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Abstract Cooperative Multi-Robot Observation of Mul-

tiple Moving Targets (CMOMMT) denotes a class of

problems in which a set of autonomous mobile robots

equipped with limited-range sensors keep under obser-

vation a (possibly larger) set of mobile targets. In the

existing literature, it is common to let the robots co-

operatively plan their motion in order to maximize the

average targets’ detection rate, defined as the percent-

age of mission steps in which a target is observed by at

least one robot.

We present a novel optimization model for CMOMMT

scenarios which features fairness of observation among

different targets as an additional objective. The pro-

posed integer linear formulation exploits available knowl-

edge about the expected motion patterns of the tar-

gets, represented as a probabilistic occupancy maps es-

timated in a Bayesian framework.

An empirical analysis of the model is performed in

simulation, considering multiple scenarios to study the

effects of the amount of robots and of the prediction

accuracy for the mobility of the targets. Both central-

ized and distributed implementations are presented and

compared to each other evaluating the impact of multi-

hop communications and limited information sharing.

The proposed solutions are also compared to two algo-

rithms selected from the literature. The model is finally
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validated on a real team of ground robots in a limited

set of scenarios.
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1 Introduction

In a number of practical applications, one or more mov-

ing entities need to be continually tracked or kept under

a more or less constant observation. For instance, in the

case of a search and rescue mission, keeping under ob-

servation the rescue agents can help to guarantee their

safety and can allow to locally interact with them for

coordination purposes. Similarly, in the case of an un-

wanted intrusion in a surveilled area, once detected, it

is necessary to keep the intruders under constant ob-

servation in order to effectively trigger and coordinate

response actions. In all these cases, using a team of mo-

bile autonomous robots to perform the observation of

the moving targets has been shown to be a viable op-

tion (Khan et al, 2016; Robin and Lacroix, 2016). How-

ever, since the robots have limited-range observation

sensors and might be less in number compared to the

moving targets, they need to implement some form of

implicit or explicit coordination in order to effectively

perform the observation task. The use of robot teams

for multi-target observation has been formalized first

by Parker and Emmons (1997), who defined the NP-

hard class of problems termed Cooperative Multi-Robot

Observation of Multiple Moving Targets (CMOMMT).
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In the CMOMMT scenarios studied in the litera-

ture, targets are commonly assumed as being evasive

or moving according to random patterns. The average

number of targets covered by at least one robot dur-

ing the time span of the mission has been the refer-

ence performance metric used to direct the behavior

of the robots. Since no distinction is made among the

targets being observed, the optimization of this met-

ric can easily result in lack of fairness of monitoring

among the different targets, with some targets being

observed much more than others.1 However, in most

of the applications of practical interest, ensuring a bal-

anced coverage among all targets is an important re-

quirement. For instance, in a battle field, all ground

troops would equally need to receive aerial support and

defense by a team of flying drones. When communica-

tion between ground and aerial agents is not permit-

ted, the flying drones have to coordinate to ensure an

overall fair monitoring. Similarly, during a search and

rescue mission, all the deployed human/animal rescuers

would need to be equally covered by a (smaller) team

of autonomous robots (e.g., flying or ground ones) em-

ployed to both monitor rescuers’ safety status and act

as communication relays for them.

In these examples, the provisioning of a fair moni-

toring among the whole set of targets is an important

objective to set over the mission’s time span. In order to

effectively achieve such an objective, the motion of the

targets needs to be predictable, to some extent. This is

to allow the robots to make decisions aimed to intercept

a target along its trajectory even when the target does

not currently fall under the observation range of any

robot. The possibility of obtaining relatively long-term

predictions about targets’ future positions is realistic in

many scenarios, even if the predictions would be nec-

essarily affected by errors. For instance, in the two ex-

amples above, some planning authority needs to be in

place to assign the paths to follow and/or the areas to

cover for the troops or the rescuers. Even in the case of

tracking intruders, who cannot be explicitly controlled,

a good guess of where they will move next to could be

derived, especially in structured environments. In gen-

eral, estimates about future target positions can be ex-

ploited to obtain an effective and uniform/fair coverage

of the targets by the robots. When a completely ran-

dom motion is assumed, this objective could be difficult

or impossible to achieve.

The original contribution of this paper precisely con-

sists in addressing the fairness issue in CMOMMT sce-

1 While in the literature the term “tracking” is mostly used
in this context, here we will usually employ the term “mon-
itoring” since it refers to a more general action of intermit-
tently keeping a target under observation.

Fig. 1 The scenario considered in this paper. Targets and
robots move in a bounded environment S, discretized into a
set C of cells; ct(a) and ct(ω) denote, respectively, the cell
in which robot a and target ω lie at step t, while R(ct(a))
denotes the cells currently observed by a. The objective is
to compute robots’ paths to ensure a comparable amount of
observations among the targets, by leveraging a (generally
uncertain) knowledge of their future movements.

narios (see Fig. 1), providing a mathematical optimiza-

tion model that extends the original CMOMMT for-

mulation explicitly including the notion of fairness for

monitoring the different targets (Section 3). For dealing

with this new problem, which we refer to as Cooperative

Multi-Robot Fair Multi-Target Tracking (CMFMT), the

model exploits some knowledge about targets’ motion

patterns and accounts for sensing errors in target detec-

tion. It employs a Bayesian framework to keep continu-

ally up-to-date spatial maps associating to each portion

of the environment the probability of being occupied by

a moving target in future times (Section 6). While the

model explicitly exploits the ability to make predictions

about targets’ motion, it could be equally employed

when the motion is a random walk. The mathemati-

cal model is in the form of a multi-objective integer

linear program (ILP) (Section 4), which is reduced to a

single-objective problem whose solution is used to itera-

tively plan robots’ paths according to a receding horizon

approach. The proposed ILP model extends the for-

mulation of the NP-hard Team Orienteering Problem

(TOP) (Vansteenwegen et al, 2011).

Both a centralized and a distributed architecture are

proposed (Section 5). In the first case, all robots send

out their status and information about sensed targets to

a common data aggregation point, where the path plan-

ning problem is solved for the team as a whole. In the

distributed case, the robots exchange data over their

multi-hop network, and locally use the available infor-

mation to autonomously solve their own path planning

problems, which are computationally much lighter than
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in the centralized case. Behavior and performance of

both the architectures are studied in simulation under

a variety of different conditions and constraints (Sec-

tion 7.1). Simulations also show that the proposed ap-

proach can outperform other methods, selected from

the literature, that explicitly account for fairness in

target monitoring. Finally, the approach is validated

in a realistic setting using a multirobot system, that

confirms the good results obtained in simulation (Sec-

tion 7.2).

An early version of this work has appeared in (Banfi

et al, 2015). This paper significantly extends those pre-

liminary results with a revised ILP model (now allow-

ing to specify an arbitrary replanning time), a more

in-depth discussion of the CMFMT performance met-

rics and of their correlation with the ILP model, new

simulation results and analyses, comparisons with other

methods, scenarios with obstacles, and experiments with

real robots.

2 Related work

The proposed solution to the CMFMT problem ex-

tends existing approaches for CMOMMT, which all de-

rive from the mentioned work by Parker and Emmons

(1997). This work can be considered as the forefather

of a whole family of highly distributed, highly reac-

tive solutions, where it is possible to rely at most on

very short-term predictions of targets’ paths, since they

are assumed to move evasively or randomly. In (Parker,

2002), Parker extends her initial work with a new ap-

proach called A-CMOMMT, which is based on the use
of weighted local force vectors. In (Kolling and Carpin,

2006), the authors propose a behavioral solution with

an algorithm, called B-CMOMMT, that is further im-

proved in (Kolling and Carpin, 2007). More recently,

(Elmogy et al, 2012) replaces the use of local force vec-

tors with the introduction of a tracking algorithm based

on unsupervised extended Kohonen maps. In all these

works, the robots keep under observation as many tar-

gets as possible, according to their sensing range and

to avoid situations where two or more robots remain

focused on following the same target. Instead, the ap-

proach in (Ding et al, 2006) considers uniformity of cov-

erage among the performance metrics, stated in terms

of the information entropy of targets’ observations: the

algorithm, called P-CMOMMT, heuristically takes into

account how much time can be spent in monitoring the

same target before a robot may decide to leave it to go

in search of another one, but does not exploit possibly

available knowledge of targets’ motion patterns, and

no belief is maintained about the positions of the last

observed targets, which makes it very difficult to per-

form an effective tracking. We explicitly compare our

principled approach for fairness based on ILP against

the more heuristic one represented by P-CMOMMT in

Section 7. In the same section, we also compare our

approach to A-CMOMMT.

From a more general perspective, target tracking

problems are not limited to CMOMMT scenarios and

approaches. For instance, in (Jung and Sukhatme, 2006)

robots exploit localization algorithms to build probabil-

ity density functions representing the spatial positions

of targets and of their teammates, and move towards

regions displaying the lowest ratio between targets and

robots. In (Luke et al, 2005), the assumption of the lim-

ited field of view is relaxed (assuming all the targets’ po-

sitions known), and a “tunable” class of tracking algo-

rithms is presented to test the effect of various degrees

of decentralization. In (Capitan et al, 2013), a scalable

multi-agent distributed POMDP (Partially Observable

Markov Decision Process) decision framework is intro-

duced and tested in a single-target tracking problem

scenario.

Finally, target monitoring problems can also be seen

as a special class of task assignment problems, where

the goal is to allocate a target to each robot in order

to maximize some monitoring performance measure. In

this context, (Bertuccelli and How, 2011) presents a

multi-objective optimization framework which allows to

find the best robot-target allocation according to an

uncertain score associated to each target, while, at the

same time, reducing the score uncertainty by explor-

ing the environment. While such formulation seems ap-

pealing for missions where the score associated to each

target is not precisely known but fixed (e.g., the ob-

jectives of an aerial strike), it fails to capture the fact

that in a uniform target tracking problem each target

may have a different score across the time span of the

mission, according to how much coverage has already

been provided to it.

In order to provide the targets with a balanced cov-

erage, our work requires from the robots the ability of

obtaining and maintaining a belief about the targets’

positions in environment, and the capacity to propagate

this knowledge among all their teammates involved in

the monitoring mission. This, in fact, can be consid-

ered an autonomous area of study, whose most recent

advances are due to works in the field of probabilis-

tic target search (Bertuccelli and How, 2005, 2006; Hu

et al, 2013). In general, a common approach is to re-

sort to Bayesian filtering (Thrun et al, 2005) to main-

tain up-to-date a probability map obtained by the dis-

cretization of the environment in cells, while accounting

for false-positive and false-negative detection probabil-
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ities. We choose to keep the problem of the belief up-

date separate from the CMFMT problem, which is the

main focus of our work: our model requires the current

targets’ probability maps as parameters, but it can be

agnostic about how such maps are actually obtained.

3 Problem formulation

3.1 The original CMOMMT problem

In order to introduce the CMFMT problem, we start by

describing a discrete version of the CMOMMT problem

based on its continuous version as introduced by Kolling

and Carpin (2007) which will be useful in the design of

our tracking algorithms. The following set of elements

characterize a CMOMMT problem (refer to Fig. 1):

– A bounded region of interest S (for sake of simplic-

ity, we focus on the 2D case). S is discretized into a

set C of equally sized square cells.

– A mission time duration T , partitioned into a se-

quence of discrete time steps indexed by t = 1, . . . , T .

– A set Ω of targets moving in S, that have to be kept

under observation. The cell where target ω ∈ Ω lies

at time step t is denoted by ct(ω) ∈ C.

– A set A of robotic agents, that are deployed in S to

observe the targets. ct(a) ∈ C is the cell where robot

a ∈ A lies at time step t. C is known to the robots.

During each time step, a robot moves within a cell or

between adjacent cells, and makes observations. The

robots are assumed to be cooperative, meaning that

they act as a team, sharing information and possibly

coordinating with each other for the achievement of

a common utility. This assumes that some commu-

nication mechanism is in place. The maximal speed

of the robots is higher than that of the targets, to

balance the limitation that the targets can outnum-

ber the robots.

– Each robot is equipped with an omnidirectional sen-

sor for target observation: the sensor serves to detect

the presence/absence of a target. The output of the

sensor is potentially noisy. When a robot is located

at cell c, its sensor range covers an approximately

circular subset R(c) ⊂ C of the cells, centered in

c. A target ω is monitored at time t if it lies inside

the sensing range of at least one robot. Note that

a robot a is aware of monitoring target ω at time t

if ct(ω) ∈ R(ct(a)) and the sensor correctly detects

the target.

At each time step t, the indicator function θt keeps

track of which targets are monitored:

θt(ω) =

1 if ω is monitored at t,

0 otherwise.
(1)

– For each target ω, its detection rate µ(ω) quantifies

the fraction of time elapsed under the observation

of at least one robot during the mission:

µ(ω) =
1

T

T∑
t=1

θt(ω). (2)

– The objective for the robot team consists in max-

imizing the average µ̄ of the detection rate for all

targets in Ω:

µ̄ =
1

|Ω|
∑
ω∈Ω

µ(ω). (3)

Note that, contrarily to the original (continuous)

problem formulation which assumes S to be obstacle-

free, in our discrete version the CMOMMT problem we

are not making assumptions about the presence/absence

of obstacles. Indeed, the presence of obstacles can be

modeled in a straightforward way by setting some cells

of the set C as obstacles and limiting the robots’ move-

ments and perceptions accordingly, as it is shown in Sec-

tion 4. This allows to flexibly describe real-world scenar-

ios, as well as other scenarios, like pursuit-evasion (Thun-

berg and Ögren, 2011) ones, that are related to CMOMMT.

The discrete problem version just introduced still

does not capture the fact that a mission planner may

be interested in providing a fair monitoring over the

set of the targets. The issues related to the addition of

the notion of fairness to the CMOMMT model are dis-

cussed in the next two sections, while the formulation

of the new CMFMT problem, that addresses the fair-

ness limitation of the original CMOMMT problem, is

introduced in Section 3.4.

3.2 The need for a predictive model

The CMOMMT model does not assume any knowledge

about the number of targets and/or their motion pat-

terns. The robot team is somehow deployed blindly.

This is a reasonable assumption for the scenarios in

which the CMOMMT problem has been mostly framed

so far, in which the targets are considered to be mov-

ing evasively or randomly (Ding et al, 2006; Elmogy

et al, 2012; Kolling and Carpin, 2006, 2007; Parker,

2002; Parker and Emmons, 1997). In these cases, when

a robot detects a target, it tends to keep following it,

except when the robot executes stochastic exploration

moves or when a new target falls within its sensing
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range (then the robot can decide which one to keep

following). Otherwise, the robot has little incentives

to leave the currently observed target to go (blindly)

searching for a different, possibly less monitored target

to observe. In fact, the robot neither knows whether

such a target exists nor where it could be located. How-

ever, if we want to enforce a fair monitoring of all tar-

gets, a robot needs some reliable information about how

many targets are in the field, about their monitoring

status, and about where they could be intercepted in

the near future. Therefore, in this work we assume that

robots have access to such information. More precisely,

since in general targets’ motion dynamics can hardly

be known with precision, for issuing predictions we as-

sume a probabilistic knowldge. This is in the form of

Bayesian belief functions describing current and future

positions of the targets. Beliefs are based on some a

priori knowldge regarding the motion patterns of the

targets and are kept continually updated based on on-

line robot observations, as described in Section 6.

3.3 Measuring fairness

In order to quantify how fair is the monitoring per-

formed by the robot team, a number of different choices

are possible. In the following we discuss a few of them

and provide the rationale behind the specific choice that

we adopt in this paper.

The so-called max-min criterion has been employed

as a metric to measure fairness in a large number of ap-

plications including, for example, communication net-

works design (Pióro and Medhi, 2004). In the CMOMMT

scenario, this performance metric would be translated

in measuring the minimum detection rate µ(ω) among

all targets at the end of the mission: maximizing such

value would implicitly results in favoring a solution that

balances the detection rate of each target. However, the

minimum µ(ω) could be a far too pessimistic indicator

for describing the performance of a system encompass-

ing a large number of targets.

Another way of measuring fairness comes from the

observation that, if |A| < |Ω|, the optimal way of dis-

tributing the monitoring effort over the targets would

consist in a uniform allocation of the total coverage ef-

fort. That is, each target gets monitored for a fraction

|A|/|Ω| of time steps of the mission length T . Therefore,

the deviation |µ(ω)−|A|/|Ω|| could be used to measure

the fairness of coverage of target ω, upon which deriving

classical statistical indicators (average, standard devia-

tion, etc.). However, there are some cases in which the

minimization of this performance metric would fail to

capture the idea of fairness. This happens, for instance,

if some targets are moving close to each other, so that

they could fall in the sensing range of a single robot for

a number of consecutive time steps. In this case, the op-

timal way of distributing the monitoring effort should

be corrected to take into account such a group of tar-

gets. Given the uncertainty about the targets’ motion,

this would be a difficult task.

A perhaps more natural fairness performance met-

ric is the standard deviation σµ of the detection rate

µ(ω), since a low value of σµ at the end of the mission

would imply that all the targets have received a compa-

rably equal amount of observations. However, also the

minimization of this performance metric is not com-

pletely free from drawbacks since all the solutions in

which µ(ω) is the same for each target would be consid-

ered optimal. These include also the case where µ(ω) =

0, ∀ω ∈ Ω. This example also points out the need for

using a multi-objective approach, to maximize both the

fairness measure and the total amount of monitoring.

Similar considerations would hold if, for instance,

the information entropy of targets’ observations is used

instead of the standard deviation as fairness perfor-

mance metrics.

Since no fairness performance metric seems to be

free from issues, in this work, we choose to use the

standard deviation of the detection rate, for its gener-

ality and immediateness of interpretation. At the same

time, in order to avoid the issues just described above,

in the problem formulation we embed the concept of

optimizing multiple objectives and the concept of elim-

inating degenerate optimal solutions, where robots are

purposely avoiding targets in order to decrease the stan-

dard deviation of targets’ observation rates.

3.4 The CMFMT problem formalized

The Cooperative Multirobot Fair Multitarget Tracking

(CMFMT) problem can now be formalized according to

what discussed above. We take all the elements listed

in Section 3.1, and add the following:

– The number of targets |Ω| is known, and their mo-

tion in terms of future positions is known to the

robots according to some given uncertainty model.

– Another objective for the robot team consists in

minimizing the fairness σµ of the distribution of the

monitoring effort over the targets, which we define

as the standard deviation of µ(ω):

σµ =

√
1

|Ω|
∑
ω∈Ω

(µ(ω)− µ̄)
2
. (4)

A low value of σµ indicates that the monitoring

performance is quite equally distributed among the
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robots, meaning that all targets receive a compara-

bly equal amount of coverage between t = 1 and

t = T .

The resulting CMFMT optimization problem is a multi-

objective problem where the robot team should optimize

both µ̄ (maximize) and σµ (minimize). The goal is thus

to maximize the overall monitoring performed while en-

suring at the same time that all targets receive a similar

(high) amount of monitoring.

4 Optimization model

Tackling a CMFMT problem requires that the plans

for the robot team are continually updated or recom-

puted to account for the movements of both robots and

targets, as well as for the uncertainty of the robots ob-

servations about the targets. For the moment, let us

assume that a centralized entity is in charge of periodi-

cally computing a global plan using the most recent ob-

servations sent by robots on a perfect (error-free) com-

munication channel. This planning entity has access to

a probabilistic model of targets’ motion and, therefore,

is able to predict the targets’ future positions in the en-

vironment within some level of uncertainty. The aim of

this section is to describe how to compute a single team

plan: we take a “snapshot” of a generic mission scenario

and show how to obtain a new plan for the next h time

steps by means of our optimization model. We discuss

how the process is iterated over time to make planning

happening in stages, as well as the issues of practical

implementations of centralized and distributed systems

in Section 5.

We model the CMFMT problem using an ILP for-

mulation which extends the one of the Team Orien-

teering Problem (TOP) (Vansteenwegen et al, 2011), a

well known NP-hard problem. However, while the TOP

features a single problem objective, we employ the lin-

ear combination of two objectives, which are potentially

conflicting with each other. Moreover, while in classical

TOPs the agents are supposed to visit each cell only

once to collect the related reward, in our case we must

consider the possibility for robots to come back to cells

already visited. In fact, a target could walk through a

closed-loop path, or could be in a cell previously oc-

cupied by a different target. An additional difference

is that we associate a time-varying reward to each cell

based on probabilistic predictions for targets’ mobility.

A team plan is computed on a directed graph G =

(N,E) encoding the feasible movements of the robots

in the environment S according to the cell partition C:

each cell is associated to a node in N , and, in absence of

blocked cells representing obstacles, each node is con-

nected to each one of its neighbor cells — 4 (Banfi et al,

2017) or 8 (Standley and Korf, 2011) according to the

chosen multiagent path planning model — by a directed

arc in E representing a feasible move. The size of a cell

mapped to N is chosen such that the robots are able to

traverse an edge in one time step when moving at their

typical speed. A team plan is built for a temporal hori-

zon of h steps. A plan for a robot corresponds to a walk

on the graph: a sequence of h contiguous cells (including

self loops), that are assumed to be handled as waypoint

commands by a lower level navigation controller also in

charge of performing reactive collision avoidance.

As introduced in Section 3, CMFMT’s goal is to

maximize the average cumulative monitoring perfor-

mance while evenly distributing it among the targets.

We propose a planner that considers a finite planning

horizon and that uses an objective function consisting

of two terms that are defined as linear expressions and

that are related to the reference metrics µ̄ (Eq. (3)) and

σµ (Eq. (4)), respectively:

1. A monitoring term M(), that rewards the individual

robots for each target they monitor at each time

step.

2. A fairness term F (), that rewards the whole team

for the number of different targets they monitor for

enough time steps: the more different targets mon-

itored for a sufficiently long time, the higher the

reward.

The objective function of the proposed ILP will com-

bine these two objectives into a single-objective scalar

function of the form αM() + (1−α)F (). Being a linear

combination, at the optimum, the two objective values

will be located on the Pareto frontier for each value of

the parameter α (Branke et al, 2008).

The notion of “sufficiently long time” for F () is

quantified based on the information about the num-

ber of targets, |Ω|, and the fact that, in general, tar-

gets are supposed to be evenly spatially distributed: as

introduced in Section 3.3, robots are expected to mon-

itor each target for a fraction |A|/|Ω| of the total time

when distributing optimally the effort. We consider that

a target is monitored long enough if the actual frac-

tion of time steps at which it is monitored is greater

than ε|A|/|Ω|, where ε ≥ 0 sets a threshold value. The

threshold ε needs to be used to adapt the ideal model

to account for the following three issues:

– Traveling times between targets must be taken into

account: since robots cannot move instantaneously

between two locations, some fraction of the time

|A|/|Ω| will be “wasted” while traveling.

– Predictions of targets’ future positions are in gen-

eral imperfect: when searching for a currently un-
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seen target, robots may be driven by their beliefs to

a region where the target is not present.

– The typical planning horizon h is shorter than the

total mission length T : due to the growth of the

complexity of the optimization model, |A|/|Ω| must

also be adapted to match the actual number of time

steps in which targets are expected to be seen.

By rewarding the team for having different targets

monitored for sufficiently long time, we are able to avoid

the degenerate optimal solutions described in Section 3.3

from the optimal plans. In order to be able to express

the fairness objective in the ILP, the minimization of

σµ, a quadratic function, will be converted in the min-

imization of a related linear function F ().

According to what stated above, let us assume that

a centralized entity is computing a global team plan

with horizon h at a generic mission time step τ .2 In or-

der to define robots’ legal moves onG in a more rigorous

and non-redundant way, we will exploit a support graph

Ĝ = (N̂ , Ê) built as follows. The set N̂ is obtained from

the original N by removing all the vertices that cannot

be reached by any robot within the planning horizon

h, while the set Ê is given by the set of arcs belonging

to the subgraph of G induced by N̂ augmented with

all the possible self-loops. Upon the support graph Ĝ,

we define the following notation: E±(n) are the edges

entering(-)/leaving(+) node n ∈ N̂ ; Nt(a) is the subset

of nodes reachable by robot a within time t starting

from cell cτ (a); Nt is the subset of nodes reachable by

at least one robot at time t; At;n is the subset of robots

that can reach node n at time t.

We can now define the first two sets of ILP decision

variables:

– xat;ij : binary variables defined for nodes i ∈ Nt(a)

whose value is 1 if and only if (i) robot a goes from

node i to node j, with (i, j) ∈ Ê, between time steps

t and t+ 1, or (ii) robot a goes from node i to node

j = cτ (a) at t = τ +h (these last “virtual arcs” will

not be actually traveled by the robots).

– yt;n: binary variables defined for nodes n ∈ Nt equal

to the number of robots placed at node n at time

t, defined for t > τ . By defining binary variables,

we implicitly impose that robots do not share the

same cells. A non-zero yt;n variable allows the team

of robots to collect some reward if a target is visible

from n at time t.

In the following, we will use x,y to denote the sets

containing all the corresponding variables. Clearly, we

have that |x| = O(h|A||C|) and |y| = O(h|C|).

2 In the following, we will often use the index t to refer to
a generic time step in {τ, . . . , τ + h}.

Two sets of model parameters are used to guide the

robots towards the most promising targets’ locations:

– πt;n(ω): this parameter is equal to the probability

of seeing target ω from node n at time t. For t = τ ,

its value can be obtained directly from the current

belief, while for τ < t ≤ τ +h it can be obtained by

applying a prediction model on the current belief.

– rt;n: this parameter is directly proportional to the

probability of seeing any target from node n at time

t. It can be obtained by collapsing all the πt;n(ω) in

a single parameter.

In Section 6 we discuss how we use a Bayesian frame-

work to maintain an up-to-date belief about the targets’

future positions and to make predictions, and, conse-

quently, how to obtain the above parameters for any

generic time step t.

To define the last ingredient of our ILP, we introduce

two additional sets: Ωτl (a) ⊆ Ω and Ωp>0 ⊆ Ω. The

first set, Ωτl (a), is composed by those targets that are

the last observed ones by robot a at time τ (if sensing is

not perfect, it is sufficient to check that the probability

of having the target within robot a’s sensing range is

above a high threshold at τ). The second set, Ωp>0,

contains all the targets for which a non-zero observation

probability can be collected (by any robot) along the

planning horizon h. We can now define the set Ωτ ⊆ Ω
as:

Ωτ = Ωp>0 \ ∪a∈AΩτl (a). (5)

Intuitively, Ωτ represents the set of all the targets

that will be able to contribute to the optimization of

the fairness term in the objective function if observed

in the new plan. For each target ω in Ωτ , we define

µτ (ω) as its detection rate up to time τ , and introduce

a new binary variable uω taking value 1 if and only if ω

is expected to be monitored for enough time steps (at

least ε|A|/|Ωτ |) during the plan execution.

Based on all the above definitions, the two compo-

nents of the objective function are defined as follows:

M(τ, h,y) =
1− γ

1− γh
1

|A|

τ+h∑
t=τ+1

γt−τ−1
∑
n∈Nt

rt;nyt;n

 (6)

F (τ, h,u) =

∑
ω∈Ωτ (1− µτ (ω))uω∑
ω∈Ωτ (1− µτ (ω))

, (7)

where each term is normalized to have a value in [0, 1].

M(τ, h,y) and F (τ, h,u) are, respectively, the monitor-

ing performance and the fairness performance collected

between t = τ and t = τ + h. In Eq. (6), γ ∈ (0, 1)

is a discount factor that confers greater importance to

decisions happening earlier in the plan because of the
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increasing uncertainty of future events. In Eq. (7), since

plans are issued over a limited time horizon h < T , the

terms are weighted by 1 − µτ (ω) to take into account

the history and give more reward to the monitoring of

targets that have been monitored less in the past. With-

out it, when the path horizon is short, i.e., h � T , it

would not be possible to obtain an even distribution of

the monitoring performance over {1, 2, . . . , T}.
The complete ILP model for the CMFMT problem

at time τ and for a time horizon of h steps is the fol-

lowing:

maximizex,y,u αM(τ, h,y) + (1− α)F (τ, h,u) (8)

subject to∑
(i,j)∈E−(n) s.t.
i∈Nt−1(a)

xat−1;ij =
∑

(i,j)∈E+(n)

xat;ij ∀ a ∈ A,

n ∈ Nt(a),

τ < t ≤ τ + h
(9)∑

(i,j)∈E+(cτ (a))

xaτ;ij =
∑

(i,j)∈E−(cτ (a))

xaτ+h;ij = 1 ∀ a ∈ A

(10)∑
a∈At;n

∑
(i,j)∈E+(n)

xat;ij = yt;n ∀n ∈ Nt
τ < t ≤ τ + h

(11)

τ+h∑
t=τ+1

γt−τ−1
∑
n∈Nt

yt;nπt;n(ω) ≥ ε
|A|(1− γh)

|Ωτ |(1− γ)
uω ∀ω ∈ Ωτ

(12)

where α ∈ [0, 1], γ ∈ (0, 1), ε ∈ (0,∞), h ∈ {1, 2, . . . , T}
are parameters.

For each robot a, constraints (9) ensure path fea-

sibility. The robots travel along one edge at a time,

therefore, for each time step t there can be only a

single variable xat;ij set to 1 among all the possible

(a, ij) combinations (the number of these constraints is

bounded by O(h|A||C|)). Constraints (10) enforce that

a path starts at the current robot’s position and forms

a closed loop (as typically done in expressing the TOP,

see (Vansteenwegen et al, 2011)). Constraints (11) de-

fine the relationship between yt;n and xat;ij variables: the

number of robots at a node equals the number of robots

that have been traveling to it from the previous time

step (the number of these constraints is bounded by

O(h|C|)). Constraints (12), along with the maximiza-

tion of the objective function, activate the uω variables

when the corresponding target ω is receiving an ade-

quate monitoring during the current plan. The amount

of expected monitoring of a target is defined as the sum

of the probabilities of seeing target ω. Once it goes over

the assigned threshold {ε|A|(1−γh)}/{(1−γ)|Ωτ |}, the

corresponding variable uω is allowed to be 1 and in-

creases the objective in Eq. (7). Note, in the fraction on

the right-hand side of Eq. (12), the use of Ωτ instead of

Ω to accommodate the model with a planning horizon

h < T . Parameter ε regulates which fraction of the ex-

pected maximal monitoring time is needed to consider

that the target got enough attention. We account for

the uncertainty of future events by discounting future

terms with γ.

The objective function in Eq. (8) is a weighted sum

of two terms. The first term pushes the robots towards

cells that have higher probability of hosting targets.

The second term adds a reward for each newly mon-

itored target, pushing the system to evenly distribute

the monitoring effort over them. From this second term,

we exclude the additional reward for the last monitored

targets (recall Eq. (5)) for the following reason. Con-

sider a situation in which a new plan is computed at

a time τ at which a robot is in the middle of a travel

between two different targets with no “memory” of the

last monitored target: the optimal solution could push

the robot to return to the same target it was trying to

leave, thus obtaining undesired “cyclic” behaviors.

The trade-off between the two objectives should be

tuned according to the mission goal: provide a continu-

ous monitoring of the currently located targets (α→ 1),

or prefer a more exploratory strategy that could allow

to monitor more targets, equally distributing the obser-

vations among them (α→ 0).

Finally, note that a variation of the above ILP model

could in principle be able to take collision avoidance

constraints into account, but at the expenses of an in-

crease in the model complexity; see (Banfi et al, 2017;

Yu and LaValle, 2016).

5 CMFMT: System implementation

In the previous section, we have presented an optimiza-

tion model for the CMFMT problem. In order to ease

the presentation, we assumed the presence of a central-

ized entity capable of coordinating the team actions.

However, its operational model was left unspecified.

The aim of this section is to present a centralized and

a distributed architecture of a fair multitarget tracking

system making use of the ILP above, by first discussing

how, in general, plans can be operatively devised, ex-

ecuted, and iteratively adapted according to the most

recent observations.

5.1 General operational model

Regardless of the particular architecture (i.e., central-

ized or distributed), the overall operational model of
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the robot system can be described in terms of the four

high-level macro-steps depicted in Fig. 2.

Solve ILP

Follow
planned path
while making
observations

Update
beliefs

Predict
beliefs

new plan

current sensing

current beliefs

future beliefs

Fig. 2 The operational model of the robot system. Image
taken from (Banfi et al, 2015).

The first notion to introduce regards how the robots

can issue predictions about targets’ positions in order to

effectively intercept them. As pointed out in the previ-

ous sections, we assume that the robots have at hand

some probabilistic model of targets’ motions. Therefore,

based on actual targets’ observations obtained through

on-board sensors and on messages exchanged with other

robots and/or a centralized entity, each robot a ∈ A has

access to a probabilistic belief about the expected po-

sitions of all the targets.

Given that the overall CMFMT mission starts at

time 1 and ends at time T , periodically, at time steps

τ = 1, 1 + ∆, 1 + 2∆, . . ., the probabilistic knowledge

from the belief functions is used by the planner to plan

the movements of the robots for the next h ≥ ∆ steps.

Planning, therefore, happens in stages, where, at each

stage, the assigned time horizon for planning corre-

sponds to h time steps, implementing in this way a re-

ceding horizon control. While executing a plan, a robot

makes observations about the targets. These observa-

tions are used to update the beliefs about targets’ posi-

tions. In turn, the new beliefs are used to make predic-

tions about future positions of targets, which are needed

for planning. In general, in presence of errors and un-

certainty, new plans should be computed at each time

step (∆ = 1), to continuously adapt the plan to the

most recent observations made by the robots. However,

in practice, such a high replanning frequency could not

be affordable, due to, e.g., timing constraints (like when

in the time discretization of the mission a time step

corresponds only to a fraction of a second), or power-

consumption constraints. As we show in Section 7, a

high replanning frequency might not actually be needed

when in presence of moderate uncertainty. Also differ-

ent solutions, not investigated in this paper, could be

devised if needed to adapt the current plan to the most

recent observations. For instance, new plans could be

computed only each ∆ = h steps, while suitable ad hoc

behaviors would be in charge of taking over when the

computed plan shows too many discrepancies w.r.t. the

observed events.

5.2 Centralized planner

The operational mechanisms described in the previ-

ous section have been implemented first according to

a centralized computational architecture, and then a

distributed model has been derived. In the centralized

case, a single planner jointly computes the paths for

all the robots of the team. The robots share with the

planner all their observations. The planner fuses them

together to keep up-to-date an aggregated belief. For

sake of simplicity, communications between planner and

robots are assumed to be lossless and instantaneous.

Specifically, the information that robots send to the

centralized planner comprises the observations they take

at each time step t and their current locations at t.

The computation to obtain the optimal solution, or

even a solution with a few percent of ILP gap from the

optimal solution, can require a large amount of time in

large scenarios. Therefore, the centralized model mainly

serves to provide an optimal performance baseline to

evaluate distributed solutions for more realistic real-

time implementations.

5.3 Distributed independent planners

Following a top-down approach, the distributed archi-

tecture is derived directly from the centralized one, by

devising a simple yet effective distribution design of the

system. In this case, each robot maintains its own be-

lief about the targets’ positions, and plans its own path

independently. We assume that neighboring robots are

able to reliably communicate within a given communi-

cation range rc, but that no global coordination and

communication infrastructure is present.

Robots exchange information about their recent his-

tory of observations and their current path plans. More

precisely, robots receive both the information sent by

direct neighbors (i.e., those within the communication

range) and that relayed through the multi-hop network

formed by a chain of neighboring robots. Observations

are exchanged in the form of time-stamped sensor read-

ings (discussed Section 6), so that each robot can keep

up-to-date its own belief based not only on its own

observations, but also on those of its teammates, in a

transparent manner.

For what concerns planning, each robot, according

to a fixed priority, computes a plan for itself. The main

difference against the centralized approach is that each

robot uses the information about the current plan of
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other robots ā that have already computed their new

plans to fix the related variables in the ILP (i.e., their

xāijt variables become constants). Robots within com-

munication range, but that have not yet computed a

new plan, are momentarily assumed to remain still at

their current positions. In this way, the robot takes into

account future movements of robots in the surround-

ings, but it does not plan for them. This dramatically

reduces the complexity of the ILP to solve, since in each

ILP model to solve we have now that |x| = O(h|C|).
Note that this planning scheme requires that the com-

putation of new plans and their execution is synchro-

nized at each step.

The distributed model requires less communication

infrastructure and solves the ILP much faster. We com-

pare computational costs and performance of the cen-

tral and distributed architectures in Section 7, and we

empirically show that the advantages of the distributed

approach come at the expenses of only a small de-

crease in performance. This is related to the fact that,

in general, the impact of long-distance interactions is

expected to be relatively small in the considered sce-

narios (as it often happens in cooperative multiagent

pathfinding problems; see, e.g., (Silver, 2005)).

6 Update the belief about targets’ positions

In this section, we discuss the robots’ sensing model and

the Bayesian framework used for updating the belief

and predicting future targets’ positions. Without loss

of generality, we focus on the distributed case.

For each robot a ∈ A, the sensor output, zat (ω), is

represented as a binary array: for each cell in the field

of view R(ct(a)) the sensor output contains a Boolean

value indicating whether target ω was detected or not

at time t. As said, in presence of obstacles, the field

of view excludes cells that are occluded and, thus, not

visible. This sensing information is used by the robots

to continuously update their beliefs about targets’ posi-

tions. In particular, for each different target ω ∈ Ω, the

belief function b(t, c;ω) quantifies the probability that

the robot assigns to the event that ω is in cell c at time

t after having taken into account ω’s observation his-

tory from the beginning of the mission. For simplicity,

we consider a synchronous setting, where the sensing

events of each member of the team take place at the

same discrete time step t.

To consistently maintain up-to-date the targets’ be-

lief functions (also taking into account possible false

positives and/or negatives in the sensor outputs zat (ω)),

we employ standard Bayesian filtering (e.g., (Thrun

et al, 2005)). In particular, the prior about the tar-

gets’ motion is modeled as a Markov chain, where the

state transition matrix expresses the probability that a

given target will move from one cell to another during

one time step. The robots integrate such a prior with

their observations and, possibly, with those received

from their teammates currently in communication.

At each step, the robots can use the targets’ be-

lief functions to obtain the model parameters πt;n(w)

and rt;n (introduced in Section 4) as follows. At any

planning step, a robot uses its current beliefs to predict

the future positions of all targets over the time horizon

{τ + 1, . . . , τ + h} by recursively applying the targets’

motion model prior. In particular, a robot a estimates

the probability π that, if it would move to node n at

time t, target ω would fall within its field of view:

πt;n(ω) =
∑

c∈R(n)

b(t, c;ω).

Since the planner aims at selecting paths that let the

robots intercept targets, it is necessary to express how

good, in terms of optimizing system’s monitoring and

fairness performance, it would be for a robot a to be

in a specific node n at a future time t. Based on the

current beliefs, we quantify this by defining the total

expected reward rt;n that a robot would collect at node

n at time t for monitoring the targets:

rt;n =
∑
ω∈Ω

∑
c∈R(n) ρ(c, n)b(t, c;ω)∑

c∈R(n) ρ(c, n)
.

In the equation, the cells c are those that belong to the

field of view R(n) of the robot once in n. The reward

is additively computed over all these cells based on the

strength of the belief that a target would be located

in any of these cells. A sum over all the elements in

Ω is performed to account for the presence of any of

the targets. Since a robot with a realistic sensor ben-

efits by getting closer to a target, even if the target

is already visible, the weights ρ(c, n) are introduced to

reward such proximity. In practice the weights ρ are

an assigned convolution mask that depends on the dis-

tance between c and n and that increases the rewards

collected at cells close to the believed target position.

The introduction of such weights makes it possible to

avoid situations where the same target is followed by

two or more robots, since every robot except that clos-

est to the target is penalized by not following it from

the optimal position.

7 Experimental results

7.1 Experiments in simulation

In order to perform replicable tests under controlled

conditions, as well as to study the behavior of the pro-
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posed planning approach independently of any partic-

ular robotic platform, we start by evaluating the per-

formance of our multirobot system in simulation. Here,

robots and targets can move in a square gridworld of a

given number of cells at each (discrete) time step. Paths

are planned on 8-connected grid graphs.

At the start of each simulation run, we randomly

choose a different piecewise-linear closed path (having

width of a single cell) for each target to follow during

the run. Targets are initially randomly positioned along

their trajectories and move at constant speed. Robots

use target motion predictors that assign non-zero prob-

ability to contain the target to the “nominal” cell along

the target path (that is, the cell that the target would

reach when moving at its nominal speed) and to its

neighbors. In practice, this means that a convolution

along the target path with a 3-cell long convolutional

kernel is performed. Clearly, in case of perfect predic-

tion, we put probability 1 on a single cell.

All the ILP models have been solved using the GU-

ROBI solver (v.6.0.5) (Gurobi Optimization, 2014). In

order to cope with possible “difficult” models result-

ing from the centralized implementation, we consider

the models to be solved optimally with a relative MIP

gap tolerance of 3% and, in any case, after a 20 min-

utes deadline. Due to the online nature of the problem,

we argue that the performance resulting from these ap-

proximations would be in line with that obtained with

smaller gaps. We use 8 Intel Xeon e312xx processors

and 8 GB of RAM.

We start by evaluating the performance of the cen-

tralized implementation. Then, we compare the cen-

tralized implementation, the distributed implementa-

tion, the A-CMOMMT algorithm (Parker, 2002), and

the P-CMOMMT algorithm (Ding et al, 2006). The

last two strategies are both based on local force vec-

tors, but only with P-CMOMMT a robot may decide

to leave a currently observed target if the latter has

been continuously observed for too many steps. In this

sense, P-CMOMMT represents a heuristic way to intro-

duce fairness in cooperative target tracking. Finally, we

test the distributed implementation in realistic scenar-

ios with limited communication range, uncertain pre-

dictions, and the possibility of sensing affected by false

negatives, also against A-CMOMMT.

The following parameters are kept fixed in all ex-

periments: environment dimension (C is composed of 80

cells × 80 cells); target speed (1 cell/time step), number

of targets (15), robot speed (2 cells/time step), robot

sensing range (6 cells × 6 cells), robot sensing rate (1

observation/time step), planning horizon h = 10 time

steps, duration of a run T (300 time steps), number of

runs for each scenario (5), γ (0.99). The size of the en-
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Fig. 3 Monitoring µ̄ (red) and fairness σµ (blue) perfor-
mance of the centralized approach as a function of the main
ILP parameters.

vironment is about half of the one used in (Kolling and

Carpin, 2007), in order to be able to achieve a signifi-

cant planning horizon even in the centralized case; the

robot/target ratios are comparable to the majority of

the experiments reported in the literature.

Performance of the ILP planning model. We

study the effectiveness of the ILP planning model in

terms of monitoring and fairness by considering a cen-

tralized implementation and a team of 5 robots. We

assume global perfect sensing, full communication, and

perfect predictions of the targets future positions. There-

fore, we can safely set ∆ = h. Considering a balanced

setting in which α = 0.5, we examine in Fig. 3(a) the

impact of choosing different values for ε (the parameter

that controls the fraction of the time needed to consider

that the target got enough attention). We discover that

good values lie in the range between 0.1 and 1.0, since

with ε = 0.0 robots receive the fairness reward for a

target even without observing it, while larger values

impose an excessive effort for collecting such a reward.

Fixing ε to 0.3, Fig. 3(b) shows how our ILP model can

be effectively used to plan tracking missions capable of

trading off between the monitoring and the fairness per-

formance. For α = 0.0 the highest fairness is achieved,

but at the expenses of poor tracking performance. This

is due to the fact that each optimal set of paths could

prescribe to visit as many targets as possible, but pos-

sibly for a single time step, since we are completely

neglecting the optimization of the monitoring perfor-

mance. With 0.1 ≤ α < 1, instead, we see how no

solution fully dominates the other, and that the region

of values 0.5 − 1.0 seems more sensitive to parameter

changes as far as the fairness performance is concerned.

In the following experiments, we keep fixed α = 0.5

and ε = 0.3, which represent a balanced trade-off that

guarantees a fair coverage with a nearly optimal mon-

itoring performance, and that showed to perform well

in preliminary experiments also considering uncertainty

in predictions and sensing errors.
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Fig. 4 Comparison of the four algorithms (ILP-Centralized, ILP-Distributed, A-CMOMMT, P-CMOMMT) with perfect
sensing and prediction.

Centralized vs. distributed implementation.

We compare the centralized and the distributed imple-

mentations to quantify the performance loss when dis-

tributing the planning. These two strategies are com-

pared against A-CMOMMT and P-CMOMMT. Again,

we assume perfect sensing, full communication, and per-

fect prediction of targets’ future positions. Figs. 4(a)-

(b) show, respectively, the monitoring and fairness per-

formance of the four tracking strategies for a varying

number of robots. While the monitoring performance is

always close to the optimal one except for P-CMOMMT,

the fairness performance is better optimized by the lat-

ter and by our approach. This suggests that our prin-

cipled approach is more effective in trading-off between

monitoring and fairness than heuristic approaches. In

particular, the centralized planner outperforms the dis-

tributed one (according to both metrics) only for a large

number of robots. This is easily explained by observ-

ing that, with a low number of robots, the impact of

locally sub-optimal decisions is mitigated by the fact

that, in a single planning horizon, robots are expected

to display only a few conflicts on the responsibility of

optimally tracking a given target. Also, note that even

the distributed planner outperforms P-CMOMMT in

both the performance metrics (except for 13 robots).

Fig. 4(c) compares the time required by the solver to

obtain a plan when using the centralized and the dis-

tributed version of the ILP model. It is clear that the

computational cost of the distributed planner is much

lower (and manageable on real robots) than the cost

required by the centralized planner, which also shows a

very high variability. Overall, the distributed approach

performs close to the centralized one, but with a lower

computational effort.

Real-world limitations. In the final set of exper-

iments, we move to more realistic practical settings in

which the robots have to deal with limited communi-

cation ranges, uncertainty in the prediction of targets’

motion, sensing errors, and the presence of obstacles.

Recall that we specify uncertainty in terms of a 3-cells

long convolutional kernel that spreads the current prob-

ability of seeing the target along its predefined trajec-

tory. In this set of experiments, we define the kernel

to be a vector of the type 〈ν, 1 − 2ν, ν〉, where 1 − 2ν

represents the probability that the target will move in

the “nominal” cell of the corresponding motion model,

and ν represents the probability of moving in the cell

before or after the nominal one. The number of robots

is kept fixed to 5.

First, we study the effect of choosing different re-

planning times and the impact of larger communication

ranges on the performance of our distributed approach.

Fig. 5(a) shows the results obtained while varying the

replanning time ∆ while keeping fixed a medium com-

munication range (20 cells), a medium degree of uncer-

tainty (ν = 0.2), and perfect sensing. We observe that

the impact of choosing a high replanning time is modest

in the considered scenario: the monitoring performance

decreases slightly, due to the fact that robots are not

updating their plans according to their most recent ob-

servations. However, even with ∆ = 10, we can obtain

good performance. This is explained by the moderate

source of uncertainty of the current setting, combined

with perfect sensing. In Fig. 5(b)-(c) we investigate now

the impact of adopting different communication ranges

for∆ = 3 and∆ = 5, respectively (again, with ν = 0.2).

In both cases, we observe that a communication range

able to span the whole planning horizon (recall that

h = 10 with robot speed of 2 cells/time step) is enough

to ensure the best performance. Indeed, shorter commu-

nication ranges can easily lead to suboptimal solutions

where two different robots decide to go after the same

target at the last time steps of the plan. The impact

of a larger communication range, instead, is effectively

reduced by constant multi-hop information sharing. It

is clear that, compared against A-CMOMMT and P-

CMOMMT (Fig. 5(d)), our approach offers dramati-

cally better fairness performance against the former,

and moderately, but still significant, better performance

than the latter.

Then, we consider scenarios with varying uncertainty

and false negative probability in the sensing events. In
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particular, we assume perfect sensing while varying the

former, and fix ν = 0.2 while varying the latter. We fix

the communication range to 20 cells and ∆ = 3. The

results are shown in Fig. 6(a)-(c). In Fig. 6(a), we notice

that the increase in uncertainty does not have a strong

impact on any of the performance metrics for our dis-

tributed approach. While the monitoring performance

remains substantially similar, we can start to observe

a significant variation in the fairness performance only

for high values of ν (0.3,0.4). Such a good behavior of

our approach is easily explained by the combination of

multiple factors: a sufficient communication range, fre-

quent replanning, perfect sensing, and a low value for

ε (a value too high would excessively constrain robots’

paths to remain focused on searching a target in the

wrong place). Similarly, a moderate source of uncer-

tainty gives rise to a similar performance trend while

varying the probability of false negatives (see Fig. 6(b)).

In Fig. 6(c) we show the results obtained while keeping

fixed a high false negative probability (0.9) and varying

the uncertainty. This time, we observe that the tracking

performance significantly decreases for high values of ν.

Indeed, when uncertainty is high, only a sufficient sens-

ing detection rate would allow a robot that has located

a target to keep it under its sensing range.

Finally, we consider more complex environments in

which the presence of obstacles constrains robots’ move-

ments and sensing. In particular, we run experiments

with a varying number of rectangular obstacles with

size 4 × 20 cells (randomly distributed in the environ-

ment), assuming that sensing has no errors, but is lim-

ited by obstacles, and setting ν = 0.2 for the uncer-

tainty. The results for different numbers of obstacles are

shown in Fig. 6(d). We can notice that, while the mon-

itoring performance remains substantially the same, an

increasing number of obstacles negatively impacts on

the variability of the fairness performance. Since paths

are more constrained, the robots may not find any-

more convenient to leave the currently monitored tar-

get, since the planning horizon may not be large enough

to allow to collect the fairness bonus in the ILP model.

7.2 Experiments with real robots

We have set up a small-scale indoor scenario to study

the behavior of the developed distributed model under

the effect of real multi-hop communications and real

robot mobility. As robotic platform we have used the

foot-bot, a small differential drive robot (about 15 cm

wide and 20 cm high). A total of 9 foot-bots have been

placed in a test arena of 7 × 7 m2, with some of the

foot-bots playing the role of targets and others playing

the role of trackers.
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Fig. 5 Performance of the distributed approach for varying
replanning time and communication range. (a) Varying ∆,
ν = 0.2, range 20 cells; (b) Varying range, ∆ = 3, ν = 0.2;
(c) Varying range, ∆ = 5, ν = 0.2; (d) Varying range, A-
CMOMMT and P-CMOMMT. Note that the graphs in (b)-
(d) have the same scale on y-axis to ease comparison between
our distributed approach, A-CMOMMT, and P-CMOMMT.
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Fig. 6 Performance of the distributed approach under un-
certainty and sensing errors. (a) Varying uncertainty ν, per-
fect sensing; (b) Varying false negative probability, ν = 0.2;
(c) Varying uncertainty ν with high false negative probabil-
ity (0.9); (d) Varying number of obstacles, ν = 0.2, perfect
sensing (but limited by obstacles).

Since the foot-bots have minimal on-board process-

ing power, plan computation is performed at a central

desktop computer according to the distributed model



14 Banfi et al.

Fig. 7 The foot-bot robotic platform. Note the wireless in-
terface card with the signal attenuator used for experiments
with multi-hop data transmission.

described before and based on local robot data. To this

aim, each foot-bot is equipped with two radio interfaces.

An 802.11 based network operating on the 5 GHz band

allows the communication between the desktop com-

puter and the foot-bots. Each robot uses this network

to request the solution to its ILP model and to obtain

back the new plan. A second wireless interface is used as

data network, to exchange data among the robots in a

multi-hop way as described in Section 5.3. The data net-

work operates in the 2.4 GHz band and its transmission

power is artificially constrained in order to enforce the

use of multi-hop routes in the used indoor arena. To this

end, we use TL-WN722N Wi-Fi adapters with attenu-

ators attached between the adapter and their external

antennas. Setting a transmission power of 1 mW, a bit

rate of 54 Mbps, and a signal attenuator of 20dBm, the

resulting wireless transmission range is approximately

1.5 meters. This implies a maximum of about 5 hops

in the robot mobile ad hoc network. A picture of one

of the foot-bot robots used in the experiments is shown

in Fig. 7. The robots can move at a maximum speed

of 0.3 m/s. For each robot, an on-board controller en-

ables it to navigate autonomously towards any point

in the area (according to the plan) while avoiding colli-

sions (Guzzi et al, 2013). An OptiTrack motion capture

system provides the low level controllers with positional

information (the 5 GHz network is used to broadcast

robot positions).

We ran a limited set of experiments, following the

general settings of the more extensive experimental cam-

paign performed in simulation. In this case, we dis-

cretized the environment in cells of 15 × 15 cm, and

chose 5 seconds as basic time step unit. (Robot and

targets’ speeds are again set to 2 and 1 cell/step, re-

spectively.) For what concerns the motion model, com-

pared with the simulations, we had to take into account

(a) 2 robots, 5 targets (b) 3 robots, 6 targets

Fig. 8 Performance obtained in real robots experiments by
varying the α parameter.

also the source of uncertainty given by the fact that the

targets cannot be anymore expected to move along the

nominal cells of their predefined trajectory. Therefore,

motion prediction happens now in two stages. First,

we use the same three-cells long convolutional kernel

to obtain a “nominal” prediction (with ν = 0.2); then,

we “smooth” the obtained probability density function

so that a small fraction of the probability is assigned

to the neighboring cells of the nominal trajectory. For

what concerns the remaining parameters, we set h = 7

and ∆ = 4.

We considered two scenarios: in one case there are

2 trackers and 5 targets, while the other case features 6

targets and 3 trackers. Fig. 8 shows the results obtained

for both the tested configurations while varying the α

parameter of the model objective function. The results

confirm what has been observed in simulation, that our

ILP-based approach is effectively able to offer a good

trade-off between monitoring and fairness by a suitable

choice of the α parameter.

Compared to the simulation results, we observe a

higher variability in the two performance metrics, espe-

cially in the fairness one. This is explained by the fact

that, in our small-scale environment, the robots have

to deviate very frequently from the “nominal” high-

level plans computed by the ILP model, which does

not take into account low-level collision avoidance con-

straints. For the same reason, the monitoring perfor-

mance in a run with α = 1.0 can be slightly less than

the ideal one (|A|/|Ω|). In particular, we noticed that,

quite frequently, two robots might start to follow the

same target after having remained “stuck” in a partic-

ularly congested situation with the two targets that the

robots were initially trying to follow. In this case, the

first target able to leave the congestion and go back to

its original path is often able to “escape” from both the

robots’ field of view.
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8 Conclusions and future work

We presented an extension of the Cooperative Multi-

Robot Observation of Multiple Moving Targets problem

which includes the notion of fairness for monitoring the

different targets. The proposed solution for this new

problem, which we called the Cooperative Multirobot

Fair Multitarget Tracking problem, is based on the for-

mulation and use of an ILP model to iteratively plan

the robots’ paths, and has been implemented following

both a centralized and a distributed approach according

to a receding horizon model.

Simulations have shown that our model is able to

guarantee a tunable monitoring strategy (i.e., in which

robots stay focused on their current targets or exhibit

a more exploratory behavior) and to obtain a uniform

monitoring of the targets by exploiting different degrees

of knowledge of the targets’ motion patterns. With re-

spect to the centralized system, the distributed one

shows very limited reduction in performance, while it

brings significant advantages, dramatically reducing the

needs for computational and communication resources.

Moreover, our approach reaches a better balance be-

tween monitoring and fairness than heuristic approaches

from the literature. The experimental validation on real

robots confirmed the good results obtained in simula-

tion.

Since the proposed strategy is based on an ILP model,

in general we cannot expect that the (centralized) ap-

proach is able to scale to very large environments and/or

arbitrary long planning horizons. However, the distributed

version is expected to really suffer from these issues only

in “extreme” scenarios. In the perspective of supporting

scalability also in such challenging situations, as a fu-

ture research we envision the study of behavioral strate-

gies, possibly coupled with a smart partitioning of the

environment between robots. The goal will be to guar-

antee good performance with short/bounded planning

times. It would be also interesting to investigate alter-

native formulations for fair multitarget tracking based

on Partially Observable Markov Decision Processes and

to study more complex models for the behavior of the

targets and for dealing with them, for instance using

anticipatory planning (Mercier and Van Hentenryck,

2007).
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