
Min (%) �0.13 7.22 12.09 13.05 �17.1 �6.75 �2.47 0.33 9.57 17.40 20.90 22.46
Max (%) 12.46 18.95 24.38 25.05 �8.77 0.68 6.04 6.88 16.60 23.70 27.90 28.58



Table 12
Capacity utilization rates.

Instance Only light duty Only medium duty Only heavy duty HEA++
CU CU CU CU

UK100_01 97.81 53.66 25.80 66.59
UK100_02 91.30 50.08 24.08 62.16
UK100_03 92.10 58.95 28.34 66.48
UK100_04 94.65 56.25 27.04 62.30
UK100_05 95.53 56.77 27.30 66.24
UK100_06 94.59 56.21 27.03 62.26
UK100_07 94.69 55.55 26.71 62.65
UK100_08 96.94 56.87 27.34 64.14
UK100_09 98.29 57.66 27.72 65.03
UK100_10 94.81 47.67 22.92 59.17
UK100_11 94.65 56.25 27.04 62.30
UK100_12 96.79 56.78 27.30 64.04
UK100_13 94.39 51.78 24.90 64.27
UK100_14 91.37 54.30 26.11 60.14
UK100_15 96.92 57.60 27.69 57.60
UK100_16 95.76 56.18 27.01 56.18
UK100_17 97.09 57.70 27.74 63.91
UK100_18 97.93 57.45 27.62 64.80
UK100_19 94.07 60.20 28.94 60.20
UK100_20 99.03 54.32 26.12 60.17

Avg 95.44 55.61 26.74 62.53
Min (%) 91.30 47.67 22.92 56.18
Max (%) 99.03 60.20 28.94 66.59
those of the four experiments shown in Table 10. Table 11 provides a summary of this comparison. The columns Dev70, Dev85

and Dev100 respectively report the percentage increase in total cost as a result of using homogeneous vehicles as in Table 11
over the fixed-speed results shown in Table 10 for 70, 85 and 100 km/h. Similarly, the columns entitled DevV show the devi-
ation in total cost between the various homogeneous cases and the FSMPRP, i.e., with HEA++. Table 11 suggests that the total
cost increases when using a heavy duty homogeneous fleet. Compared to the FSMPRP this increase ranges from 22.46% to
28.58%. For the medium duty case, the total cost increase is on average 2.49% compared to the FSMPRP. With light duty vehi-
cles, the average increase in total cost is 19.88% compared to the FSMPRP. These results imply that for the homogeneous case,
it is preferable to use medium duty vehicles. It is clear that using a heterogeneous fleet of vehicles and optimizing their
speeds is superior to using a homogeneous fleet of vehicles and optimizing their speeds. Table 11 also indicates that using
a heterogeneous fleet of vehicles with a fixed speed of 100 km/h is better than using a homogeneous fleet of vehicles and
optimizing their speeds with respect to the total cost. This implies that for our experimental setting heterogeneous fleet
dimension is more important than speed optimization on each arc.

The final set of experiments we now present aim at providing some insight into the capacity utilization of the vehicle
fleet, for both homogenous and heterogeneous cases. In Table 12, we present the capacity utilizations for the three PRP set-
tings of Table 11 as well as for the FSMPRP. The column CU displays the percentage of capacity utilization for the vehicle
fleet, which is calculated as 100 (total demand of route/ capacity of the vehicle). In contrast to the total cost, the capacity
utilization reaches its maximum level (95.44%) and worse level (55.61%) when using only light duty or medium duty vehi-
cles, respectively. Heavy duty vehicles have approximately six and two times more capacity than light duty and medium
duty vehicles, respectively. The average capacity utilization for a heavy-duty only vehicle fleet is 26.74%, but this is probably
due to the limitations imposed by the time window constraints. Using a heterogeneous fleet yields an average utilization of
62.53%, which is a compromise between light and heavy duty vehicles.
6. Conclusions

We have presented a hybrid evolutionary metaheuristic for the fleet size and mix pollution-routing problem (FSMPRP),
which extends the pollution-routing problem (PRP) introduced by Bektas� and Laporte (2011) and further studied by Demir
et al. (2012), to allow for the use of a heterogeneous vehicle fleet. The effectiveness of the algorithm was demonstrated
through extensive computational experiments on realistic PRP and FSMPRP instances. These tests have enabled us to assess
the effects of several algorithmic components and to measure the trade-offs between various cost indicators such as vehicle
fixed cost, distance, fuel and emissions, driver cost and total cost. We have demonstrated the benefit of using a heteroge-
neous fleet over a homogeneous one. An interesting insight derived from this study is that using a heterogeneous fleet with-
out speed optimization allows for a further reduction in total cost than using a homogeneous fleet with speed optimization.
Furthermore, we have shown that using an adequate fixed speed yields results that are only slightly worse than optimizing
the speed on each arc. This has a practical implication since it is easier to instruct drivers to hold a constant speed for their
entire trip rather than change their speed on each segment.
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Appendix A

Tables A1–A4 present the detailed computational results on the 75, 100, 150, and 200-node FSMPRP instances. In all
tables, columns TD, CO2, FEC, DC, VC, TC and Time are as explained in the main body of text. Column Mix shows the resulting
fleet composition where L;M and H refer to light, medium and heavy vehicles and the subscripts denote the number of such
vehicles used in the fleet.
Table A.1
Computational results on the 75-node FSMPRP instances.

Instance HEA++

TD CO2 FEC DC VC Mix TC Time

UK75_01 1615.33 373.65 225.48 295.05 300 M5 820.52 2.37
UK75_02 1295.66 289.32 174.59 268.08 282 L1M4 724.67 3.39
UK75_03 1565.67 349.94 211.17 274.58 282 L1M4 767.75 3.56
UK75_04 1322.99 298.26 179.99 274.17 282 L1M4 736.16 3.74
UK75_05 1559.89 358.89 216.57 274.98 300 M5 791.56 3.27
UK75_06 1588.73 366.90 221.41 287.88 300 M5 809.29 3.34
UK75_07 1586.55 367.38 221.70 294.25 300 M5 815.94 2.81
UK75_08 1721.67 361.28 218.01 299.22 306 L3M3 823.23 3.35
UK75_09 1609.60 354.01 213.62 278.57 282 L1M4 774.19 3.49
UK75_10 1575.76 365.46 220.54 285.23 300 M5 805.77 3.71
UK75_11 1161.03 255.72 154.31 247.39 282 L1M4 683.70 3.47
UK75_12 1445.46 334.10 201.61 260.38 300 M5 761.99 3.19
UK75_13 1786.96 383.63 231.50 297.89 324 L2M4 853.39 2.59
UK75_14 1585.74 367.00 221.47 279.06 300 M5 800.52 3.38
UK75_15 1707.01 366.13 220.94 296.41 324 L2M4 841.35 3.32
UK75_16 1536.76 356.44 215.09 277.45 300 M5 792.54 3.93
UK75_17 1552.07 359.02 216.65 287.94 300 M5 804.59 2.41
UK75_18 1483.53 327.60 197.69 274.30 282 L1M4 753.99 3.33
UK75_19 1467.55 328.35 198.14 269.84 282 L1M4 749.99 3.49
UK75_20 1519.60 351.64 212.20 280.38 300 M5 792.57 3.19

Table A.2
Computational results on the 100-node FSMPRP instances.

Instance HEA++

TD CO2 FEC DC VC Mix TC Time

UK100_01 2031.46 444.12 268.00 375.10 384 L2M5 1027.10 5.47
UK100_02 1970.65 428.68 258.69 360.19 384 L2M5 1002.87 4.38
UK100_03 1756.29 392.38 236.78 341.34 342 L1M5 920.11 4.65
UK100_04 1674.29 384.01 231.73 358.58 402 L1M6 992.32 4.74
UK100_05 1583.76 368.75 222.52 349.04 360 M6 931.56 4.21
UK100_06 1898.02 430.76 259.94 376.31 402 L1M6 1038.25 5.63
UK100_07 1790.55 400.89 241.91 329.48 342 L1M5 913.39 5.19
UK100_08 1919.84 424.64 256.25 346.27 342 L1M5 944.51 4.52
UK100_09 1633.23 364.06 219.69 329.33 342 L1M5 891.02 4.69
UK100_10 1955.77 429.26 259.04 346.34 384 L2M5 989.38 4.19
UK100_11 1904.88 429.65 259.27 373.71 402 L1M6 1034.98 5.13
UK100_12 1603.76 361.60 218.21 319.75 342 L1M5 879.96 4.62
UK100_13 1944.83 424.91 256.41 360.45 384 L2M5 1000.86 4.78
UK100_14 2025.79 454.55 274.30 376.17 402 L1M6 1052.47 5.02
UK100_15 1983.24 459.42 277.24 386.71 420 M7 1083.95 5.27
UK100_16 1695.44 392.00 236.55 327.87 360 M6 924.42 4.73
UK100_17 1980.20 447.53 270.06 385.27 402 L1M6 1057.33 4.36
UK100_18 1788.57 401.39 242.22 338.59 342 L1M5 922.81 5.01
UK100_19 1645.89 382.38 230.75 333.86 360 M6 924.60 4.99
UK100_20 2043.21 462.36 279.01 376.77 402 L1M6 1057.78 4.18



Table A.3
Computational results on the 150-node FSMPRP instances.

Instance HEA++

TD CO2 FEC DC VC Mix TC Time

UK150_01 2142.69 486.39 293.51 490.91 522 L1M8 1306.42 6.28
UK150_02 2550.10 591.98 357.23 519.50 540 M9 1416.73 6.78
UK150_03 2140.64 472.50 285.13 478.47 504 L2M7 1267.60 7.79
UK150_04 2385.71 555.33 335.11 520.18 540 M9 1395.29 7.19
UK150_05 2284.05 521.09 314.45 493.46 522 L1M8 1329.91 6.47
UK150_06 2049.41 476.33 287.44 492.41 540 M9 1319.85 7.13
UK150_07 2485.44 580.09 350.05 524.80 540 M9 1414.86 7.34
UK150_08 2232.72 513.78 310.04 492.72 522 L1M8 1324.76 7.98
UK150_09 2587.83 581.73 351.04 529.16 564 L2M8 1444.20 6.37
UK150_10 2423.75 564.42 340.60 509.53 540 M9 1390.13 6.93
UK150_11 2508.51 582.74 351.65 515.03 540 M9 1406.69 7.96
UK150_12 2487.69 572.14 345.25 537.39 582 L1M9 1464.65 7.73
UK150_13 2437.12 556.33 335.72 506.81 522 L1M8 1364.52 6.67
UK150_14 2518.63 586.03 353.64 519.74 540 M9 1413.38 6.67
UK150_15 2115.20 486.33 293.47 470.56 522 L1M8 1286.03 7.79
UK150_16 2515.94 570.23 344.11 517.33 522 L1M8 1383.43 7.07
UK150_17 2501.54 566.66 341.95 512.78 522 L1M8 1376.73 7.09
UK150_18 2389.19 554.28 334.48 502.72 540 M9 1377.20 6.37
UK150_19 2509.16 584.23 352.55 523.01 540 M9 1415.56 6.91
UK150_20 2710.19 606.91 366.24 536.72 564 L2M8 1466.96 6.09

Table A.4
Computational results on the 200-node FSMPRP instances.

Instance HEA++

TD CO2 FEC DC VC Mix TC Time

UK200_01 2844.46 649.17 391.74 664.28 702 L1M11 1758.02 9.48
UK200_02 2829.05 642.55 387.75 617.43 642 L1M10 1647.17 11.27
UK200_03 2780.80 649.79 392.12 650.58 660 M11 1702.70 10.43
UK200_04 2694.43 628.51 379.27 629.06 660 M11 1668.33 11.48
UK200_05 3018.01 691.92 417.54 661.99 702 L1M11 1781.53 10.12
UK200_06 2590.47 603.91 364.43 631.82 660 M11 1698.24 9.79
UK200_07 2798.22 648.55 391.37 648.49 702 L1M11 1741.86 13.64
UK200_08 2888.09 660.78 398.75 660.65 702 L1M11 1761.40 8.64
UK200_09 2697.92 615.58 371.47 610.83 642 L1M10 1624.30 9.19
UK200_10 3036.77 696.08 420.05 668.45 702 L1M11 1790.50 11.28
UK200_11 2677.34 620.81 374.63 641.25 702 L1M11 1717.88 9.49
UK200_12 3147.88 731.72 441.56 642.67 660 M11 1744.23 10.83
UK200_13 3052.43 712.56 430.00 639.22 660 M11 1729.22 9.18
UK200_14 2845.53 648.49 391.33 648.09 702 L1M11 1741.42 9.49
UK200_15 2953.85 686.59 414.32 637.81 660 M11 1712.13 11.28
UK200_16 2780.94 649.33 391.84 633.79 660 M11 1685.63 9.79
UK200_17 3092.09 711.40 429.29 655.59 702 L1M11 1786.88 12.27
UK200_18 2832.24 656.36 396.08 645.11 702 L1M11 1743.19 9.79
UK200_19 2636.59 604.11 364.55 597.29 642 L1M10 1603.83 9.79
UK200_20 2944.54 679.61 410.11 657.80 702 L1M11 1769.91 11.35
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