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ABSTRACT 

The damping assessment of highly dissipative materials is a challenging task that has been addressed 

by several researchers; in particular Oberst defined a standard method to address the issue. 

Experimental tests are often hindered by the poor mechanical properties of most viscoelastic 

materials; these characteristics make experimental activities using pure viscoelastic specimens prone 

to nonlinear phenomena.  In this paper, a mixed predictive/experimental methodology is developed to 

determine the frequency behaviour of the complex modulus of such materials. The loss factor of 

hybrid sandwich specimens, composed of two aluminium layers separated by the damping material, is 

determined by experimental modal identification. Finite element models and a reversed application of 

the modal strain energy technique are then used to recover the searched storage modulus and loss 

factor curves of rubber. 

In particular, the experimental setup was studied by comparing the solutions adopted with the 

guidelines given in ASTM-E756-05. An exhaustive validation of the values obtained is then reported. 

 

1. Introduction  

Noise and vibration control is a relevant design requirement in several industries, such as aerospace and 

automotive, being the reduction of these two phenomena a major criterion for achieving customer 

satisfaction [1][2][3]. Passive damping technology often uses viscoelastic materials to decrease the 

vibratory level transmitted and noise field generated. Because of the peculiar properties of these 

materials, the mechanical energy is transformed into heat and subsequently dissipated. Used since the 

1950s, traditional treatments envisage the deposition of a ply of damping material on the interested 

surface (free layer damping, or FLD). The main concept of this intervention is that the shear strain 

acting in the viscoelastic layer stores some energy that is drained from vibrations. Improvements in 

damping have been achieved with the introduction of a conveniently designed constraining lamina at the 

free surface (constrained layer damping, or CLD). This configuration results in higher performances 

with relatively small penalties in weight. There is an extensive body of literature on methods suitable for 

predicting the intrinsic properties of beams and panels treated in these ways, and the results of their use 

in fundamental studies and actual applications have been published since the end of the 1950s [4]-[10]. 

An exhaustive survey of these prediction methods is presented in [11]. Several applications of 

viscoelastic damping for noise control in the automotive and aircraft fields are presented in [12]. More 

recent papers approach the same problem using the Finite Element (FE) method [13][14][15]. 
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In terms of actual applications, the constrained layers are mainly observed as an a posteriori intervention 

needed to fulfil noise requirements not satisfied by the bare structure. Even if these methodologies can 

generate suboptimal solutions in terms of vibration-performance-over-weight ratios, the separation 

between dissipative and structural functions has the advantage of not affecting the standard design 

process. Either analytical or finite element methods can be used to satisfy structural integrity 

requirements, and the presence of dissipative treatments can be neglected when discussing such 

requirements.  

The growing use of such dissipation mechanisms has motivated many authors to study a deeper 

integration of viscoelastic layers (integrated layer damping, or ILD) into the structural panel at the 

expense of simplicity. The concept of damped structures composed of metal-viscoelastic or composite-

viscoelastic sandwiches allows for an improvement in the vibro-acoustic behaviour even if the 

drawbacks in terms of structural efficiency are still not obvious [16] [17] [36]. 

Regardless of the treatment type (free, constrained or interleaved layer damping) and the predictive 

method employed (e.g., Ross-Kerwin-Ungar formulation, modal strain energy, frequency response 

derived from finite element model), reliable information about the constitutive laws of the viscoelastic 

material must be acquired. This requirement is typically satisfied by measuring the complex modulus, 

namely, the frequency behaviour of the shear modulus G(f) and loss factor η(f). 

This task is often taken for granted in many works, e.g., [18] and [19]. However, this task actually 

represents a challenge from an operative perspective because of the large number of factors that 

influence the characteristics of rubbers, e.g., temperature, strain level, speed of load application, and pre-

stress state. In [20], the presence of nonlinear effects is outlined and confirmed based on experimental 

observations. In [21], the Golla–Hughes method is applied to develop a finite element model suitable for 

identifying a model in the time domain with application to a low-frequency range. In [23], an 

experimental setup suitable for dynamic tests is presented. However, problems are generally magnified 

at the high frequencies typically involved in noise applications; the setup and operation of such 

experimental rigs tend to become more difficult as the upper frequency bound increases.  

The properties of a VEM can also be characterised directly in a relatively low frequency range. The 

temperature-frequency equivalence is then employed to project data into a higher frequency range. 

However, this approach, based on the classical theory for Dynamic Mechanical Thermal Analysis 

(DMTA), is not of general validity, e.g., it is not applicable in the case of blended materials [22]. 

In the present study, the properties of a Styrene Butadiene Rubber were evaluated at relatively high 

frequencies of up to 2,500 Hz, which cover typical helicopter applications.  

The cantilever beam method, typically based on the Oberst method [24], was used but linked to other 

techniques to overcome the previously mentioned theoretical limitations of the DMTA approach; this 

approach has also been used by other researchers, e.g., [13]. The ASTM E756-05 document [25] 

describes a number of guidelines for the reliable experimental characterisation of viscoelastic materials. 

One guideline suggests size ratios of a metal/viscoelastic/metal sandwich specimen: for a typical 

specimen the length should be approximately 250 mm, the width approximately 10 mm and the metal 

layer thickness approximately 10 times that of the viscoelastic one, approximately a few millimetres. 

With these dimensions, the presence of few bending modes suitable for experimental identification 

below 3,000 Hz can be easily verified, as later discussed in Sec. 3. This fact could make it difficult to 

obtain a reliable frequency-dependent regressive model in the band of interest. Furthermore, the advised 

thickness ratio could vary considerably for typical applications, thus possibly introducing discrepancies 
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in the actual strain level acting in the dissipative ply as well as nonlinear effects. In contrast, the use of 

thinner metallic layers makes the experiment prone to other effects, namely, mode shapes different from 

bending, the coupling of bending deflection with twists, modes straining the cross section in the 

transversal direction and modes with longitudinal bending waves. In these cases, the data processing 

conceived assuming a pure bending deflection cannot be easily applied. The path presented in other 

studies based on a mixed approach, e.g., [26], was retraced by using correlation techniques to identify 

the shear modulus but working only with experimentally identified modal data reliably correlated to 

finite element models. Furthermore, the Modal Strain Energy approach, based on finite element models, 

is used to determine the material loss factor. A free-specimen geometry was assumed to allow for the 

use of metal/viscoelastic/metal sandwich size ratios close to the application at hand, and the effects of 

the eigenvector shapes were accounted for by utilising a finite element model and a correlation 

procedure widely used in experimental modal analysis. A section of the paper is devoted to the 

presentation and discussion of results and issues concerning such procedures. Two of the specimens 

available from a previous study were used to perform the identification procedure. Additional test data 

related to other layouts were used to confirm the correctness and reliability of the identified data under 

different conditions. 

 

2. Method for estimating properties of a viscoelastic material 

Viscoelastic materials exhibit a combination of viscous and elastic behaviours, with the relative 

contributions being dependent mainly on the temperature and frequency, or strain rate. This effect 

introduces a delay between the input strain and output stress at a given frequency. A simplified 

frequency modellisation is often assumed to account for such a delay: the frequency description of the 

viscoelastic behaviour is based on the elastic/viscoelastic equivalence principle. It is also possible to 

formulate viscoelasticity problems in the framework of elasticity theory with complex Young’s and 

shear moduli depending on the frequency [1][2][3]. Because viscoelastic materials are mainly used in 

shear strain conditions, the relevant stress–strain law suitable to characterise the hysteretic damping can 

be reduced to the complex shear modulus * ( )G f . The storage and shear loss moduli G’ and G”, 

respectively, are introduced in terms of real and imaginary parts as follows: 

[ ]*
( ) '( ) ''( ) '( ) 1 ( )G f G f iG f G f i fη= + = +                                             (1) 

The relation between the shear loss factor and modal damping is useful for identifying this modellisation 

with the modal experimental results: 

"( )
2 ( ) ( )

'( )

G f
f f

G f
ζ η⋅ = =                                                         (2) 

However, a fully three-dimensional stress-strain law can be developed by simply assuming the Poisson’s 

ratio not frequency dependent [28]. An inverse procedure can be adopted to establish the viscoelastic 

properties assuming that a suitable set of pairs resonance frequency-loss factors are available from the 

experimental data for hybrid specimens related to metal/rubber stacking. 

 

 

2.1 Estimation of the shear modulus  

Two methods are available for determining G’(f). The first method, which is purely analytical, is based 

on the theory of De Saint Venant and is described in [25]. The main advantage of this simplified 
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technique is the short time needed to obtain the curve; however, this technique also has several potential 

drawbacks, such as the requirement to use only bending modes to define the frequency behaviour or the 

hypothesis that layers remain straight along the width, a questionable assumption at high frequencies.  

The second method is based on the identification of mechanical properties using a classical correlation 

process; a real eigenvalue analysis of a detailed finite element model linked to an optimisation process to 

match experimental data: assuming known data for the constraint layer materials, the shear modulus of 

the dissipative material is modified until the frequency of the desired mode matches the experimental 

value. 

The last technique was deemed more suitable for this work despite its longer time requirement because it 

guarantees a deeper insight into the dynamic behaviour of the specimen. The elastic property (E) of the 

viscoelastic material is identified at the modal frequencies by matching the measured frequency with the 

corresponding finite element frequencies.  

The value of G’ is updated based on the formula 

1
'( ) '( )

2(1 )
G f E f

ν
=

+
                                                                (3) 

The tuning was realised by iteratively setting the viscoelastic elastic properties to match a single mode 

frequency at once. Thus, a frequency-dependent law for both the Young’s and shear moduli is obtained. 

The matched displacement modes are saved together with the derived data (frequency and modal strain 

energies, total and fractional in the viscoelastic layer) for the following viscoelastic loss factor 

estimation.  

The analysis used to calculate the modes is a real eigenvalue extraction. The experimental resonance 

frequencies depend on damping, although this influence is neglected in the finite element model. To 

consider this effect, an a posteriori correction of the calculated values is performed based on the 

behaviour of a single damped degree of freedom using the well-known formula  

21
updated FEM

f f ζ= ⋅ −                                                           (4) 

A fitting curve is then derived to interpolate the frequency dependence of the viscoelastic material 

moduli. 

 

2.2 Estimation of the loss factor  

There are several methods for metal-rubber-metal sandwich panel loss factor estimation, and these 

methods can be divided into two classes. The first class supplies the estimation without considering the 

geometrical shape of the object (e.g., shape and boundary conditions), and it is trimmed based solely on 

the bending behaviour. The second class is suitable for predicting the behaviour of a specific structural 

element manufactured with the hybrid technology without the limit concerning the mode type, and it is 

generally based on a finite element formulation of the problem. 

The methods referring to the first category are as follows: 

• The Ross-Kerwin-Ungar approach, which, in its standard formulation, is usable only with a 

single viscoelastic inclusion; 

• The General Laminate model [27], implemented in the ESI VAOne code [29] to predict 

subsystems properties in the frame of a Statistical Energy Analysis, namely the damping in linear 

viscoelastic laminates, thanks to a wave propagation analysis. It can be used for any type of 

stacking sequence and number of viscoelastic inclusions.  
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Methods devoted to the prediction of the behaviour of specific structural elements are as follows: 

• The finite element Direct Frequency Response [30]; 

• The Modal Strain Energy method [31]. 

All of the previous methods have worthwhile benefits but also some limitations. To obtain the loss 

factor frequency behaviour of the viscoelastic, the use of a predictive method for damping in hybrid 

laminate is needed. In this work the modal strain energy method is envisaged but in a reversed manner. 

This method, which is a compelling option in terms of flexibility, reliability and time consumption, was 

applied in its basic implementation [31] even though improvements are available in the literature, e.g., 

[32]. This method is based on the real eigenvalue analysis of an finite element model from which one 

can derive the total Strain Energy, SETotal, as well its amount stored in the viscoelastic core, SEVisc, and 

into the constrain layers, SECons. These data are available for each mode, SE(f), thus allowing for the 

development of a frequency law. Based on this approach, the global loss factor of the model can be 

stated as a sum of individual material loss factors, each weighted with the corresponding fraction of 

modal strain energy: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

Visc Visc Cons Cons
Test Visc Visc Cons Cons

Total

f SE f f SE f
f f FSE f f FSE f

SE f

ζ ζ
ζ ζ ζ

+
= = +     (5) 

In Eq. (5), the Fractional Strain Energy (FSE) has been introduced for the viscoelastic and the constraint 

layers. An available structural loss factor can be projected on the unknown viscoelastic material for each 

specific mode, and thus, a frequency shaping can be obtained as follows: 

1 ( )
( ) ( ) ( )

( ) ( )

Cons i
Visc i Test i Cons i

Visc i Visc i

FSE f
f f f

FSE f FSE f
ζ ζ ζ= −                                      (6) 

Assuming that the aluminium alloy provides a negligible contribution, which holds for most structural 

materials, the equations can be simplified to 

1
( ) ( )

( )
Visc Test

Visc

f f
FSE f

ζ ζ= .                                                 (7) 

Finally, by assuming the availability of the specimen loss factor behaviour, e.g., from experimental data, 

and results from finite element analyses (the frequency and strain energy saved during the shear 

modulus estimation step described in the previous section), Eq.(7) can be applied to the modes in the 

entire frequency range of interest to define the loss factor frequency behaviour.  

 

3. Experimental guidelines from finite element models 

The availability of finite element models allows computations to be performed to support the 

experimental activity. Qualitative information concerning the specimen dimensions, sensor positioning, 

mode shapes and modal density in the investigated frequency band can be obtained by using a plausible 

trend of the storage modulus G’ and loss factor η  curves for the viscoelastic material. 

Being the proposed approach based on the reversed use of the modal strain energy method, the 

sensitivity of this indicator with respect to the experimental setup, i.e., specimen sizes, constraints or 

inputs, must be discussed.  

The effects due to the specimen sizes were first investigated. The ASTM rule is not strictly mandatory 

for such items, but the free length is suggested to range between 180 and 250 mm, and the width should 
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be approximately 10 mm. A constraining metallic layer thickness of approximately ten times the 

thickness of the rubber layer is also suggested. Once these suggestions have been incorporated, a 225 

mm x 10 mm specimen with a 0.38-mm-thick viscoelastic layer (the nominal thickness of the Styrene-

Butadiene-Rubber used in [17]) and 4-mm-thick constraining layers was numerically tested.  

For the case of ideal clamping at one end, tests using this sample would lead to five bending modes 

within the range of 0-4,000 Hz; once the first mode is excluded, according to the standard, only four 

points are available to identify the material (triangles in the upper chart of Figure 1). Using the finite 

element analysis results, it is possible to appreciate that the viscoelastic material stores approximately 

30% of the total MSE of the second bending mode, whereas the upper modes indicate a rapidly decaying 

of this percentage (10% for the fifth mode). Such a small number of points, together with the sensitivity 

of the MSE inverse procedure to test errors, suggests possible critical issues in the experimental 

identification. The number of modes in the frequency range as well as the strain energy ratio can be 

increased by using thinner constraining layers, as shown in the upper chart of Figure 1 by the rhombs, 

squares and circles related to 2, 1 and 0.5 mm constraint layers thicknesses. Data for torsional modes are 

presented in the lower chart; in this case, the modal strain energy ratio is rather constant with frequency 

and progressively increases as the thickness of the constraining layers decreases.  

These results suggest that the use of a constraining layer that is thinner than that suggested by the ASTM 

should be used more effectively to make the modal strain energy method less sensitive to experimental 

uncertainties; this would also allow a more satisfactorily fitting of the frequency range.  

Furthermore, by using a more complex measurement setup than recommended, i.e., one that is also able 

to detect torsional modes, it is possible to relax the prescription on the width, which is mainly associated 

with the need to avoid the presence of torsional vibrations within the interested frequency range. The use 

of a larger specimen (27 and 55 mm wide) with the same boundary conditions and layer thickness ratio 

led to the data compared in Figure 2 to the narrow, thin specimen. Compared to the 10-mm-wide 

specimen, the 27-mm-wide specimen exhibits, a similar and regular modal strain energy ratio of bending 

mode behaviours; the largest specimen (55 mm wide) exhibits the same general pattern but with a non-

negligible scattering due to the presence of modes with significant cross-sectional deformation, e.g., 

longitudinal and high-order bending along the width. The torsional modes of the 27-mm-wide specimen 

display values approximately three times larger those of the 10-mm-wide specimen and comparable to 

those for the 55 mm specimen, whose bending and torsional values of modal strain energy overlap 

considerably. In terms of the number of points available to fit the 0-4,000 Hz range, it would be possible 

to use up to 18, 24, and 40 points for the 10-, 27-, and 55-mm-wide specimens respectively, compared to 

the four points available with the basic rule. The availability of a higher number of modes is beneficial 

because it allows a better fit of the shear modulus and loss factor curves. 

In addition, the frequency behaviour of the strain modal energy deserves a discussion. In Figure 3 the 

strain energies for a typical specimen, total and stored into the rubber layer, are presented with respect to 

frequencies for all modes, except in-plane ones. Although the total energy frequency dependence 

exhibits a quadratic behaviour, the energy stored in the viscoelastics increases more slowly, with an 

approximately linear trend. This holds regardless of the mode type (pure bending and torsion, low and 

high order, simple and complex pattern). The constant decrease in the fractional strain energy with 

increasing frequency is common to all of the laminations discussed in the next section, and the net effect 

is to emphasise the difficulties for a reliable loss factor identification at high frequencies. At high 

frequencies, the identification algorithms exhibit a larger uncertainty, especially in the case of highly 
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damped structures. Furthermore, errors in the laminate modal damping measurements are amplified, and 

the ratio of SETotal to SEVisc in Eq. 7 is large. Thus, the identification of the damping properties in the 

upper frequency range may be not sufficiently accurate.  Furthermore, the simplification of Eq. 6 to Eq. 

7 may no longer be valid when high values of the Cons

Visc

FSE

FSE
 ratio make the second terms in Eq. 6 relevant 

with respect to the first one, despite usual negligible values of 
Cons

ζ .  

From a conceptual point of view two independent sets of experimental and finite element modes must be 

matched to use Eq. 7. Errors in the mode pair table compilation impact the loss factor determination, 

especially when bending and torsional modes have different total-to-viscoelastic strain energy ratios. 

The modes are easily identified when using the narrow and thick specimens and the measurement setup 

suggested by ASTM E756-05; specifically, the modes are well spaced in frequency, spacing is 

increasing with frequency and the progression in terms of waves is regular and easily predictable. In 

contrast, the presence of modes with complex shapes must be accounted for when using thinner and 

larger specimens, due to the presence of higher-order modes, particularly with transversal waves, at 

relatively low frequencies. To correctly link these eigenvectors, spatial aliasing problems should be 

avoided, i.e., using three or more sensors along the width of the specimen; however this would entail an 

excessive increase in the setup complexity and costs. 

Related to the previous discussion is also the fact that laminations, characterised by higher fractions of 

viscoelastic strain energy, tend to diminish the effects of experimental uncertainty. This result can be 

achieved using either a multilayer configuration or a single-layer configuration with a large thickness for 

the dissipative material. These methods both have some limitations: the first one requires a more 

difficult technology, and the thermal cycle used to vulcanise the viscoelastic material may be unable to 

produce rubber layers with identical thicknesses and mechanical properties. The main limitation of the 

second configuration is related to the low stiffness of the specimen, which prevents high frequencies 

from being attained.  

Thus, rather than complicating the experimental setup, the approach adopted in this study is based on 

three actions: 1) to make available a large number of modes using thinner and larger specimens, 2) to 

identify modes with a relatively coarse measurement grid and 3) to discard mode pairs with poor 

matching qualities. This latter validation is performed by means of the Modal Assurance Criterion 

applied among experimental and numerical modes (Cross-MAC analysis) [37]. This technique, based on 

the  evaluation of the parallelism of two vectors by normalized scalar product, gives an assessment of 

the matching between two modes in a scale from 0 to 1, whereas the greater value means a complete 

correspondence. 

This choice leads to a deeper insight regarding the dynamic behaviour of the specimen and to an 

analytically driven identification procedure that can be summarised in the following steps: 

• manufacturing of relatively wide specimens with relatively low thickness ratios or ratios similar 

to target applications;  

• use of typical procedures for multi-point experimental modal analysis (i.e., multiple output 

locations and a single input location); 

• use of correlation techniques between the experimental data and finite element output to identify 

experimental/analytical mode pairs and reject doubtful cases; 
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• identification of material properties performed via the modal strain energy method applied to 

validated modes pairs and experimental loss factors.  

Two strategies can be adopted to explore the frequency range of interest: shorten the specimen length, as 

done in [17], or increase the thickness of the constraining layers. The first technique requires a 

considerable reduction in the free length to obtain the required increase in modal frequencies with a 

reduction also in the number of modes available; furthermore it is highly sensitive to the errors in 

measurement point collocation. Thus, the second method was considered preferable for this study 

despite the need for two test articles.  

Specimens with 0.5- and 1.0-mm-thick constraint layers (AISI 2024 aluminium alloy) and a single 

viscoelastic inclusion were manufactured as shown in Table 1. They are rectangular and flat (300-mm-

long and 50-mm-wide); with the specimen #1 frequencies of up to 1,200 Hz were attained while the 

range has been extended to 2,500 Hz by means of the specimen #2. 

 

 

4. Description of the experimental activity and finite element correlation  

The experimental modal analysis was conducted on the specimens, which were clamped at one end 

between two metallic blocks (overall mass ≈ 1.0 kg) so that the free vibration length was approximately 

225 mm. The seismic mass is suspended via elastic cables to react to rigid motions and forced to input 

disturbances into the specimen. A nylon stinger was used to provide excitation, and a PCB 208C01 load 

cell was adopted to measure this excitation. The load cell was linked to the block far from the mid axes 

of the specimen to supply an adequate input for the torsional modes. Compared to a classical free-free 

suspension, this setup allows us to host the load cell and to transmit the force without any unwanted 

addition of either mass or stiffness to the specimen. Thus, the vibration test is similar to a shaker table 

[33] but different from a standard modal experiment, in which the structure being tested is directly 

excited. The response was measured by a low-mass accelerometer (PCBTM 352C22, mass 0.5 g), moved 

to each position of a mesh of fourteen measurement, regularly arranged in two columns, of seven rows 

each points. The points allow to recover up to fifth-order mode shapes, for both bending and torsional 

modes. A special cable from PCB was used to reduce the invasiveness of the wiring. The setup is 

detailed in Figure 4. 

The temperature was monitored but not controlled: during the tests, it ranged from 18°C to 22°C, and 

such changes were considered sufficiently small to be neglected. 

An excitation by an electro-mechanical shaker has been preferred to impulsive tests with instrumented 

hammer due to the problems of repeatability and limited band. A swept sine input was used instead a 

random one to ensure a greater degree of control of the load amplitude across the whole frequency 

range. A sensitivity study of this parameter was deferred to future studies. A linearly swept sine from 5 

Hz to 4 kHz was used with an amplitude profile that increases with frequency. Frequency rates of 1 and 

10 Hz/s were chosen for the lower and upper parts of the band, respectively. The lower value at the low 

frequencies was chosen to allow sufficient time for the vibration to develop more cycles. No control 

strategy was used for the force produced by the shaker. Repetitions of the acquisition were performed 

during the test, mainly for monitoring and quality purposes, but not in a systematic manner because of: 

the good repeatability, high cleanness of the frequency response functions and the high signal to noise 

ratio observed. The Polimax algorithm [34], from TestLab by LMS-Siemens , was used for modal 

identification.  
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The finite element models were prepared and analysed by MSC/NASTRAN. They are based on a full 

solid modellization with 8-node solid linear elements (CHEXA8), about 2mm long and wide, while a 

single element was used in the thickness direction for each layer: the mesh in this case was made of 

113x28x3 elements.  This discretization was the result of a convergence analysis carried out with respect 

to in plane element sizes (length and width) on a ideally clamped specimen: analysis with sides of 

elements of 5, 4, 3 and 2mm were performed. The deviations in eigenfrequencies of the first 20 modes 

have been considered, stopping the refinement with deviations below 0.5%; the adopted discretization 

led to about 20 elements in the shortest bending mode wavelength. A further convergence check was 

then carried out on the strain energy values by halving the in plane element size and using four elements 

along the thickness direction for each layers: among 27 modes in the frequency range 0-2500Hz two of 

them showed discrepancies in fractional strain energy values about 1%, only the first in-plane mode was 

above such limit (5%), while data for the other modes were well below 1%.  Figure 5 provides an 

example of the finite element models in terms of overall view and details. 

The elastic properties of the AISI 2024-T3 aluminium alloy used for the two external laminae were 

determined based on Aerospace Specification Material (ASM) datasheets (Young modulus 73.1 GPa, 

Poisson’s coefficient 0.33, volume density 2,780 kg/m
3
 and negligible damping). To initiate the 

procedure the information available for the SBR are used, included a density of 1,450 kg/m
3
 and, based 

on previous remarks, a Poisson’s coefficient of 0.49; the latter, slightly lower than 0.5, is suitable for 

approximating the behaviour of such materials while avoiding numerical issues with the solver. 

 

5. Identification of the viscoelastic properties 

The procedure described in Section 2  was performed to identify the properties of the viscoelastic 

material. An experimental modal analysis of the two specimens led to the mode frequency and damping 

results summarised in Figure 6. These results display both bending and torsional modal damping values. 

For a generic hybrid laminate, modal damping does not lay on a smooth curve but is instead strongly 

dependent on the type of modal shape. Even if a portion of the data scattering is due to experimental 

errors, the main portion of the scattering must be ascribed to a different mechanisms of activation for the 

dissipative phenomenon between the various modes. These differences are mitigated by the Modal 

Strain Energy method used in the viscoelastic identification procedure. 

The properties of the damping layer were then modified in the finite element models to tune the 

frequencies only for well correlated modal shapes: thanks to the availability of experimental modes, the 

Modal Assurance Criterion (Cross-MAC) [37] was used so that the effect of experimental uncertainties 

are reduced. An example of this analysis is provided in Figure 7.  Problems in identification of 

experimental modes can derive from several reasons: low frequency separation between two modes 

characterized by high damping, sub optimal position of the input force, noise in the responses are only 

some of the possible causes. During the tests it has been noticed that the eigenvectors of poor quality 

exhibit even completely erroneous damping values. With a rule of thumb it has been chosen to use only 

the experimental modes with Cross-MAC coefficients higher than 0.60 to identify the Styrene-

Butadiene-Rubber characteristics. This threshold has been identified by experience but it resulted to be a 

good value to discern between badly and well estimated experimental loss factor: indeed modes with 

very stable identified properties exhibit cross-MAC values well above 0.8-0.9, while for more doubtfully 

identified modes they quickly decay even to values below 0.2. Only one mode in the high frequency 

band would be excluded by a higher threshold. The modal frequencies and damping of correlated modes 
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satisfying such criteria are presented in Table 2. About ten modes satisfy the correlation requirements 

for each specimen, with values that in the most cases pass 0.9. The modal strain energy method was 

used in a reversed form to determine the dissipative behaviour of the specimens. The data and results are 

summarised in Tables 3 and 4, where the following results are listed: 

• Experimentally identified frequencies (measured and corrected) and loss factors, 

• Finite element mode frequencies and Young’s modulus (after the G’ assessment procedure), 

• Fractional Strain Energy  in the viscoelastic material (based on Eq. 5), 

• Fractional Strain Energy ratios (as defined in Eq. 6), 

• Loss factor of rubber (obtained from Eq. 7). 

 

Based on the fractional strain energy ratios of the modes under consideration and on a structural loss 

factor of 1.0×10-4 for the aluminium alloy [3], Eq. 6 can be reduced to Eq. 7 for differences below 0.2% 

in the loss factor; however, for the first modes, this difference is approximately 0.5%. 

 

The shear modulus data with respect to frequency produced by the procedure are presented in Figure 8. 

These data can be used to appreciate  the of scatter of the results obtained from two different specimens.  

A logarithmic fitting curve, according to [22], of the entire dataset was calculated, and its equation is 

assumed to be valid in the range of 100-2,500 Hz: 

( ) 6.3847 ( ) 16.565E f ln f= ⋅ −  MPa                                        (8) 

Based on the previous cited relation between E and G’, Eq. (8) leads to 

'( ) 2.1282 ( ) 5.5217G f ln f= ⋅ −  MPa                                     (9) 

The second part of the procedure was performed to identify the damping properties in terms of the loss 

factor.  For each mode, the fractional strain energy was recovered and used to determinate the frequency 

trend of the SBR loss factor according to Eq. 7. Figure 9 presents the estimated damping data: the data 

scattering increases with increasing frequency; however, the curve trend is still clearly visible. 

A curve fitting of the entire dataset is obtained, again in logarithmic form, and is assumed to be valid in 

the range of 100-2,500 Hz: 

( ) 1.8487 ( ) 5.1500f ln fζ = ⋅ − %                                                  (10) 

 

6. Validation of the identified viscoelastic material model  

The first step in validating the damping curve of viscoelastic material was to analyse the dissipative 

behaviour of the two specimens used during the characterisation. The direct modal strain energy method 

was used with the data presented in Tables 3 and 4. The G’ fitting curve is not influential in this 

comparison. The correlation between the two datasets is presented in Figure 10 in terms of the damping 

values for bending and torsional modes obtained by measurements and by the prediction model. The thin 

specimen produces data with a lower scattering than the thicker specimen. 

To further validate the complex modulus obtained, the data presented in [17] are compared with the 

predictions obtained from modal strain energy strategy fed with present correlated viscoelastic 

properties. In that study specimens were manufactured with several laminations and materials (metallic 

and composite), all made with inclusions of the same dissipative material studied in this paper. Only 

data related to specimens batches made of aluminium alloy have been considered for the comparison in 

the present work. The set was completed with the manufacturing and testing of a thick specimen, with a 
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thickness ratio based on ASTM suggestions (batch #18 with 4mm constraint layers). Only bending 

modes were measured in [17], and thus, the comparison is limited to these modes. Specimen data are 

summarized in Table 5. The predictions are compared in terms of the loss factor of various stacking 

sequences so that the degree of likeness of the prediction is made for specimens whose experimental 

data are not involved in the characterisation procedure.  

To estimate the damping using a modal strain energy approach, an iterative procedure should be needed 

to calculate the modal strain energy at a given frequency with a correct value of G’. Because this method 

is time consuming, an alternative approach was preferred. The modified Modal Strain Energy method 

allows the loss factor to be projected over the entire desired frequency range in a simple manner. It does 

not consider the change in the storage modulus during the finite element analysis but incorporates its 

effect into the results a posteriori [31]. The shear modulus of the viscoelastic material is kept constant to 

a reference value in the modal analysis, thus allowing a single real eigenvalue analysis, while the effect 

of its frequency variations is accounted for by scaling the strain energy of the viscoelastic material by 

the square root of the shear modulus at the frequency of the mode under consideration normalized with 

respect to a reference value as follows: 

( ) '( )
( ) ( )

( ) '

Visc
Global Visc

Total Ref

SE f G f
f f

SE f G
ζ ζ=                                                   (11) 

This method simplifies the relationship between the shear modulus and frequency; however, the method 

is often used to forecast the behaviour of hybrid laminate objects due to its simplicity. A G’ of 6.66 MPa 

was chosen as a reference. How this choice affects the results is beyond the scope of this article and 

deferred to future studies. 

The specimens can be divided into two sets, the first referring to a single viscoelastic inclusion, that is, 

the classic metal/polymer/metal sandwich, and the second one referring to multiple staking sequences. 

The results for the first set (i.e., Batches 6 to 8) with increasing viscoelastic layer thickness are reported 

in Figure 11-Figure 13.  The simplified finite element approach matches the experimental results quite 

well for the three specimens even though the shear modulus is slightly underestimated at frequencies 

below 250 Hz whilst overestimated at frequencies between 500 and 1,700 Hz. These differences are 

likely due to the simplification of the dependence of G’ on the frequency. These effects will be 

investigated in future work. For completeness, a comparison with two alternative models is presented 

(the classic RKU formulation and the General Laminate model). All predictions are similar with a 

consistent overestimation of damping above 500 Hz. 

The comparison of results obtained for the set of samples with multiple viscoelastic inclusions (batches 

#9-12) is now presented.  The samples #9-12 are all based on the same type of structural layers (AISI 

2024, 0.5 mm) but with a different number of viscoelastic and metallic inclusions. The experimental 

data are compared in Figure 14 -Figure 18 to the results from the simulation procedures using modified 

Modal Strain Energy and General Laminate approaches; the comparison is again related to bending 

modes. The predicted laminate loss factor is in good agreement with the experimental data.  

Finally, the results for batch #18, the thick case (two 4-mm layers of AISI 2024 and a single 0.38-mm 

viscoelastic inclusion), are presented in Figure 19. In this case, the predictions underestimate the 

damping in the low-medium frequency range regardless of the method employed.  
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The identified model of the viscoelastic material allowed the prediction of laminate loss factor very 

similar to experimental data for specimens that differed considerably, compared to the samples used in 

the characterisation step, in terms of both stiffness and layout. 

 

7. Concluding remarks and future work 

In this study, well-known techniques, for the standard experimental modal analysis and correlation of 

finite element models with test data, combined with the Modal Strain Energy method have been used to 

identify the frequency-dependent properties of a viscoelastic material. The procedure, which differs 

from the ASTM rules, was conceived with the aim of identifying the shear modulus and damping loss 

factor within a medium-high frequency range of 100-2,500 Hz suitable for vibro-acoustic analyses. 

Guidelines for the selection of the specimen geometry were modified to ensure a satisfactory fitting of 

the interested frequency range and an adequate sensitivity of the modal strain energy method; although 

the ASTM rules advise the use of thick and narrow specimens, the adoption of relatively thinner 

constraint layers and wider specimens was found to be appropriate.  

The procedure was applied to identify the shear modulus and damping loss factor of a Styrene Butadiene 

Rubber. Two specimens, with a single viscoelastic layers constrained between two metallic sheets, were 

used. The specimens were manufactured with different thicknesses to achieve different bending 

stiffness, thus allowing for a better fitting of the frequency domain.  

The use of the Modal Assurance Criterion, to reject unreliable experimental data, allowed for the 

development of a method that is robust with respect to experimental uncertainties, namely because of the 

conceptual difficulties in adopting standard identification methods for highly damped specimens. 

The reliability of the results obtained was verified through an extensive application of a prediction 

method, based again on the modal strain energy method but also on alternate implementation, to a set of 

specimens with very different properties. The laminate loss factor was estimated accurately regardless of 

the amount of rubber in a single viscoelastic inclusion as well as in cases with multiple viscoelastic 

inclusions. 

A more in-depth investigation of some aspects, important for actual applications, was postponed to 

future work, including a discussion of the effects of the choice of the reference shear modulus used in 

Eq. (11). 
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Tables 

 

 

Spec 

# 

Sizes 

[mm] 

Structural 

Layers # 

Viscoelastic 

Layers # 
Layout 

1 300 x 50 2 x 0.5 mm 1 x 0.38 mm ||| 
2 300 x 50 2 x 1.0 mm 1 x 0.38 mm ||||||||| 

Table 1: Specimens for validation 

 

 

Set 1 (0.5 mm) Set 2 (1.0 mm) 

Freq.  

(Hz) 

Damp.  

ζ (%)ζ (%)ζ (%)ζ (%)    

Mode Freq.  

(Hz) 

Damp.  

ζ (%)ζ (%)ζ (%)ζ (%)    

Mode 

27.10 0.48 1
st
 Ben 54.18 0.73 1

st
 Ben 

109.36 1.27 2
nd

 Ben 192.38 1.69 2
nd

 Ben 

119.22 1.53 1
st
 Tor = =  

279.02 1.82 3
rd

 Ben 472.02 2.09 3
rd

 Ben 

365.73 2.40 2
nd

 Tor 597.39 2.74 2
nd

 Tor 

497.70 2.63 4
th

 Ben 827.31 3.31 4
th

 Ben 

604.75 2.64 3
rd

 Tor 995.45 2.40 3
rd

 Tor 

741.78 3.33 5
th

 Ben 1247.62 3.59 5
th

 Ben 

851.92 3.36 4
rd

 Tor = =  

1103.16 3.07 5
th

 Tor 1853.37 2.74 5
th

 Tor 

= =  1742.36 3.58 6
th

 Ben 

= =  2390.03 3.07 6
th

 Tor 

Table 2: Correlated modes 

 

 

 

 

FExp  

[Hz] 

η η η η     

Hybrid    

[%] 

FExpModified 

[Hz] 

F FEM 

[Hz] 

E FEM 

[MPa] 

FSEVisc 

[%] 

FSE  

Ratio 

η η η η     

SBR 

[%] 

27.10 0.96 27.10 27.12 5.20 34.1 1.9303 2.81 

109.36 2.54 109.35 109.39 12.25 45.6 1.1908 5.56 

119.22 3.06 119.20 119.18 15.70 32.8 2.0486 9.33 

279.02 3.64 278.97 278.88 15.80 43.2 1.3167 8.43 

365.73 4.80 365.62 365.72 21.55 42.9 1.3328 11.20 

497.70 5.26 497.53 497.47 20.30 47.5 1.1041 11.07 

604.75 5.28 604.54 604.60 22.80 44.4 1.2535 11.90 

741.78 6.66 741.37 741.24 21.70 48.5 1.0615 13.73 

851.92 6.72 851.44 851.57 24.95 46.0 1.1729 14.60 

1103.1 6.14 1102.5 1102.3 25.65 46.3 1.1614 13.27 

Table 3: Description of specimen #1 
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FExp  

[Hz] 

η η η η     

Hybrid    

[%] 

FExpModified 

[Hz] 

F FEM 

[Hz] 

E FEM 

[MPa] 

FSEVisc 

[%] 

FSE  

Ratio 

η η η η     

SBR 

[%] 

54.18 1.46 54.18 54.18 9.10 30.3 2.2978 4.81 

192.38 3.38 192.35 192.36 17.50 33.8 1.9597 10.00 

472.02 4.18 471.92 471.88 25.15 38.5 1.5960 10.85 

597.39 5.48 597.17 597.24 28.50 37.3 1.6836 14.71 

827.31 6.62 826.86 826.42 28.65 39.9 1.5086 16.61 

995.45 4.80 995.16 995.14 29.95 36.5 1.7428 13.17 

1247.6 7.18 1246.8 1246.3 29.65 36.9 1.7093 19.45 

1742.4 7.16 1741.2 1741.0 30.40 32.6 2.0642 21.94 

1853.4 5.48 1852.7 1852.5 32.25 32.9 2.0376 16.65 

2390.0 6.14 2388.9 2388.8 34.40 35.7 1.8031 17.21 

Table 4: Description of specimen #2 

 

 

 

Batch # 
Structural 

Layer # 

Viscoelastic 

Layer # 
Lay-out 

6 2 x 0.5 mm 1 x 0.66 mm |  | 

7 2 x 0.5 mm 1 x 0.84 mm |  | 

8 2 x 0.5 mm 1 x 1.34 mm | | 

15 3 x 0.5 mm 2 x 0.31 mm ||||| 

9 4 x 0.5 mm 3 x 0.31 mm ||||||| 

10 6 x 0.5 mm 5 x 0.32 mm ||||||||||| 

11 8 x 0.5 mm 7 x 0.32 mm ||||||||||||||| 

12 10 x 0.5 mm 9 x 0.31 mm ||||||||||||||||||| 

18 2 x 4.0 mm 1 x 0.38 mm ||||                        | | | |                       |||||||||    

Table 5: Specimens for validation 
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Figure 1: Variation of the strain energy stored in the viscoelastic material as a function of the frequency 

for different thicknesses of the constraining layers ( 0.5, 1, 2 and 4 mm), for 225 mm long and 10 mm 

wide beam and 0.3 mm thickness of the viscoelastic layer  
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Figure 2: Variation of the strain energy stored in the viscoelastic material as a function of the frequency 

for different widths of the beams (10, 27 and 55 mm), for 225 mm long beam, 0.5 mm thicknesses of the 

constraining layers and 0.3 of the viscoelastic layer  
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Figure 3: Comparison of the total strain energy and the energy stored  in the viscoelastic layer. 

 

 

 

  
Figure 4: Experimental setup: a) method of excitation and b) overall view. 

 

 

 

 
a) 

 
b) 

 

Figure 5: Finite element model: a) overall view and b) details (adopted and refined meshes). 
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a) 

 

b) 

 
 

Figure 6: Experimental damping as a function of the frequency derived from a 225 mm long and 50 mm 

wide beam with a 0.38 thick styrene butadiene rubber interleaved between AISI 2024-T3 aluminium 

layers: a) two 0.5 mm thick layers  and b)  two 1.0 mm thick layers. 

 

 
Figure 7: Test/FE CrossMAC (specimen 1)  
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Figure 8: Estimated SBR shear modulus. 

 

 
Figure 9: Estimated SBR loss factor. 

 

  

a) 

 

b) 

 
 

Figure 10: Comparison of the experimental and MSE damping of a) specimen 1 and b) specimen 2. 
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Figure 11: Comparison of the predictions and experimental results for Batch 6. 

 
Figure 12: Comparison of the predictions and experimental results for Batch 7. 

 
Figure 13: Comparison of the predictions and experimental results for Batch 8. 

 

 
Figure 14: Comparison of the predictions and experimental results for Batch 15. 
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Figure 15: Comparison of the predictions and experimental results for Batch 9. 

 
Figure 16: Comparison of the predictions and experimental results for Batch 10. 

 
Figure 17: Comparison of the predictions and experimental results for Batch 11. 

 
Figure 18: Comparison of the predictions and experimental results for Batch 12. 
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Figure 19: Comparison of the predictions and experimental results for Batch 18. 
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