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1. Introduction

Consider the general form of the Quadratic Assignment Problem (QAP) proposed by Lawler [1] as follows:

QAP : min
n

i=1

n
j=1

n
k=1

n
l=1

qijklxijxkl +
n

i=1

n
k=1

cikxik (1)

s.t. x ∈ X, x binary (2)

where

X =


x ≥ 0 :

n
j=1

xij = 1 ∀i = 1, . . . , n;
n

i=1

xij = 1 ∀j = 1, . . . , n


. (3)

The QAP was first introduced by Koopmans and Beckmann [2] in the context of facility location to deal with a one-to-
one assignment of n facilities to n locations when the objective function accounts for interaction costs between pairs of
facilities. Since then, the QAP has been used to model many applications including, among others, backboard wiring [3],
typewriter keyboards and control panels design [4], scheduling [5], storage-and-retrieval [6]. It has been shown that the
QAP is among the most difficult NP-hard combinatorial optimization problems and, in general, solving instances of size
n ≥ 30 in a reasonable time is impossible [7]. Due to its quadratic nature, many attempts have been made in the literature
to linearize the objective function so that the resulting lower bound is strong enough to be used in a branch-and-bound
algorithm. Among the best lower bounding approaches in the literature we can refer the reader to Frieze and Yadegar [8],
Carraresi and Malucelli [9,10], Adams and Johnson [11], Karisch et al. [12], the level-1 RLT dual-ascent bound by Hahn and
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Grant [13], the convex quadratic programming bound by Anstreicher and Brixius [14], the level-2 RLT by Adams et al. [15],
and level-3 RLT by Hahn et al. [16].

In this paper we present revised versions of the RLT representations for the QAP. The main idea is to remove some set
of constraints in each level of the RLT representation of the QAP so that the resulting problem remains equivalent to the
original one, and the set of new constraints possesses the block-diagonal structure.

2. Reformulation-linearization technique

In this sectionwepresent the Reformulation-linearization technique (RLT) applied to theQAP. Based on theRLT technique
for general zero–one polynomial programs by Adams and Sherali [17,18], the first RLT representation for the QAP was
introduced by Adams and Johnson [11]. Consider problem QAP as presented in (1)–(3). The level-1 RLT representation is
generated via the following two steps:
Reformulation: Multiply each of the 2n equations and each of the n2 nonnegativity constraints defining X by each of the
n2 binary variables xkl, and append these new constraints to the formulation. When the variable xij in a given constraint is
multiplied by xkl, express the resulting product as xijxkl in that order. Substitute x2kl with xkl throughout the constraints and
set xijxkl = 0 if i = k and j ≠ l or i ≠ k and j = l.
Linearization: For all (i, j, k, l) with i ≠ k and j ≠ l, substitute each product xijxkl with yijkl. Enforce the equality yijkl = yklij
for all (i, j, k, l) with i < k and j ≠ l.

The level-1 RLT results as follows:

RLT1 : min


i


j


k≠i


l≠j

qijklyijkl +


i


j

cijxij (4)

s.t.

i≠k

yijkl = xkl ∀(j, k, l), j ≠ l (5)


j≠l

yijkl = xkl ∀(i, k, l), i ≠ k (6)

yijkl = yklij ∀(i, j, k, l), i < k, j ≠ l (7)

yijkl ≥ 0 ∀(i, j, k, l), i ≠ k, j ≠ l (8)

x ∈ X, x binary. (9)

Note that for any feasible solution (x, y) to RLT1, the RLT theory enforces the equations yijkl = xijxkl for all (i, j, k, l), i ≠

k, j ≠ l [17,19]. Thus we have the following:

Proposition 1. Problems QAP and RLT1 are equivalent.

Eq. (7) is very important and says that if an element yijkl, i ≠ k, j ≠ l is part of a solution (i.e., equal to 1) then it has a
‘‘complementary element’’ yklij that is also in that solution. In general, the RLT1 representation has a large number of variables
and constraints, which makes it computationally challenging, even for small QAP instances. Resende et al. [20] performed a
computational test of the lower bounds generated by the LP relaxation of the RLT1. They reduced the numbers of variables
and constraints in RLT1 by removing all variables yijkl with i > k and j ≠ l and by making the substitutions suggested
by (7) throughout the objective function and constraints. Then they solved the LP relaxation by using an experimental
interior point method code, called ADP. To solve the RLT1, Adams and Johnson provide a Lagrangian relaxation which has a
block-diagonal structure. More precisely they dualize constraints (7) on the complementary pairs and decompose the
resulting problem into n2 separate linear assignment problems of size n−1 and a linear assignment problem of size n. Hahn
and Grant [13] gave a different interpretation of the same decomposition for lower bound calculation by using a dual-ascent
strategy. Their dual-ascent procedure gives a bound very close to optimum of the LP relaxation of the RLT1, improving upon
the computational results of Adams and Johnson [11], and requiring only a small fraction of the time of Resende et al. [20].

Based on the success of level-1 RLT representation to gain a tight bound for the QAP and also due to the block-diagonal
structure of the problem which lends itself to efficient solution methods, the level-2 and level-3 RLT can be defined in the
same way as the level-1 RLT via the reformulation and linearization steps. In the level-2 RLT representation, in addition to
the operations done in the level-1, each binary variable in X is multiplied also by products xklxpq having k ≠ p and l ≠ q. For
more details concerning the reformulation and linearization step for the level-2 RLT we refer the reader to [15]. The level-2
RLT is called RLT2 and is written as follows:

min
n

i=1

n
j=1

n
k=1

n
l=1

qijklyijkl +
n

i=1

n
j=1

cijxij (10)

s.t.

i≠k,p

zijklpq = yklpq ∀(j, k, l, p, q), j ≠ l ≠ q, k ≠ p (11)




j≠l

zijklpq = yklpq ∀(i, k, l, p, q), i ≠ k ≠ p, j ≠ q (12)

zijklpq = zijpqkl = · · · = zpqklij ∀(i, j, k, l, p, q), i < k < p, j ≠ l ≠ q (13)

zijklpq ≥ 0 ∀(i, j, k, l, p, q), i ≠ k ≠ p, j ≠ l ≠ q (14)

(5), (6), (7), (8), (9). (15)

The linear relaxation of the RLT2 is increasingly large and highly degenerate. Ramakrishnan et al. [21] enforced the
constraints (13) to combine complementary variables and reduce the number of constraints and variables, then used
commercial linear programming package CPLEX to solve the linear relaxation of the RLT2. However, because of the problem
size and limitations of CPLEX, they were only able to solve instances up to size 12. Following the idea of Hahn and Grant [13]
to solve the RLT1 in an efficient way, Adams et al. [15] have presented a dual-ascent strategy that exploits the block-diagonal
structure of constraints in the RLT2 form.

In order to get even tighter bounds for the QAP, Zhu presented the level-3 RLT in his Ph.D. dissertation [22]. The RLT3
formulation is significantly larger than the previous levels of RLT, but its continuous linear relaxation provides the tightest
lower bound of all three RLT models. Hahn et al. [16] implemented a dual-ascent procedure similar to that employed in
Adams et al. [15] for RLT2.

3. A revised RLT

As far as the tightness of the bounds is concerned, the RLT representations of theQAP are among themost successful lower
bounding approaches. However, in the high level RLT representation of the QAP these bounds require much computational
effort, which can be problematic within a branch-and-bound algorithm. In order to speed up the bound computation in the
level-d RLT representation of the QAP, we construct a smaller reformulation for each level of the RLT based on the structure
of the problem. Let us start with the level-1 RLT formulation presented in (4)–(9). The revised RLT1 (RRLT1) formulation is
defined as follows:

RRLT1 : min


i


j


k≠i


l≠j

qijklyijkl +


i


j

cijxij

s.t. (5), (6), (7), (8)
x ∈ X ′, x binary

where

X ′
=


x ≥ 0 :

n
j=1

xij = 1 ∀i = 1, . . . , n


. (16)

Note that the only difference with RLT1 is that constraints
n

i=1 xij = 1, ∀j = 1, . . . , n are missing.

Theorem 2. The problems RLT1 and RRLT1 are equivalent.

Proof. To prove the theorem we use the idea of [19]. Consider any feasible solution (x̂, ŷ) to Problem RRLT1. We first show
that the following equations must hold.

ŷpqst = x̂pqx̂st ∀ (p, q, s, t), p ≠ s, q ≠ t. (17)

If x̂pq = 0, constraint


i≠k ŷijpq = x̂pq of (5), together with the nonnegativity restrictions ŷijpq ≥ 0 enforces that ŷijpq = 0
for all (i, j), i ≠ p, j ≠ q. Consider the case x̂pq = x̂st = 1, and by contradiction assume that ŷpqst = ŷstpq < 1. The constraint

j≠q ŷsjpq = x̂pq of (6), together with ŷstpq < 1 implies that there exists an index l ≠ t, q with ŷslpq > 0. By considering
constraint (7), we have ŷpqsl = ŷslpq > 0, so that (6) implies xsl = 1. The equalities xsl = xst = 1 for l ≠ t , contradict the
constraint

n
j=1 xsj = 1 of X ′. Consequently, ŷpqst = x̂pqx̂st for binary x̂pq and x̂qr .

Nowwe show that (x̂, ŷ) is a feasible solution for the RLT1. Since constraints (5), (6), (7), and (8) together with the binary
restriction are precisely the same in both models, the proof is to show that

n
i=1 x̂ij = 1, ∀j = 1, . . . , n. Consider an index

s ∈ {1, . . . , n} such that
n

i=1 x̂is = ϵ ≠ 1. Multiplying this equation by binary variable x̂kl with l ≠ s to obtain
i≠k

x̂isx̂kl = ϵxkl ∀(k, l), l ≠ s. (18)

By (17) and (18), we have
i≠k

ŷiskl =


i≠k

x̂isx̂kl = ϵxkl ∀(k, l), l ≠ s. (19)

Since ϵ ≠ 1, Eqs. (19) contradict (6) and the proof is complete. �



The following theorem formally shows that the continuous relaxations of the RRLT1 (CRRLT1) is as tight as the
continuous relaxation of the RLT1 (CRLT1), in that a linear combination of the constraints of CRRLT1 implies the constraintsn

i=1 xij = 1 ∀j = 1, . . . , n.

Theorem 3. Problems CRLT1 and CRRLT1 are equivalent.

Proof. Since constraints (5), (6), (7), and (8) appear in both CRLT1 and CRRLT1, the proof reduces to show that constraintsn
i=1 xij = 1∀j = 1, . . . , n of X defined in (3) can be computed as linear combinations of the constraints of CRRLT1. Consider

any (j, k, l), j ≠ l, and observe that constraints (6) enforce that


i≠k yijkl = xkl. Summing this equations over all (k, l), l ≠ j,
we obtain

l≠j


k


i≠k

yijkl =


l≠j


k

xkl ∀j = 1, . . . , n. (20)

By definition of X ′ in (16), the right hand side of (20) can be written as follows:
l≠j


k

xkl =


k


l

xkl −

k

xkj = n −


k

xkj ∀j = 1, . . . , n. (21)

Now consider the left hand side of (20). By using (5) and (7), it can be written as:
l≠j


k


i≠k

yijkl =


i≠k


k


l≠j

yklij =


i≠k


k

xij =


k


i≠k

xij

=


k


i

xij −

k

xkj = n


i

xij −

k

xkj ∀j = 1, . . . , n. (22)

By (21) and (22), we have
n

i=1 xij = 1 ∀j = 1, . . . , n. The proof is completed. �

We now turn to the level-2 RLT representation of the QAP presented in (10)–(15). We give a smaller reformulation of
the RLT2 called revised RLT2 (RRLT2) by substituting X defined in (3) with X ′ defined in (16) and removing constraints

i≠k yijkl = xkl ∀(j, k, l), j ≠ l from the RLT2 formulation. The RRLT2 has the following form:

RRLT2 : min
n

i=1

n
j=1

n
k=1

n
l=1

qijklyijkl +
n

i=1

n
j=1

cijxij

s.t. (6)–(8), (11)–(14)
x ∈ X ′, x binary.

Proposition 4. Problems RLT2 and RRLT2 are equivalent.

Proof. The proof is a trivial extension of the proof of Theorem 2. �

Theorem 5. Problems CRLT2 and CRRLT2 are equivalent.

Proof. Following the same idea as the proof of Theorem 3we show that constraints
n

i=1 xij = 1 ∀j = 1, . . . , n of X defined
in (3) and constraints (11) can be computed as linear combinations of the constraints of CRRLT2. Since the proof of the first
part is the same as the one in Theorem 3, here we provide the proof for the second part. Consider any (j, k, l, p, q) with
j ≠ l ≠ q, k ≠ p, and observe that constraints (11) enforce that


i≠k,p zijklpq = yklpq. Summing these equations over all

(p, q) having p ≠ k and q ≠ j, l, we obtain
q≠j,l


p≠k


i≠k,p

zijklpq =


q≠j,l


p≠k

yklpq ∀(j, k, l), j ≠ l. (23)

By (6) and (7), the right hand side of (23) can be written as follows:
q≠j,l


p≠k

yklpq =


p≠k


q≠l

yklpq −


p≠k

yklpj = (n − 1)xkl −

p≠k

ypjkl ∀(j, k, l), j ≠ l. (24)

Now consider the left hand side of (20). By using (12) and (13), it can be written as:
q≠j,l


p≠k


i≠k,p

zijklpq =


i≠k,p


p≠k


q≠j,l

zpqijkl =


p≠k


i≠k,p

yijkl

=


p≠k


i≠k

yijkl −

p≠k

ypjkl = (n − 1)

i≠k

yijkl −

p≠k

ypjkl ∀(j, k, l), j ≠ l. (25)

By (24) and (25), we have


i≠k yijkl = xkl ∀(j, k, l), j ≠ l. The proof is completed. �



The idea of removing some set of constraints in level-1 and level-2 RLT representation of the QAP can be generalized
for level-d RLT formulation with 1 ≤ d ≤ n. In each level-d RLT representation we can eliminate one set of constraints
generated in level-(d − 1) RLT, where level-0 RLT represent the original QAP. More precisely for each d, 2 ≤ d ≤ n − 1, the
total number of constraints in the level-d RLT can be reduced by

f (d) = f (d − 1) + (n − d + 1)
d−2
i=0

(n − i)2,

where f (1) = n.

4. Computational experiments

In this section we present the computational results of comparing the level-d RLT with the level-d RRLT for d = 1, 2, in
terms of bound tightness and computational time. To obtain a lower bound for the QAP we solve the continuous relaxation
of RRLT1 and RRLT2 by applying the Lagrangian relaxation. We implemented the algorithms in C++ language and run on
an Intel Xeon CPU E5335 (2 quad core CPUs 2GH). Since the solution methods for RRLT1 and RRLT2 are quite similar, we
restrict our attention to explain the solving process to the RRLT2. We first place constraints (7) and (13) into the objective
function. The Lagrangian function is then defined as:

K + min


i


j


k


p≠i


q≠j


l≠k

D̄ijkpqlzijkpql +


i


j


k≠i


l≠j

B̄ijklyijkl

+


i


j

c̄ijxij : (6), (8), (11), (12), (14), x ∈ X ′


(26)

where B̄ijkl and c̄ij are the adjusted values for qijkl and cij respectively, after placing constraints (7) into the objective function,
D̄ijkpql are the coefficients corresponding to the variables zijkpql after placing constraints (13) into the objective function, and
K = 0.

Theorem 6. An optimal solution (x∗, y∗, z∗) for problem (26) can be obtained via solving the semi-assignment problem

K + min


p


q

(c̄pq + ρpq)xpq : x ∈ X ′


, (27)

where for each (p, q), ρpq is obtained by solving the following semi-assignment problem:

ρpq = min

k≠p


l≠q

(B̄klpq + γklpq)yklpq

s.t.

l≠q

yklpq = 1 ∀k = 1, . . . , n, k ≠ p

yklpq ≥ 0 ∀(k, l), k ≠ p, l ≠ q

and where for each (k, l, p, q) with p ≠ k and q ≠ l

γklpq = min

i≠p,k


j≠q,l

D̄ijklpqzijklpq

s.t.

i≠p,k

zijklpq = 1 ∀j = 1, . . . , n, j ≠ q, l
j≠q,l

zijklpq = 1 ∀i = 1, . . . , n, i ≠ p, k

zijklpq ≥ 0 ∀(i, j), i ≠ p, k, j ≠ q, l.

We applied the dual ascent algorithm proposed in Adams et al. [15] to this new problem. The procedure consists of
updating the constant term K and the cost matrices D̄, B̄ and c̄ , in such a way that the cost of any (integer) feasible
solution with respect to the modified objective function remains unchanged, while maintaining nonnegative coefficients.
As a consequence of this property, the value of K at any moment of the execution is a valid lower bound on the optimal
solution cost for the QAP.

For computational testing of comparing the RLT and RRLT, we used a representative set of instances from the QAPLIB [23]
and some instances from the test set of Drugan [24]. This new test set currently was introduced by Drugan in [24] and



Table 1
Comparison of the level-1, 2 RLT and RRLT lower bounds and CPU times for the instances of QAPLIB. The best results are in boldface.

Instance Opt. RLT1 RRLT1 RLT2 RRLT2
Lb Time Lb Time Lb Time Lb Time

Chr20a 2192 2161 54 2159 52 2192 1689 2192 1619
Chr22a 6156 6077 74 6085 74 6156 1837 6156 1811
Chr25a 3796 3565 131 3553 132 3796 6541 3796 5808
Had16 3720 3525 19 3525 19 3720 407 3720 381
Had18 5358 5036 30 5035 31 5358 19044 5358 14448
Had20 6922 6504 47 6507 47 6922 56791 6922 48714
Rou12 235528 219365 8 219329 6 235528 33 235528 33
Rou15 354210 318496 14 318413 14 351106 11300 351537 12167
Rou20 725520 632453 47 632346 47 687320 80052 688391 77251
Bur26a 5426670 5203976 179 5186671 170 5276411 19903 5277443 16911
Bur26b 3817852 3641582 171 3627822 177 3707590 18153 3798123 17233
Bur26c 5426795 5188444 172 5176906 173 5266012 19456 5269391 18346
Bur26d 3821225 3634960 172 3626710 170 3703214 17873 3706253 17252
Nug12 578 512 6 512 6 578 774 578 364
Nug15 1150 1002 15 1001 14 1141 11067 1142 11015
Nug18 1930 1623 30 1621 31 1860 40480 1863 39379
Nug20 2570 2240 47 2138 47 2450 64496 2455 63858
Tai15a 388214 346896 14 347086 14 377805 11244 378347 10037
Tai15b 51765268 51459245 14 51443801 14 51765268 240 51765268 208
Tai20a 703482 608846 46 608199 47 662750 88497 663855 78890
Tai20b 122455319 88400570 54 87855727 57 122455319 3039 122455319 2791

Table 2
Comparison of the level-1, 2 RLT and RRLT lower bounds and CPU times for the cQAP data set. The best results are in boldface.

Instance Opt. RLT1 RRLT1 RLT2 RRLT2
Lb Time Lb Time Lb Time Lb Time

cqap20-0 238754 215117 48 215045 48 238754 541 238754 393
cqap20-1 233690 204845 46 204837 46 233690 707 233690 513
cqap20-2 230750 204996 47 204970 48 230750 668 230750 443
cqap20-3 235432 211780 47 211781 48 235432 452 235432 450
cqap20-4 242392 212641 47 212928 47 242392 584 242392 461
cqap20-5 236894 205933 47 205995 46 236894 748 236894 459
cqap20-6 241720 210392 48 210639 48 241720 651 241720 525
cqap20-7 242388 217115 48 217151 48 242388 600 242388 545
cqap20-8 236546 210846 47 210863 48 236546 726 236546 413
cqap20-9 239180 209644 47 209660 47 239180 884 239180 607
Average 237775 210331 47 210287 47 237775 656 237775 481

cqap24-0 312308 264043 98 263875 99 312308 1749 312308 1373
cqap24-1 305074 269989 99 270009 100 305074 1848 305074 1474
cqap24-2 310154 269105 97 268987 97 310154 1556 310154 1576
cqap24-3 307622 266878 98 266758 99 307622 1745 307622 1765
cqap24-4 313614 274491 98 274371 97 313614 1558 313614 1179
cqap24-5 308634 268792 98 268766 98 308634 1941 308634 1572
cqap24-6 301196 256687 98 256581 98 301196 2157 301196 1640
cqap24-7 301742 262322 98 262242 98 301742 2128 301742 1428
cqap24-8 303516 265041 99 265383 99 303516 2116 303516 1715
cqap24-9 309774 277585 99 277553 101 309774 1426 309774 1425
Average 307363 267493 98 267452 99 307363 1822 307363 1515

are called composite QAPs (cQAPs). Tables 1 and 2 report the lower bounds and required CPU times of the dual ascent
strategy (terminated in 2500 iterations) applied to level-1 and level-2 of RLT and RRLT for the instances of QAPLIB and cQAPs,
respectively. Since after only a small number of iterations, the bound grows to a significant percentage of its final value, and
also due to the tradeoff between bound strength and CPU execution time we terminated the dual-ascent algorithms for the
RLT2 and RRLT2 at iteration 100 if n > 20. In both tables the instance names and the corresponding dimensions are found
in the first column. In the second column, there are the optimal values for each instance. The third and fourth columns give
the RLT1 lower bound and its CPU time, followed by the lower bound values and CPU times of RRLT1 in columns fifth and
sixth, the RLT2 in columns seventh and eighth, and RRLT2 in columns ninth and tenth. The best overall lower bounds and
CPU times are indicated in boldface.

For the tested instances from the QAPLIB, the dual ascent strategy applied to RLT1 and RRLT1 almost provide the same
bounds with the same computational times, while the dual ascent strategy applied to RLT2 and RRLT2 provides the different
results. More precisely, as we can observe from Table 1, the bounds from the dual ascent strategy applied to RLT2 and RRLT2
for problems Chr20a, Chr22a, Chr25a, Had16, Had18, Had20, Rou12, Tai15b, and Tai20b are exact, as they are equal to the



optimal objective values of the QAP. However the CPU time required by RLT2 to obtain these bounds is longer than the CPU
time required by RRLT2. The bounds of the RRLT2 for the remaining problems are slightly tighter than the RLT2 bounds, but
demand less computational effort except problemRou15 forwhich RLT2 requires less CPU time. It should be noted, however,
that using RRLT2 the bound 351106 for rou15 achieved in less than 1500 s. For the cQAP instances, as we can observe from
Table 2, the RLT1, on average, is slightly better than the RRLT1 in both the bound tightness and required CPU time, but for
all 20 instances, the lower bound obtained from the RLT2 and RRLT2 are equal to the objective value of the cQAPs. However,
in terms of the required CPU time the RRLT2 outperforms RLT2 for almost all instances.

5. Conclusions

In this paper we proposed a revised form of the Reformulation Linearization Technique for the Quadratic Assignment
Problemwithout destroying the problem’s structure. Our experimental results show that, by increasing the level of the RLT,
solving the revised RLT representation provides a lower bound as strong as the bound obtained by the RLT, but with less
computational effort.
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