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Volume-Of-Fluid Simulations of Oblique

Drop Impacts onto Liquid Films
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via La Masa 34, 20156 Milano, Italy

Abstract

Grid spacing dependence in three-dimensional numerical simulations of non-
normal drop impact onto thin liquid films is assessed for different impingement
angles and grid refinement levels. To describe the liquid phase dynamics, the
Navier-Stokes equations are coupled to a Volume-Of-Fluid (VOF) model. Nu-
merical simulations are performed with a modified version software OpenFOAM
over a structured grid of hexaedra. Grid adaptation is carried out using an edge
subdivision technique which results in non-conformal meshes. Grid convergence
is assessed by monitoring integral parameters describing the dynamics of the
post-impact free-surface waves. Starting from an initial grid spacing between
D/8 and D/5, with D drop diameter, a refinement level of three is found to
be sufficient to describe the diverse flow feature and to identify the splashing
regime.

Keywords: Drop impact, Two-phase flow, Dynamic adaptive grids,
Volume-Of-Fluid, OpenFOAM

1. Introduction

The evaluation of the dynamics of a liquid drop impacting onto a liquid film
of the same fluid is of paramount importance in both scientific and technical
applications, including for example chemicals production, ink jet printing and
fuel injection in combustion engines. Worthington was the first to investigate
drop splashing into liquid film in 1908 [1]. More recently, from experimental
results, Yarin and Weiss introduced a criterion to characterize normal drop
impacts and an empirical relation describing the evolution of the radius of the
crown in time [2]. Oblique drop impacts of interest here were investigated
experimentally in [7, 8].
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The numerical simulations of drop impact required the development of multi-
phase solvers capable of capturing the drop-film interaction, the occurrence
of secondary droplets and the formation of dry regions over the solid surface.
Two-dimensional or axysimmetric numerical simulations of normal drop impact
were performed in [3, 5]. Oblique drop impacts were simulated under the two-
dimensional approximation in [6]. In 1999, Rieber and Frohn were the first
to perform three-dimensional numerical computations of drop impacts whereby
the drop trajectory is normal to the film surface [4]. In 2007, Nikolopoulos and
collaborators simulated the same conditions studied by Rieber and Frohn using
an adaptive grid technique [9]. Both References [4] and [9] used a Volume-
Of-Fluid (VOF) technique to study normal drop impacts. Finally, in 2012,
Brambilla and collaborators simulated for the first time oblique drop impacts
onto liquid films in three spatial dimensions using dynamic adaptive grids [11].

The evaluation of the splashing dynamics in drop impact simulations calls
for accurate spatial and temporal integration schemes as well as a very fine
local spatial and temporal resolution to capture the liquid-gas interface. In
particular, a fine grid spacing is mandatory if secondary droplet and corona
breaking are to be correctly captured. In the present paper, the grid spacing
requirements for normal and oblique drop impact simulations are assessed in
connection to a novel dynamic adaptive grid VOF scheme implemented in the
open-source CFD solver OpenFOAM (www.openfoam.org), see Ref. [11]. Grid
convergence is monitored using the integral parameters describing the dynamics
of the post-impact free-surface waves introduced in [11].

This paper is structured as follows. In section 2 the governing equations for
the two-phase flow under scrutiny are introduced and the main feature of the
OpenFOAM solver are briefly reported. In section 3, simulations results are
discussed and a grid convergence study is presented. In section 4, final remarks
and comments are given.

2. Governing Equations and Multi-phase solver

In the present work, the Volume-Of-Fluid (VOF) method of Hirt and Nichols
[12]—a volume tracking method in which the interface is not described as a sharp
discontinuity but instead is represented by an indicator function α, namely,
the volume fraction of the dispersed phase—is used. As described in [13], in
the OpenFOAM implementation the VOF scheme is rigorously derived from
the so-called Euler-Euler approach, in which the Navier-Stokes equations are
solved for two phases, which amounts to complement the single-phase model
with an additional conservation law for the local concentration of the liquid
phase. Therefore, the gas-liquid interface is an output of the solution procedure
and its shape can be reconstructed a-posteriori by free-surface methodologies.

In each control volume, the volume fraction α varies in the interval [0, 1],
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where

α =


1 Liquid only

0 < α < 1 Liquid-gas interface

0 Gas only

(1)

The Navier-Stokes equations for incompressible flows of two immiscible fluids
in the Euler–Euler formulation read

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ · Σ + ρf +

∫
S(t)

σk′n′δ(x− x′)dS

∂α

∂t
+∇ · (αv) = 0

∇ · v = 0

(2)

where ρ is the density, v is the velocity vector, p is the pressure, f is the
acceleration due to the volume forces, Σ is the stress tensor, σ is the surface
tension coefficient, k is the surface curvature and n is the local normal. In
incompressible flows of Newtonian fluids, Σ = µ[∇⊗ v + (∇⊗ v)T], where µ is
the kinematic viscosity. According to the VOF approximation considered here,
the local values of ρ and µ in system (2) are computed as a linear combination
of the liquid and gas values as

ρ = αρL + (1− α)ρG and µ = αµL + (1− α)µG,

where the subscripts L and G indicate liquid and gas values, respectively. To
model the effects of the surface tension (last term of the first equation of system
(2)), the Continuum Surface Force (CSF) model of Brackbill et al. [14] is used.

System (2) governing the fluid motion is integrated using the solver in-
terDyMFoam included in the OpenFOAM suit, which implements the VOF
method. The solver allows to use a dynamic grid refinement technique through
the dynamicMesh utility. The refinement technique is based on the Jasak’s and
Jasak and Gosman’s h-refinement approaches [16, 17]. At each refinement step
the edge of the cell is split into two in every direction, so that eight new cells
are inserted in place of the initial cell. The cells marked for refinement are
those containing the interface, that is with a value of α between 0 and 1. The
blockMesh dictionary is used to generate the initial grid and the setFields dictio-
nary sets non-uniform initial conditions such as for the phase fraction α in this
case. The initial conditions are assigned on the unrefined grid. The modified
procedure presented in [11] is used to refine the grid across the interface before
the computation starts. In particular, the initial grid is refined using the ini-
tial solution until the maximum level of refinement is attained at the gas-liquid
interface. Then, the initial condition is re-applied in the refined mesh and the
computation starts.

The artificial compression term in the interFOAM solver is activated to re-
duce the thickness of the gas-fluid interface. A first order implicit backward
Euler scheme is used to approximate the time derivative terms, a second order
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Figure 1: Computational domain with initial and boundary conditions. The distance between
the drop center of gravity and the center of the film surface is 2.5D in all simulations.

Gaussian integration is performed to compute the spatial gradient, the Lapla-
cian and the advection terms. A linear interpolation scheme is used during
mesh adaptation. In all computations the Courant-Friederichs-Lewy number is
equal to 0.3. Courant-Friederichs-Lewy number was kept ≤ 0.3, as suggested
by OpenFOAM developers for 3D simulations, see [15].

3. Numerical simulations of oblique drop impacts

Numerical simulations of the oblique impact of a liquid drop onto a liquid
film are presented in this section. The numerical simulations cover a range of
impingement angles β from 10◦ to 90◦. In all cases under scrutiny, the Weber
number We is equal to 250, where

We =
ρdDV

2
d

σ
,

with ρd liquid density, D drop diameter, Vd drop velocity and σ surface tension.
The Ohnesorge number Oh is equal to 0.0014 in all simulations, where

Oh =
µd

ρdσD
,

with µd dynamic viscosity of the liquid. The dimensionless film thickness
H=h0/D, where h0 is the film thickness, is 0.116. The initial distance be-
tween the drop center of gravity and the center of the film surface is 2.5D in all
simulations.

The symmetry with respect to the x-y plane, where the x-axis is parallel to
the initial drop velocity and the y-axis is normal to the film surface, is enforced
to reduce the size of the computational domain. The film liquid is constrained
by three side walls and a lower wall located at y = 0, see Figure 1.

4



β [◦] Lx/D [-] ∆h/D [%]

10 17.0 1.3281
20 16.0 1.2500
30 15.0 1.1719
40 14.4 1.1250
50 12.8 1.0000
60 11.2 0.8750
80 10.4 0.8125
90 9.6 0.7500

Table 1: Domain size along the x axis parallel to the initial drop velocity and maximum
resolution ∆h/D achieved in each case, with ∆h maximum linear dimension of the elements.

Figure 2: Computed gas-liquid interface for β = 20◦ and We=250 at dimensionless time =
-0.04; 1.46; 3.46; 5.96.

In all simulations, the domain extends to 3.58D in both y and z directions to
reduce the influence of the walls. The x dimension Lx changes according to the
impingement angle, since the spatial evolution of the impact in the longitudinal
direction decreases with the increase of the impingement angle.

The initial grid is made of 46 080 elements (80×24×24). The initial resolu-
tion is D/7 in the y and z directions in all cases. In the x direction, the initial
spacing is D/5 for β ≤ 30◦, D/6 for 30◦ < β ≤ 50◦, D/7 for 50◦ < β ≤ 60◦

and D/8 for β > 80◦. The different initial resolutions of the considered grids
are within one refinement level, namely, the ratio between the finest and coarser
resolution is less than two in all cases.

To perform the grid refinement study, three different refinement levels equal
to 2, 3 and 4 are considered. The maximum resolutions for each case are reported
in Table 1. The dimensionless total time of the simulation τ = tVd/D is equal
to 10 in all cases.

Figures from 2 to 5 show the computed gas-liquid interface for four different
impingement angles with a refinement level of four. The reference dimensionless
time τ0 corresponds to the time at which the contact between the drop and the
liquid film occurs. The impact dynamics differs significantly in the considered
cases. At impingement angles less than about 40◦, the formation of a ship
prow-like structure is observed, as described by Okawa and collaborators in
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Figure 3: Computed gas-liquid interface for β = 40◦ and We=250 at dimensionless time =
-0.22; 0.78; 1.78; 3.78.

Figure 4: Computed gas-liquid interface for β = 60◦ and We=250 at dimensionless time =
-0.42; 0.58; 1.08; 2.58.

Figure 5: Computed gas-liquid interface for β = 80◦ and We=250 at dimensionless time =
0.01; 1.01; 2.51; 4.01.
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[10]. At impingement angles greater than 40◦, the formation of a crown is
observed after the impact. The crown has an asymmetric shape which tends
to become symmetric as the impingement angle increases. At 90◦, the corona
shape is mostly axisymmetric around the center of impact, apart from interface
instabilities and separating droplets.

Integral parameters were proposed in [11] to describe the evolution of the
splashing front. These are the centres of gravity of the forward and backward
portion of the corona, which are computed at each time step. The trajectories
of the centres of gravity are reported in figure 6 for all considered impact angles
and grid resolutions. The asymmetry of the crown can be appreciated in the
case of angled impact; at β = 90◦, see figure 6(h), the two curves overlap since
the corona is symmetric. The backward portion of the front is more difficult to
capture numerically because it involves a smaller fraction of the liquid and also
because front instabilities occurs earlier with respect to the forward portion.
Front instabilities, possibly resulting in front break-up and in the formation of
secondary droplet, are responsible for the non linearity of the front trajectory
observed in most conditions, see figure 6.

The trajectories of the centres of gravity of the forward and backward por-
tions of the front are considered here to assess grid convergence in drop impact
simulations. From figure 6, it is apparent that, for impingement angles lower
than 40◦, a refinement level of 2 delivers trajectories that are not in agreement
with those obtained from refinement levels 3 and 4.

The trajectory of the forward portion of the front obtained from the grid
with refinement level of 3 are almost coincident with that computed over the grid
with refinement level 4, in particular within a distance of 1.5D from the center
of impact, thus indicating that a good grid convergence is obtained already with
a refinement level of 3, as far as this integral quantity is concerned. A different
situation is observed instead for the backward portion of the front, where grid
convergence is not observed even close to the impact point. However, for impact
angles larger than 20 ◦, the considered grids agree in predicting the occurrence of
a significant deviation from the initial straight trajectory at a distance between
0.5D and 1D from the center of impact, which is related to the front instability.

Table 2 reports a comparison of the computational time associated with the
three resolutions under scrutiny. The indicated CPU time is made dimensionless
by that required to complete the normal impact simulation with a refinement
level of 2, which amounts to 7 722 s (2h 8m 42s) over 8 cores of a computer with
two six-core Xeon 2.66 GHz CPU and 32 GB RAM. Note that the computations
with a refinement level of 4 were carried out on 32 cores, thus computational
times cannot be directly compared to a refinement level of 2 and 3, which were
obtained with 8 cores. By increasing the refinement level from 2 to 3, the
computational time is increased by a factor in between 14 and 20.

Table 3 reports the maximum number of cells resulting from the application
of the adaptive procedure against that of a uniform grid with the same minimum
grid spacing, for all considered impact angles and refinement levels. In all cases
the use of adaptive grid techniques requires a number of elements that is lower
by a factor of approximately 10, 20 and 30 for a refinement level of 2, 3 and 4,
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(a) β = 10◦ (b) β = 20◦

(c) β = 30◦ (d) β = 40◦

(e) β = 50◦ (f) β = 60◦

(g) β = 80◦ (h) β = 90◦

Figure 6: Trajectory of the centre of gravity: (©) front and (4) back.
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CPU time [-]

β [◦] Ref. 2 Ref. 3 Ref. 4
(8 Cores) (8 Cores) (32 Cores)

10 0.4 7.1 134.7
20 0.4 7.7 96.2
30 0.5 8.5 111.4
40 0.8 12.5 117.4
50 0.7 16.1 117.4
60 1.1 15.5 143.1
80 0.7 11.3 133.3
90 1.0 19.0 137.0

Table 2: CPU time requested to complete the numerical simulations at each impingement
angle and refinement level. The CPU time is scaled with the value of 7722 s, which is the
time required to complete the normal impact simulation with a refinement level of 2 over 8
cores of a computer with two six-core Xeon 2.66 GHz CPU and 32 GB RAM. Note that the
computations with Ref. 4 (last column on the right hand side) were carried out on 32 cores,
thus cannot be directly compared to Ref. 2 and Ref. 3 that were obtained with 8 cores.

Grid elements (millions)

Ref. 2 Ref. 3 Ref. 4
β [◦] Adapted Uniform Adapted Uniform Adapted Uniform

10 0.26 2.98 1.19 23.81 5.76 188.01
20 0.26 2.95 1.18 23.59 5.74 188.74
30 0.27 2.90 1.23 23.78 6.35 188.01
40 0.28 2.92 1.24 23.36 6.26 188.98
50 0.31 2.95 1.35 23.59 6.62 188.74
60 0.34 2.99 1.51 23.53 7.02 188.27
80 0.35 2.97 1.51 23.77 7.09 188.63
90 0.36 2.92 1.53 23.71 7.09 188.27

Table 3: Number of computational cells at different angle of impact β. The maximum number
of elements during the simulation is reported in the column Adapted; the column labeled
Uniform reports the corresponding number of elements for an equivalent uniform grid with
the same minimum spacing.
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respectively, than that associated to a uniform grid with the same resolution.

4. Conclusions

A dynamic grid refinement method was applied to three-dimensional numer-
ical simulations of oblique drop impact on a thin liquid layer. In particular, the
computational grid was refined in the region containing the liquid-gas interface
using an edge division approach, resulting in a non-conformal grid. Three dif-
ferent refinement level were considered, resulting from a maximum of 2, 3 and
4 edge divisions, respectively. A modified version of the solver interDyMFoam
included in the OpenFOAM suit was used in all computations. The modified
solver is capable of adapting the grid to the initial conditions to minimize the
interpolation error.

Starting from an initial grid spacing between D/8 and D/5, with D drop
diameter, a refinement level of three is found to be sufficient to describe the
trajectory of the center of gravity of the forward and backward portion of the
splashing front, in both the corona or drop spreading regimes. The dynamic
mesh adaptation techniques allowed to significantly reduce the computational
time with respect to fixed-grid computations, to the point of making it feasible
to carry out the present parametric study on a relatively small computational
cluster.

Future research activities will focus on the development of a reduced order
model of oblique drop impact to be used in e.g. in-flight icing simulations over
aircraft.
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