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Attitude guidance and tracking for spacecraft with
two reaction wheels

James D. Biggs*, Yuliang Bai†, Helen Henninger‡

This paper addresses the guidance and tracking problem for a rigid-spacecraft us-

ing two reaction wheels (RW). The guidance problem is formulated as an optimal

control problem on the Special Orthogonal Group SO(3). The optimal motion is

solved analytically as a function of time and is used to reduce the original guidance

problem to one of computing the minimum of a nonlinear function. A tracking con-

trol using two RWs is developed that extends previous singular quaternion stabi-

lization controls to tracking controls on the rotation group. The controller is proved

to locally asymptotically track the generated reference motions using Lyapunov’s

direct method. Simulations of a 3U CubeSat demonstrate that this tracking con-

trol is robust to initial rotation errors and angular velocity errors in the controlled

axis. For initial angular velocity errors in the uncontrolled axis and under signifi-

cant disturbances the control fails to track. However, the singular tracking control

is combined with a nano-magnetic torquer which simply damps the angular veloc-

ity in the uncontrolled axis and is shown to provide a practical control method for

tracking in the presence of disturbances and initial condition errors.

I. Introduction

This paper is motivated by a trend towards the miniturisation of spacecraft to reduce launch and

operational costs of certain missions. In particular, there is currently a significant interest in the use

of nano-spacecraft (1-10kg) for undertaking Earth observation and space science missions. One

aspect to enhance the possibility of further miniturization capability is to reduce the mass, power

and volume requirements of the sub-systems, for example, by using less actuators. Moreover, a
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nano-sized reaction wheel (RW) can weigh around 0.2 − 0.3 kg thus accounting for up to 30% of

a nano-spacecraft’s total mass. Thus, reducing the number of RWs without significantly reducing

control performance could help to optimize system design. In addition, nano-spacecraft carry a

much higher risk of failure than conventional spacecraft and thus contingency control algorithms

must be designed to cope with actuator failure. This paper addresses the problem of optimally

re-pointing a spacecraft underactuated in attitude control and thus could be useful in the event of

RW failure.

Three-axis stabilization and tracking for spacecraft has been an extensive field of study which

has recently focussed on the problem of compensating for external disturbances and parameter un-

certainties in the control design.1 In this paper the problem of three-axis tracking is addressed in

the case that the spacecraft is underactuated in control. This problem is particularly challenging as

such systems are uncontrollable using continuous, time-invariant controls.2 However, the attitude

of spacecraft is known to be controllable with two thrusters for a symmetric spacecraft8 and various

underactuated attitude stabilization problems with thrusters, including spin-stabilization and those

with bounded inputs, have been solved using a complex parameterization of the attitude kinematics

to develop a singular control approach3–5 and using time-varying feedback control.6 Horri. et al.7

proposed a singular control approach for three-axis stabilization using RWs, rather than thrusters,

while also using a quaternion representation that avoids the singularities of the parameterization.3–5

Krishnan et. al.8 developed two discontinuous quaternion stabilization laws for spacecraft with two

RWs based on nonholonomic control theory. In this paper the stabilization problem for spacecraft

with two RWs is extended in the following ways: (i) to include an optimal guidance method for-

mulated on the Special Orthogonal Group SO(3) which generates kinematically and dynamically

feasible motions, (ii) the derivation of a tracking control law that can asymptotically track these

time-dependent motions on SO(3) with initial condition errors in the controlled axis (iii) the devel-

opment of a practical control which combines two RWs with a single magnetic torquer which can

provide good tracking performance in the presence of initial condition errors and with disturbance

torques.

Firstly, the proposed optimal guidance method is solved using a non-canonical formulation of

2



the Maximum Principle.16 The implementation is then reduced to the problem of matching the

boundary conditions which is achieved through parameter optimization. This approach has been

used before to tackle motion planning problems for fully-actuated spacecraft,10 spin-stabilized

spacecraft11 and spacecraft with path and actuator constraints.13, 14 It has also been used to develop

controls for underactuated spacecraft with two thrusters.15 The guidance method proposed in this

paper is specialised to the case of two RWs and is formulated as a left-invariant optimal control

problem16 which, in contrast to general optimal motion planning problems on SO(3), can be solved

analytically in closed-form. The closed-form solution is then used to reduce the guidance problem

to a parameter optimization problem of a single unconstrained nonlinear function which can be

solved using a plethora of well known numerical methods.17 The analytic formulation also allows

the computation of the corresponding (open-loop) torque required to perform the motion. Given

the analytic form of the torque time-parameterization13 can be used to ensure that the physical

limits of theRW are not exceeded.

The second main contribution of the paper is a tracking control on SO(3) that is able to track

the generated reference motions using only two reaction wheels. Using Lyapunov’s direct method

the tracking control is shown to track a reference where the rotation error asymptotically converges

to zero. The singular tracking control presented here extends that of previous singular stabilization

controls to tracking on SO(3) avoiding problems related to unwinding.18 The tracking control is

shown to work effectively when there is zero angular velocity in the uncontrolled axis. However,

extending this control law with two RWs to include a magnetic torquer (MT) to damp the angular

velocity in the uncontrolled axis, demonstrates good tracking performance with initial condition

errors and disturbances for a nano-spacecraft in Low Earth Orbit (LEO). Such a control could

be useful to reduce the mass and volume requirements of an attitude control system operating

in LEO, for example, tracking could be acheived with two RWs and a MT where in the case of

nano-spacecraft the MT can be embedded in the solar panels.
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II. Equations of motion and problem formulation

The dynamic equations of motion of a spacecraft with reaction wheels and external disturbance

torques ddd is given by7

Jω̇̇ω̇ω = −ωωω × (Jωωω + hhh)− ḣ̇ḣh+ ddd, (1)

where ωωω = [ω1, ω2, ω3]
T is the angular velocity vector, J is the symmetric, inertia tensor (assumed

here to contain only the principal moments of inertia terms I1, I2, I3) and hhh the angular momentum

of the RWs. Assuming, without loss of generality, that there are two reaction wheels along the X

and Y axis such that hhh = [h1 h2 0]T . Expressing the attitude kinematics of the spacecraft on

the Special Orthogonal Group R(t) ∈ SO(3):

SO(3)
∆
=

{
R ∈ R3×3 : RTR = I3×3, detR = 1

}
(2)

and with the kinematics expressed as:

Ṙ(t) = R(t)ω̂, (3)

where ω̂ is a skew-symmetric matrix defined by ω̂ = ω1A1 + ω2A2 + ω3A3 where A1, A2, A3 are

the basis elements of the Lie algebra so(3), the space of 3 × 3 skew-symmetric matrices with the

additional structure of a Lie bracket defined by [X, Y ] = XY − Y X where X, Y ∈ so(3) where

A1, A2, A3 ∈ so(3) is

A1 =


0 0 0

0 0 −1

0 1 0

 , A2 =


0 0 1

0 0 0

−1 0 0

 , A3 =


0 −1 0

1 0 0

0 0 0

, (4)

where physically A1, A2, A3 define the infinitesimal rotations in the roll, pitch and yaw directions

respectively. An isomorphism between a vector ωωω ∈ R3 and ω̂ ∈ so(3) is given by the hat map

·̂ : ωωω → ω̂ where ωωω × vvv = ω̂vvv for any vvv ∈ R3. In addition the inverse of the hat map is denoted by
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∨ : x̂→ xxx and ω̂∨ω̂∨ω̂∨ = ωωω, explicitly we have

ωωω =


ω1

ω2

ω3

↔ ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (5)

For the development of the guidance method we initially assume ddd = ~0 and the zero-total an-

gular momentum condition hhh = −Jωωω. Note that the disturbances are re-introduced in the tracking

problem in Section VI. With these assumptions the dynamics (1) and kinematics (3) reduce to:

ḣ̇ḣh = TTT ,

Ṙ(t) = −R(t)(h1
I1
A1 +

h2
I2
A2),

(6)

where TTT = [T1, T2, 0]
T is the torque applied to the two RW. The system (6) is controllable between

any two configurations R(0) and R(T ) as the Lie bracket of the controlled basis elements A1, A2

generate an infinitesimal motion in the third axis i.e. [A1, A2] = A3.16 The guidance problem

is then formulated as the following optimal control problem of computing R(t) subject to the

following constraints, cost function and boundary conditions:



ḣ̇ḣh = TTT , |TTT | < δ

Ṙ(t) = −R(t)(h1
I1
A1 +

h2
I2
A2)

min J = 1
2

T∫
0

h2
1 + ch2

2dt,

where R(0) = R0, R(T ) = Rd

(7)

where c > 0 is a scalar weight of the cost function and δ is an upper-bound on the magnitude

of the torque that can be applied to the reaction wheels. In the following section we analytically

compute the necessary conditions for optimality and the form of the optimal motion. In Section

IV we present a method to match the boundary conditions and ensure that the (open-loop) torque

required to perform the motion is within the physical bounds of the actuator.
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III. Optimal geometric attitude guidance

In this section we derive an the analytic form of the optimal motion and the required (open-loop)

torques. We make use of Pontryagin’s Maximum Principle applied to left-invariant systems on

SO(3)16 which is most naturally expressed using a non-canonical formulation exploiting the geom-

etry of the cotangent bundle T ∗SO(3) of SO(3). The cotangent bundle T ∗SO(3) can be trivialized

(from the left) such that T ∗SO(3)= SO(3) ×so(3)∗, where so(3)∗ is the dual space of the Lie al-

gebra so(3). The dual space so(3)∗ has a natural Poisson structure, called the minus Lie-Poisson

structure, given by

{F,H} (p) = −p([dF (p), dH(p)])

for p ∈ so(3)∗ and F,H ∈ C∞(so(3)∗) in canonical form as:

H = 〈λλλ, f(xxx,uuu, t)〉 − L(xxx,uuu, t) (8)

where (λλλ,xxx) ∈ R2n and 〈·, ·〉 is the inner product on Rn, where ẋ̇ẋx = f(xxx,uuu, t) is a differential con-

straint, λλλ is a vector of co-states and L(xxx,uuu, t) the Lagrangian associated with the cost-function∫
L(xxx,uuu, t)dt to be minimized. However, in this case it is convenient to use a non-canonical for-

mulation as we can express the dynamic constraint on the Lie algebra as f̂(h1, h2) = R(t)T Ṙ(t) =

−(h1
I1
A1+

h2
I2
A2) ∈ so(3) with λ̂ = λ1A1+λ2A2+λ3A3. Also noting that minimising the function

J in (7) is equivalent to minimising the function

J1 =
1

2

T∫
0

h2
1

I2
1

+ k
h2

2

I2
2

dt, (9)

we can write the Hamiltonian (independently of R(t) ∈ SO(3)) as

H =
〈
λ̂, f̂(h1, h2)

〉
− 1

2
(
h2

1

I2
1

+ k
h2

2

I2
2

) (10)

where
〈
Â, B̂

〉
= −1

2
trace(ÂB̂) is the inner product on the Lie algebra so(3) of the Lie group

SO(3).16
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From the Maximum Principle and given that H is a concave function in h1, h2 the necessary con-

ditions for optimality are:
∂H
∂h1

= 0⇒ λ1(t) = −h1
I1

∂H
∂h2

= 0⇒ λ2(t) = −k h2I2 .
(11)

Substituting (11) into (10) we obtain the optimal Hamiltonian as a function of the co-states,

H =
1

2

(
λ1

2(t) +
λ2

2(t)

k

)
. (12)

It is well known that the Hamiltonian vectors fields can be constructed using the Poisson bracket

for arbitrary co-ordinates zi ∈ G× T ∗G where G× T ∗G is the co-tangent bundle where G is the

manifold and T ∗G is the co-tangent space such that:

żi(t) = {zi(t), H} , (13)

where the general equation for the Poisson bracket of two functions H,G in arbitrary co-ordinates

can be stated as:

{F,H} = ∂F

∂zi
{zi, zj}

∂H

∂zj
, (14)

Note that if zi is canonical with zi = (pi, qi) ({zi, zj} = {qi, pi} = ∂ij and {pi, qi} = −∂ij where

∂ij is the Kronecker delta function) then we retrieve the well-known canonical Poisson bracket and

the Hamiltonian vector fields (13) yield Hamilton’s classic canonical equations. In the case of the

Hamiltonian (12) which is defined on the dual of the Lie algebra so(3)∗ then the Poission bracket

is defined in terms of the Lie bracket

{λi(t), λj(t)} = {p(Ai), p(Aj)} = −p([Ai, Aj]) (15)

this allows us to compute the Hamiltonian vector fields corresponding to H using the formula:

λ̇i(t) = {λi(t), H} = {λi(t), λj(t)}
∂H

∂λj(t)
(16)
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Particularly, in the case of the optimal control problem (7),

Proposition 1. The equations for the optimal co-states are given by

λ̇1(t) = −λ2(t)λ3(t)
k

λ̇2(t) = λ1(t)λ3(t)

λ̇3(t) =
1−k
k
λ1(t)λ2(t).

(17)

where the optimal angular velocities of the spacecraft are λ1(t) = ω1 and λ2(t) = kω2.

Proof. Trivially following (16) for the left-invariant Hamiltonian (12) with (11) yields (17).

From these necessary conditions for optimality we can construct the form of the optimal torques

of the RWs.

A. Open-loop control for a spacecraft with two RWs

In this section we develop an analytic form of the attitude motions that satisfy the necessary con-

ditions for optimality (17) in terms of the Jacobi Elliptic Functions sn (·, ·), cn (·, ·) and dn (·, ·).

Theorem 1. The optimal open-loop control laws, under the condition of zero-total angular mo-

mentum, that satisfy the necessary conditions for optimaility of the optimal control problem (7) are

of the form:

T1 = sgn(λ2)sgn(λ3)
√
2HI1αcn (αt+ β,m) dn (αt+ β,m)

T2 = sgn(λ2)k
√
2HkI2αdn (αt+ β,m) sn (αt+ β,m)

(18)

where sgn is the sign function and the constants are defined as


α =

√
(M − 2Hk)/k

β = cn−1
(

sgn(λ2)λ2√
2Hk

,m
)
,

m =
√

2H(k−1)
2Hk−M ,

(19)

where H = 1
2
(λ2

1 +
λ22
k
) and M = λ2

1 + λ2
2 + λ2

3. λ1, λ2, λ3 are the initial co-states that must be

chosen to satisfy the boundary conditions R(0) = R0 and R(T ) = Rd.
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Proof. To solve (17) observe the Hamiltonian (12) implicitly defines an elliptic cylinder and there-

fore it can be parameterized by Jacobi Elliptic Functions:

λ1(t) = α1sn(θ,m), λ2(t) = α2cn(θ,m) (20)

substituting these into (12) gives α2
1 = 2H,α2

2 = 2Hk. Substituting (26) into (17) gives:

λ3(t) = sgn(λ3(0))
√
kθ̇dn(θ,m) (21)

where θ =
√(

1−k
k

)
2H
m2 t+ β. To compute m we observe that the function

M = λ2
1(t) + λ2

2(t) + λ2
3(t), (22)

is a constant of motion ({M,H} = 0) and substituting in (26) and (21) yields:

m =

√
2H(k − 1)

2Hk −M
. (23)

The signs of α2 can be determined by inspection of λ2(t) and the sign of α1 by the equations (17)

such that sgn(α2) = sgn(λ2(0)) and sgn(α1) = −sgn(λ2(0))sgn(λ3(0)). This yields

ω1 = −sgn(λ2)sgn(λ3)
√
2Hsn (αt+ β,m)

ω2 = sgn(λ2)
√
2Hkcn (αt+ β,m)

(24)

then differentiating (24) and substituting into (11) and (6) gives (18). For simplicity we write

λi(0) = λi

Note that when k = 1 the open-loop optimal torque (18) applied to the reaction wheels simplify

to the form:
T1 = sgn(λ2)sgn(λ3)

√
2HI1α cos(αt+ β)

T2 = sgn(λ2)
√
2HI2α sin(αt+ β)

(25)
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where α =
√
(M − 2H) and β = tan−1(−sgn(λ3)

λ1
λ2
).

Theorem 2. The general form R(t) ∈ SO(3) for the optimal rotation corresponding to the neces-

sary conditions for optimality

λ1(t) = −sgn(λ2)sgn(λ3)
√
2Hsn(αt+ β,m),

λ2(t) = sgn(λ2)
√
2Hkcn(αt+ β,m),

λ3(t) = sgn(λ3(0))
√
kαdn(αt+ β,m)

(26)

where α, β,m are defined in (19) are described by the equation:

R(t) = R(0)Rp(0)
TRp(t) (27)

where

Rp(t) = exp(φ1A3) exp(φ2A1) exp(φ3A3), (28)

with
cosφ2 =

λ3√
M
, sinφ2 =

√
M−λ23√
M

cosφ3 =
λ1√
M−λ23

, sinφ3 =
λ2√
M−λ23

,
(29)

and

φ̇1 =
√
M
λ2

1 + (λ2
2/k)

λ2
1 + λ2

2

. (30)

Proof. It is well known that for left-invariant control systems on SO(3) with quadratic cost func-

tions of the form J = 1
2

T∫
0

ωωωTQωωωdt can be lifted to Hamiltonian vector fields described by the Lax

Pair equations ˙̂
λ = [λ̂,∇H]16 where λ̂,∇H ∈ so(3) with general solution:

λ̂(t) = R(t)T λ̂(0)R(t). (31)

then analagous to the integration procedure used to solve the optimal control problem for a spin-

stabilized spacecraft on the quaternions11 and the natural dynamics12 we can choose an initial
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Rp(0) such that Rp(0)λ̂(0)Rp(0)
T =
√
MA3 then we have

Rp(t)λ̂(t)Rp(t)
T =
√
MA3, (32)

then substituting in (28) (noting that exp(−φ1A3)A3 exp(φ1A3) = A3) and solving gives (29).

Then substituting (28) into Ṙ = R(−h1
I1
A1 − h2

I2
A2) and simplifying gives


λ1φ̇1 + φ̇2 cosφ3 = λ1

λ2φ̇1 − φ̇2 sinφ3 = λ2
k

φ̇1λ3 + φ̇3 = 0.

(33)

finally substituting (29) into (33) yields (30)

Lemma 1. For the case of k = 1 a convenient closed-form solution can be obtained whereRp(t) =

(x y z) where the orthonormal vectors x, y, z are defined by:

x =


cosφ1 cos θ − C1 sinφ1 sin θ

sinφ1 cos θ + C1 cosφ1 sin θ

C2 sin θ

 (34)

y =


− cosφ1 sin θ − C1 sinφ1 cos θ

− sinφ1 sin θ + C1 cosφ1 cos θ

C2 cos θ

 (35)

z =


C2 sinφ1

−C2 cosφ1

C1

 (36)
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where

φ1 =
√
Mt,

θ = −sgn(λ3)(
√
M − 2Ht+ β),

C1 = sgn(λ3)
√

1− (2H/M),

C2 = sgn(λ2)
√

2H/M.

(37)

Proof. This follows directly from Theorem 2 evaluated explicitly at k = 1.

IV. Open-loop control (guidance) algorithm implementation

In this section the analytic form of the optimal attitude motion and the torque derived in the pre-

vious section is used to develop a guidance method. Moreover, the parameters λλλ = [λ1, λ2, λ3]

must be selected so that the boundary conditions on the rotation are matched. In the first stage a

kinematically feasible motion is computed to match the boundary conditions on the rotation on a

virtual domain t ∈ [0, 1]. Note that in the second stage, due to the semi-analytical nature of the

method, the time can be parameterized to ensure that the angular velocities and torques are fea-

sible.13 Matching the boundary conditions reduces to the problem of minimizing an appropriate

metric of the rotation error which in this case is taken to be:

J2 = min
λλλ
‖Re(1)‖ (38)

where

‖Re(t)‖ = tr[I3×3 −Re(t)]. (39)

Following this the dynamic feasibility of the motion is considered by converting the problem on

the virtual domain t ∈ [0, 1] to one on a real time domain τ ∈ [0, Tf ], a procedure often used in

robotic motion planning,13 where t = τ/Tf such that

Ti = −
Ii
T 2
f

ω̇(t/Tf ) (40)
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which for k = 1 is:

T1 = sgn(λ2)sgn(λ3)
I1
√

2H(M−2H)

T 2
f

cos
(√

M−2H
Tf

t+ β
)

T2 = sgn(λ2)
I2
√

2H(M−2H)

T 2
f

sin
(√

M−2H
Tf

t+ β
) (41)

therefore given a maximum torque capability of the RW we can select Tf using the following

formula:
Ii
√

2H(M − 2H)

max {Ti}
≤ T 2

f (42)

To demonstrate this we set the boundary conditions to R(0) = I3×3 and a randomly selected final

rotation:

Rd =


0 1 0

−0.623 0 0.782

0.782 0 0.623

 . (43)

The error (39) is a nonlinear function of λλλ and can be solved numerically by formulating a pa-

rameter optimization problem. This is a similar optimization problem to that found in13 where

a comparison of different optimizers was undertaken in Mathematica. Essentially, the numeri-

cal optimizer needs to be robust to problems with multiple local minima such as the Random

Search (RS) method that is used in Mathematica and gives the following values for the parame-

ters λ1 = 2.80745, λ2 = −1.73597, λ3 = −3.60479. Although this provides suitable results on

a PC for practical implementation on-board a spacecraft the computational efficiency of the algo-

rithm would be critical when selecting the optimizer. The computed parameters yield the following

open-loop controls that will match the boundary conditions on t ∈ [0, Tf ]:

T1 = 0.129696 cos(−3.60479t/Tf + 1.017)/(T 2
f )

T2 = 0.599696 sin(−3.60479t/Tf + 1.017)/(T 2
f )

(44)

As an example we assume the maximum torque for each reaction wheel is 10 mNm which the open

loop controls (44) violate. By using the equation (41) and choosing an appropriate value for Tf

such as Tf = 100 secs the open-loop controls fall within the feasible limits. Note that for the zero-
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angular momentum condition we must have ω(0) = [0.0280745 − 0.0173597 0]T . However,

if there is an error in these initial conditions the open-loop controls will not respect the boundary

condition R(T ) = RT as is demonstrated in Fig. 1. which shows the open-loop control under the

zero-angular momentum condition (continuous line) and with initial condition errors (dashed line)

where ω(0) = [0.025 − 0.017 0]T .
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Figure 1. The pointing vector of the attitude motion (the first column vector of R(t)) (i) with the zero-angular
momentum condition (continuous line) and (ii) with initial condition errors (dashed line)

As the open-loop control is not robust to errors in the initial conditions it is essential for prac-

tical implementation that the motion generated under perfect conditions is tracked with a closed-

loop control. The development of a closed-loop feedback tracking control using only two RWs is

addressed in the following section.

V. Attitude tracking with two RWs

In this section a tracking controller is developed that is able to track the generated attitude motions

in the presence of initial condition errors and disturbances. This method extends the singular

stabilization controls for two RWs in7 to the tracking problem. In the first instance we develop

an inner-loop for the controller which defines a virtual angular velocity ωωω∗ that will be tracked

using an outer-loop controller. Defining the rotation error Re = RT
dR where Rd is a feasible

reference motion (such as those generated in the previous section) that satisfies the kinematic

equation Ṙd = Rdω̂d where ωωωd is the angular velocity of the reference motion in the body-fixed

frame and where the error dynamics are

Ṙe = Reω̂e (45)
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with ωωωe = ωωω∗ −RT
e ωωωd with the virtual angular velocity ωωω∗ = [ω∗1 ω∗2 ω∗3]

T equal to

ω∗1 = (RT
e ωωωd − k1(Re −Re

T )∨) · e1e1e1 − k2(R
(1,2)
e −R(1,1)

e ωe3)/R
(1,3)
e

ω∗2 = (RT
e ωωωd − k1(Re −Re

T )∨) · e2e2e2 + k2(R
(2,1)
e −R(2,2)

e ωe3)/R
(2,3)
e

ω∗3 = 0

(46)

where k1, k2 > 0 are scalar gains, e1e1e1 = [1 0 0]T , e2e2e2 = [0 1 0]T andR(i,j)
e are the i th row and

j th column component of the error rotation Re. Intuitively, we can see from the error dynamics

(45) the component of the virtual angular velocity (46), −k1(Re −Re
T )∨ · eieiei where i = 1, 2 will

drive the errors to zero in the first two controlled axis such that R(3,2)
e , R

(2,3)
e , R

(1,3)
e , R

(3,1)
e → 0 as

t → ∞. The components −k2(R
(1,2)
e − R

(1,1)
e ωe3)/R

(1,3)
e and k2(R

(2,1)
e − R

(2,2)
e ωe3)/R

(2,3)
e have

the effect of ensuring that R(2,1)
e , R

(1,2)
e → 0 as t → ∞. To see this substitute ω∗1 = −k2(R

(1,2)
e −

R
(1,1)
e ωe3)/R

(1,3)
e and ω∗2 = k2(R

(2,1)
e − R(2,2)

e ωe3)/R
(2,3)
e into (45) with ωωωe = ωωω∗ − RT

e ωωωd which

yields Ṙ(2,1)
e = −k2R

(2,1)
e and Ṙ(1,2)

e = −k2R
(1,2)
e . Therefore, the cumulative effect of the control

is that Re → Id as t→∞.

The tracking control law for 2 RWs, under the assumption of zero-total angular momentum,

can then be stated as:

TTT = k3(ωωω −ω∗ω∗ω∗)− J
dωωω∗

dt
(47)

where ωωω∗ = [ω∗1 ω∗2 ω∗3]
T is defined in (46).

This control is shown to locally asymptotically stabilize the closed-loop system by considering

the Lyapunov function:

V =
1

2

〈
ωωω −ωωωe −RT

e ωωωd, J(ωωω −ωωωe −RT
e ωωωd)

〉
(48)

when R = Rd andωωω = ωωωd it can be seen from (46) and (48) that V = 0. Simplifying (48) we write

V =
1

2

〈
ωωω −ω∗ω∗ω∗, J(ωωω −ω∗ω∗ω∗)

〉
(49)
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and differentiating with respect to time gives

V̇ =

〈
ωωω −ω∗ω∗ω∗, −TTT − J dωωω∗

dt

〉
(50)

then setting the control to (47) gives

V̇ = −k3

〈
ωωω −ω∗ω∗ω∗, ωωω −ω∗ω∗ω∗

〉
(51)

then locally about the equilibrium point Re = Id,ωωωe = 0 we see that V̇ < 0 and thus the desired

state is locally asymptotically stable. The simulations are undertaken using the full equations for

the attitude dynamics with RWs (1) with the principal moments of inertia equal to that of the 3U

CubeSat UKube-112 with the initial rotation equal to

R(0) =


0.997377 −0.0524115 0.0499167

0.0499167 0.997502 0.0499792

−0.0524115 −0.0473564 0.997502

 . (52)

ωωω(0) = [0 0 0]T to induce an initial rotation and angular velocity error. From Fig 2. it can be
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Figure 2. The pointing axis (first column of the orthonormal frame R(t)) where the dashed line is the reference
trajectory generated by the guidance method and the solid line the actual trajectory with initial conditions
errors in the angular velocity
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seen that after approximately 10 seconds the trajectory of the pointing direction of the spacecraft

converges closely to the reference trajectory. In the case with no initial condition errors the motion

exactly replicates the motion induced by the open-loop control under perfect conditions. In Fig. 3
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Figure 3. Angular momentum of the RW for (i) no initial state error (ii) errors in the initial angular velocity
and rotation

the corresponding angular momentums of the RW are presented. In Fig. 3 (i) the angular momen-

tum of the closed-loop controller exactly replicates that given in the case of the open-loop control.

This is due to the fact that there are no disturbances and no initial condition errors, so we have

perfect tracking. In Fig. 3 (ii) an initial condition error is included such that ωωω(0) = [0 0 0]T .

After an initial transient the angular momentum of the closed-loop controller converges to that

of the open-loop controller. However, we note that the presented tracking control is only useful

if there are no initial condition errors in the uncontrolled axis. In addition this section has not

considered the environmental disturbance torques typical of a nano-spacecraft in LEO. Although

the control in its current form is not practical (in the sense that the assumption ω3 = 0 does not

hold in practise even though it maybe small) it can be utilized effectively with other attitude actu-

ators. For example, an additional actuator in the uncontrolled axis would only need to compensate

for small disturbances. Therefore, a smaller or less power consuming actuator can be used in the

uncontrolled axis to undertake the less torque expensive damping task. For example, magnetic
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torquers (MT) are cheap and efficient actuators that can be used for damping the angular velocities

(de-tumbling) of a spacecraft in LEO. However, on their own MTs do not have the capability to

precisely track reference motions but could be utilized with the presented algorithm for two RWs

to ensure that the angular velocity in the uncontrolled axis is damped out. This is demonstrated in

the following section.

VI. Attitude tracking with external disturbances and initial condition

errors

The previous section designed a singular control for attitude tracking using only two RWs. The

assumption for controllability of this system is that the total-angular momentum is zero. Thus,

in the uncontrolled axis we must have ω3 = 0 for all time. However, in practise there will be

initial condition errors and disturbance torques in all three axis. In this section we demonstrate

a practical use of the algorithm alongside a MT which performs the simple task of damping the

angular velocity in the z-axis using a proportional control law,

Dx = −
kx
By

ω3 (53)

where kx > 0 is a gain parameter. To derive a simple controller for the 2RWs and 1 MT actua-

tor configuration observe that the Magnetic torque τττm = [τm1 , τm2 , τm3 ]
T is given by the vector

product of the dipole moment DDD = [Dx, Dy, Dz]
T and the magnetic field BBB which is modelled to

13th order in LEO as described in.19 Assuming the use of only one MT we set Dy = Dz = 0

with the control torque in the x-axis and y-axis provided by RWs then the total applied torque

MMM = [Mx My Mz]
T is:


Mx

My

Mz

 =


0 Bz −By

−Bz 0 Bx

By −Bx 0



Dx

0

0

+


T1

T2

0

 . (54)
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Assuming a simple disturbance torque model in the dynamics (1)

ddd = [sin(0.1πt), sin(0.2πt), sin(0.3πt)]T × 10−4N ·m (55)

which is representative of the magnitude of order of the disturbance of a nano-spacecraft in LEO12

and using the same simulation parameters as in the previous section but with initial angular velocity

errors in all three axis set to ωωω(0) = [0.01, 0.01, 0.01]T rad/s and the tuning parameter set to

kx = 6, a maximum torque of the nano-RWs set to umax = 0.004N ·m and the maximum dipole

moment of the nano-MT set to Dmax = 0.2A · m2 the simulation results are shown in Fig.4 and

Fig. 5. It can be seen in Fig 4. that good tracking performance can be obtained. In Fig. 5 it can be

seen that the angular momentum of the RWs required for tracking are feasible and after an initial

transient is of the same order of magnitude as in the ideal system without disturbances and initial

condition errors. In other words after an initial transient the closed-loop control converges closely

to that of the open-loop control computed using the guidance method. In addition Fig. 5 shows the

magnetic dipole of the single MT required to perform the tracking and implies that it is feasible

with a nano-MT. It can be seen that as the attitude converges to the reference motion the magnetic

dipole of the MT converges to a very small bounded region around the origin. In Fig. 4 it can

be seen that even in the presence of environmental disturbance torques and initial condition errors

in all three axis that the trajectories converge to the reference attitude after an initial transient of

about 10 seconds. The tracking error in each case is small and due to the fact that the disturbance

torques have not been compensated for in the controller. This tracking error could potentially be

improved further by compensating for the disturbances in the control, for example, by extending

it to include a disturbance observer.21 Nevertheless, the simulation shows that it is possible to

track a fast attitude reference motion using only two RWs with the addition of an actuator that

simply damps the angular velocity in the uncontrolled axis. In Fig. 5 the angular momentum of

the reactions wheels and the magnetic dipole of the magnetic torquer are shown. In each case the

controls have been saturated so that they they are representative of nano-spacecraft actuators. It is

shown that tracking is feasible with current nano-spacecraft actuators.
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Figure 4. The pointing vector (the first column of the rotation matrix) and the tracking error in each axis ξi
over time with the initial angular velocity ω(0) = [0.01 0.01 0.01]T .
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VII. Conclusion

This paper has developed an optimal attitude guidance method for a spacecraft with two reaction

wheels on the Special Orthogonal Group SO(3). The approach uses a non-canonical formulation

of the Maximum Principle and solves the extremal curves, optimal angular velocities and rotation

analytically. This result is used to construct a semi-analytical method to generate feasible motions

with respect to both the kinematic and dynamic constraints of an underactuated spacecraft. A

tracking control algorithm that can track the generated reference motions, when there are initial

condition uncertainties in the controlled axis, is presented and proved to locally asymptotically

track the references using Lyapunov’s direct method. However, for practical implementation of

this method it must also be robust to disturbance torques and initial condition errors in all three

axis. It is shown that combining the tracking control method with a single magnetic torquer that

the tracking control is robust to disturbances and initial condition uncertainties. As most nano-

spacecraft in Low Earth Orbit are equipped with magnetic torquers for de-tumbling and reaction

wheels for precision pointing the presented algorithms could be useful when a reaction wheel fails.

Furthermore, a nano-spacecraft could be designed with attitude tracking capability using only two

reaction wheels and a magnetic torquer for damping. In nano-spacecraft it is possible to embed

the magnetic torquers in the body fixed solar panels and thus significant mass and volume savings

could be made. Other possibilities for utilizing this control would be in the event of partial failure

of a reaction wheel whereby two reaction wheels are fully functional and a third loses control

authority through fault. In this case the faulty reaction wheel may be able to perform the simpler

task of damping angular velocity while the two working reaction wheels perform the tracking.
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