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Abstract—Dynamically sharing network resources in a sliced
multi-tenant network can provide cost efficient solutions that are
able to guarantee specific service requirements for 5G networks
and beyond. By automatizing the negotiations between tenants
and infrastructure providers over the shared resources, it is
possible to maximize the flexibility of the network in a very
short time frame, thus increase efficiency. However, negotiating
resources in a reactive manner can bring risks to the tenants
due to traffic variations, and can also limit the gain in terms of
spectral efficiency for the infrastructure provider. In this paper,
we focus on how to exploit anticipatory strategies relying on
predicted information on users’ conditions in order to improve
the efficiency of the proposed dynamic network slicing and
trading framework. In particular, we analyze how to integrate
a prediction algorithm into our scheme and analyze the techno-
economic impacts of the anticipatory approach. Finally, we intro-
duce a novel filtering algorithm to limit the impacts of prediction
errors. Our results prove that using anticipatory strategies in
dynamic negotiations and resource allocation increases tenants’
utilities, while allows the infrastructure provider to accommodate
more requests.

I. INTRODUCTION

The saturation in the consumer market of mobile broadband
services and the decreasing profitability of network providers
make cost efficiency the dominant factor in the transition
towards the next generation wireless networks. As cost re-
duction becomes a key challenge, network operators begin
searching for alternative revenue sources. Recent findings
reveal that focusing on specialized industry segments can
boost revenues as high as to 36% [1]. On the other hand,
in order to accommodate these new markets, the available
network infrastructure has to support a multitude of vertical
applications, each one with diverse set of requirements, thus
challenging the current networks’ technical capabilities. A
relatively new idea to address heterogeneous requirements
of different services is to couple connectivity services with
storage and processing resources [2]. This naturally leads to
the logical slicing of the network resources and to optimizing
each slice individually according to the requirements of the
specific service. Therefore, by means of network slicing,
network resources can be customized to achieve the target
quality of service (QoS) per service type [3].

The possibility of vertically slicing the network resources
to accommodate services with heterogeneous requirements
can at the same time be combined with the idea of sharing

the infrastructure resources among multiple mobile virtual
operators. This way the total cost can efficiently be reduced.
Infrastructure sharing can reshape the wireless market, al-
lowing virtual mobile operators to act as tenants of network
resources, while favoring mobile operators to act as infrastruc-
ture providers [4]. In this evolving wireless market, mutual
relationships rely on well-defined service level agreements
(SLAs). This requires tenants to have a very clear understand-
ing of their resource needs as well as of the evolution of
the traffic demand within the validity period of the agreed
SLAs [5] [6]. However, a static allocation of resources to
slices cannot provide the required flexibility and efficiency
for the envisioned 5G networks and beyond. To exploit the
full potential of infrastructure sharing, dynamic network slicing
is proposed. Dynamic slicing frameworks as proposed in the
literature still require well defined SLAs (e.g. [7])) in this new
context. These frameworks thus are not able to dynamically
adapt the resource prices in order to fully use the network
resources according to the demand (e.g. [8]). Therefore, they
cannot provide the efficiency and flexibility required by a
dynamic wireless resource market. With these objectives in
mind, we proposed in [9] a dynamic slicing and resource
trading platform. In this platform, the tenants determine a set
of high-level SLA policies in line with their business strategies,
which are automatically translated into sharing parameters, to
be used for the real time resource allocation. Moreover, tenants
are able to update these high-level parameters over time.

Despite the level of autonomy and flexibility that we
achieved in [9], high-level renegotiations still occur in a
reactive manner, that results in tenants’ taking business risks,
while at the same time it limits the efficiency of resource
allocation for the infrastructure provider. Therefore, in this
work, we focus on exploiting anticipatory information [10]
during the negotiation period to maximize the efficiency of
network slicing. More specifically, we investigate how to
exploit anticipation in a dynamic network slicing framework.
We also study the techno-economic implications of negotia-
tions when the key stakeholders (i.e. tenants and infrastructure
provider) can predict their users’ upcoming achievable rates.
In the context of anticipatory network slicing, [11] tackles the
resource allocation problem using predictions on the upcoming
resource demand. However, this work relies on static SLAs,
which cannot fully exploit the flexibility and the efficiency of
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Fig. 1. Proposed negotiation and resource scheduling platform

dynamic network slicing. To the best of our knowledge, our
work is the first to focus on using anticipatory strategies with
the goal of providing both flexibility with recurring negoti-
ations within a short time frame and efficiency of dynamic
resource allocation.

The contributions of this work can be summarized as
follows.

• We analyze how to use anticipatory strategies in a real
time network slicing and trading problem,

• We propose a techno-economic model that exploits antic-
ipated information for the real-time resource scheduling
and trading,

• We design a novel filter to limit the impact of prediction
errors.

The remainder of the paper is organized as follows. The
outline of the proposed system model and the considered pre-
diction algorithms are presented in Section II. Section III in-
troduces the proposed anticipatory network slicing and trading
framework and shows how to exploit predicted information.
The numerical analysis of the proposed approach is presented
in Section IV, while Section V concludes the paper.

II. SYSTEM MODEL

Extending our previous work [9], we investigate the dy-
namic negotiation platform provided in Fig. 1. This figure
summarizes the interaction between the key stakeholders in
our model, namely an infrastructure provider, a set of tenants
(M ) and a set of users (K). We use indexes k and m

to indicate a specific user and tenant, respectively. For the
sake of simplicity, we assume that each user requires only
one service type and the total number of users |K| is dis-
tributed evenly among the tenants and shown as |Km|, where
[m2MKm = K. Following the general approach in resource
allocation literature, the time horizon, N , is discretized and
divided into time slots that are indexed with n. We assume
that each time slot n spans over a number of transmission
time intervals (TTIs) that can be determined according to the
complexity of the negotiation algorithm and the computational
capacity of the base station.

The SLAs that control the resource sharing between the
key stakeholders are modeled using three parameters, i.e.
Sm, �m and Wm. The guaranteed resource share, indicated
by Sm 2 [0, 1], is defined as the average resource share that the
tenant m receives on average. In order to exploit the dynamic
nature of the wireless environment, the maximum deviation
from SLA for a given time window length Wm is limited by
�m. Therefore, the delay constraint per tenant is indirectly

taken into account by using Wm. The tenant-specific sharing
parameters, Sm and �m, are updated at each renegotiation
interval (RI).

As shown in Fig. 1, tenants set their utility targets, Uth,
and their respective budgets, Bm. The total cost of wireless
resources is modeled as the sum of the operational costs (Cop),
capital costs (Cca) and the pressure cost (Cpre). Pressure cost
is used to ensure efficient resource usage and to provide extra
revenue for the infrastructure provider to expand the network
capacity where congestion is often experienced. More specifi-
cally, in line with any demand-based market, the pressure cost
scales the unit cost according to the instantaneous demand; if
there are insufficient resources to satisfy all the users, pressure
cost becomes greater than zero, making it more expensive
to buy resources. Otherwise, if there are sufficient resources
to satisfy all the users, it will be equal to zero. Thus, the
accumulated pressure cost measures the cost of necessary
additional capacity to fully satisfy all the users.

Based on the decided sharing parameters per tenant and
the achievable rate of each user k, i.e. rk[n], the real time
scheduler assigns resources to each user k, i.e. xk[n]. The
actual achieved rate of k at any time slot n is evaluated as
rk[n]xk[n] and is used to calculate the utility of each user
Uk[n]. We assumed that each user has an equivalent weight
in the tenant’s utility target, meaning that the total achieved
utility of the tenant is

P
k2Km

Uk[n]
Km

.

A. Anticipatory strategies
In the proposed system model, we assume that the pa-

rameters that are anticipated (i.e. predicted) by the tenants
are the achievable rates of users. Therefore, our framework
optimizes the network parameters in response to the network
conditions. Furthermore, the negotiation algorithm runs in
real-time, thus, the prediction algorithm is also required to
make predictions within the same time frame. When selecting
a suitable prediction algorithm for a real time system, the
primary focus shall be on its computational complexity. The
second factor to be taken into account is prediction accuracy.
For this reason, we have selected two well-known prediction
methods that are proved to be able to reach high prediction
accuracy at the cost of reasonable computational complexity.
Those are the Auto-Regressive Integrated Moving Average
(ARIMA) and Feed Forward Neural Networks (FFNN)1.

1) ARIMA: ARIMA is widely applied for time series
prediction, due to its low complexity and high performance.
Unlike most of the deep learning mechanisms (e.g. [12]),
ARIMA does not require a long history of the observed func-
tion [13]. With a relatively small set of samples, it sets a few
parameters that model the function behavior and anticipates
possible future values. ARIMA contains five major parameters,
namely, the prediction window Wp, the learning window Wl,
the number of auto-regressive terms p, the number of non-
seasonal differences d and the number of moving average

1Note that the proposed framework could also work with different predic-
tion schemes.

PREPRINT VERSION



min
xk[n],Sm,�m

X

m2M

⇠m[n] (1a)

s.t. Uth,m �
X

k2Km

Uk(Rk[n])  ⇠m, 8m 2 M, (1b)

✏m[n] =

 
1

(am + 1)

nX

i=n�am

X

k2Km

xk[i]

!
� Sm, 8m 2 M,

(1c)
|✏m[n]|  �m, 8m 2 M, 8n 2 N, (1d)

nX

i=n�am

(Sm(Cca + Cop) + ✏m[i]Cop + fpre(Cpre, ⇠m))

 Bm(am + 1), 8m 2 M,

(1e)

0  �m  1

am + 1

nX

i=n�am

X

k2Km,elastic

xk[i], 8m 2 M,

(1f)
X

k2K

xk[n]  1, xk[n] � 0, 8k 2 K, (1g)

X

m2M

Sm  1 , Sm � 0, 8m 2 M, (1h)

terms q. At first, the algorithm, taken the past observations
over Wl, estimates the correlation between the past and current
time slots and finds the optimal set of (p, d, q) parameters. Af-
terwards, the algorithm, using the ARIMA parameters (p, d, q)
found, predicts the future values of the series over Wp.

2) FFNN: FFNN is widely applied due to its high precision
and capability to approximate complex functions [10]. Unlike
ARIMA, FFNN requires a relatively long learning period,
during which it learns the correlation among the samples and
updates the weights of the neural network accordingly. FFNN
is defined using five major parameters, namely, the learning
window (Wl), prediction window (Wp), the number of nodes
in the hidden layer (DN ), the number of hidden layers (H) and
finally the number of delays (E). In our implementation, each
observed rk[n] 8k 2 K is fed to one node. Thus, DN also
indicates the number of past samples that are used to predict
the future values. Note that the prediction of the FFNN is
based on a sliding window. More specifically, using previous
DN samples, the algorithm predicts DN + 1th values. After
feeding the predicted values as an input, it predicts DN + 2th

values. This continues until it reaches DN +Wp.

III. ANTICIPATORY RESOURCE SCHEDULING

A. Mathematical programming formulation
To model the anticipatory resource scheduling problem, we

propose a mathematical programming formulation as in (1a)-
(1h). The model distributes the network resources in real time,
while enables a market-driven pricing mechanism according to
the QoS requirements of services, achievable rates of the users,
tenants’ budgets and utility goals. The continuous objective

function (1a) minimizes the total gap of the tenants ⇠m,
thus maximizes the resource efficiency. The gap is defined
according to constraint (1b) as the difference between the
tenant’s expected utility Uth,m and the actual achieved utility,
Uk(Rk[n]). The tenants’ utility function can be defined accord-
ing to the specific service type and requirements. In general,
we assume that it is a function of the average achieved rate.
Namely, at any time slot n, we evaluate the average achieved
rate over a time window am+1, where am ⌘ n�1 mod Wm.
Formally, the average achieved rate over such time window is

Rk[n] =
1

(1 + am)

✓ nX

i=n�am

xk[i]rk[i]

◆
. (2)

The maximum instantaneous deviation per tenant m at time
slot n, ✏m[n], is defined in (1c) and is constrained to be
less than or equal to �m in (1d). Constraint (1e) binds the
economical aspects of sharing to the scheduling decisions.
Namely, the left-hand side of Equation (1e) evaluates the
total cost for a tenant as the sum of capital expenditures
(CapEx), operational expenditures (OpEx), and pressure cost.
The first expression, i.e. Sm(CCa +COp), reflects the fact that
tenants are required to pay both CapEx and OpEx according
to their resource shares in the network. On the other hand,
flexibility is provided by the second expression, i.e. ✏m[i]Cop,
that is scaled according to the tenants’ actual resource usage.
More specifically, this expression indicates that the tenants
are only obliged to pay OpEx for the resources that are
obtained from the resource pool. Consequently, it gives an
economic incentive to share resources rather than to have
exclusive ownership. The third expression, i.e. fpre(Cpre, ⇠m),
is the pressure cost. By definition, the pressure cost is a means
for the infrastructure provider to regulate the resource price.
In this paper, we assume that the infrastructure provider has
no profit targets, but reinvests all the obtained revenue for
network expansion. Therefore, the pressure cost is modeled
as the product of the tenant’s gap and the unit pressure cost,
i.e. ⇠mCpre. Note that since ⇠m is actually a variable of our
problem, but the pressure cost is not, we assume that the
average gap of the previous renegotiation interval is used to
evaluate the pressure cost for the next interval. The right-hand
side of Equation (1e) is the budget of tenant m, Bm, defined
per time slot. Therefore, by multiplying it by the time window
length, am+1, and summing up the total costs on the left-hand
side, the constraint allows tenants to utilize the unused budget
from the previous time slots in the next time slots, within the
same time window.

The upper bound for �m is set to be the total amount of
assigned resources to the elastic services (cf. (1f)), implying
that tenants are not willing to trade resources assigned to non-
elastic services2. Constraints (1g) and (1h) impose the total
assigned resources and the total resource shares, respectively,
to be less than or equal to the available ones.

2As explained in Section IV-A, by elastic services we refer to services
without strict requirements on throughput, in contrast to inelastic services.
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B. Exploiting the prediction data
In Section II-A, we clarified that the main objective of

this work is not to introduce a new prediction algorithm,
but to analyze how to exploit anticipatory information with
recurring negotiations within a short time frame to increase the
resource usage efficiency. Therefore, for the sake of generality,
in this section we assume the prediction algorithm to be a
“black box”, while we focus on how to exploit the predicted
information.

One way to do this is to directly incorporate the predicted
information into the proposed model (1a)-(1h), and assign
the predicted resource allocations that minimize the objective
function. However, this approach, which would perfectly work
with perfect (i.e. error-free) prediction, is not robust to errors,
which have direct impact on the slice configuration. Therefore,
since guaranteeing high prediction accuracy in real time is
quite challenging, we tackle the problem by splitting our
original formulation into two subproblems, namely to P1 and
P2, as in our previous work [9]. However, our aim with the
two-step algorithm in this case is different from what we had
in [9]. In this work, we aim to achieve robustness against
prediction errors.

Formally, P2 is defined by the complete mathematical model
as in (1a)-(1h), and the predicted data is used to determine the
predicted minimum gap, ⇠pre

m , sharing parameters, Spre
m , �pre

m ,
and resource distribution among users, xpre

k . In case of perfect
prediction, xpre

k is the optimum resource distribution, while ⇠
pre
m

is the minimum achievable gap in the given network.
To limit the effects of prediction errors, the update process

of the sharing parameters is built on the following weighted
approach. At the beginning of each renegotiation interval, the
sharing parameters of the tenants are updated using a scaling
coefficient ↵m, as follows:

S
new
m = (1� ↵m)Spre

m + ↵mS
old
m , (3)

�new
m = (1� ↵m)�pre

m + ↵m�old
, (4)

where ↵m is defined as:

↵m =
|⇠m � ⇠

pre
m |

⇠m + ⇠
pre
m

. (5)

In case of perfect prediction, the achieved gap is equal to the
predicted gap (⇠m = ⇠

pre
m ), pushing ↵m to zero. In this case,

the sharing parameters are set to be equal to the predicted
sharing parameters. On the other hand, if the predicted values
are far from the real ones, the measured gap is higher than the
predicted gap (⇠m >> ⇠

pre
m ), pushing ↵m to one. In this case,

the prediction is assumed not to be reliable and the predicted
sharing parameters are not considered in the updating process,
thus the scheduler maintains the previous sharing parameters3.

Consequently, P1 receives ⇠
pre
m , x

pre
k , S

new
m , �new

m and r
pre
k

as input from P2 and using (1a), (1b), (1c), (1d), (1e) and
(1g), determines the real time resource allocations (xk[n])

3Note that the evaluation of the accuracy of the prediction is done a
posteriori, and the information is then used to update the parameters of the
next renegotiation interval.

according to the actual achievable rates per time slot (rk[n]).
The predicted resource distribution x

pre
k is used as an upper-

bound to the real time resource scheduling, i.e.

x
pre
k � xk[n]. (6)

In this way, the real time scheduler can make small ad-
justments on the resource allocations, by taking into account
possible prediction errors.

C. Active filtering
The proposed two-step algorithm is designed to cope with

prediction errors, which can however limit the achieved per-
formance. In particular, when prediction accuracy is low,
Equation (6) can prevent some users from obtaining resources,
while forcing the scheduler to assign resources to others. Thus,
in this section, a simple, yet efficient filter is proposed to
limit the impacts of prediction errors, while exploiting the
anticipatory information of users’ future achievable rates.

The proposed filter is defined as

F (xpre
k [n], Ek[n]) = x

pre
k [n] +

Ek[n]

1 + e�a1,k(Ek[n]�a2,k)
(7)

where x
pre
k [n] is the calculated optimum resources for the

predicted rates, Ek[n] is the prediction error, a1,k and a2,k

are filter parameters. In order to calculate the prediction
error, we used the Euclidean distance between the predicted
achievable rate and the measured achievable rate, i.e. Ek[n] =
|rpre

k [n] � rk[n]|. Note that in case of perfect prediction, the
output of the proposed filter mechanism is equal to x

pre
k [n].

The filter’s sensitivity to the prediction errors depends
on a1,k and a2,k. Since the effect of prediction errors on
resource distribution is influenced by the traffic mix and the
network state, a1,k and a2,k are chosen to be dynamic. More
specifically, these values are calculated as

a1,k = µn2Wm(Ek), (8)

a2,k =
10

�n2Wm(Ek)
, (9)

where µ and � represent the average and the standard deviation
of the error, respectively. These parameters are updated at the
end of every RI based on the prediction errors observed during
the entire RI .

The output of the filter function F (xpre
k [n], Ek[n]) sets an

upper limit to the assignable resources in P1, namely,

F (xpre
k [n], Ek[n],�k[n]) � xk[n]. (10)

Depending on the prediction error Ek[n], the assignable re-
sources vary within x

pre
k [n]  xk[n]  1.

IV. SIMULATION RESULTS

We consider a single base station with a coverage radius of
500 m. |K| = 12 users share the downlink of this base station
and are distributed uniformly within the coverage area. Users
are assigned to |M | = 3 tenants evenly, hence |Km| = 4. The
presented results are averaged over 50 independent instances
and each of these instances covers a simulation horizon of
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Fig. 2. Generic utility function (left) and exemplary utilities (right)

5000 TTIs, i.e. N = 5000 TTIs. Moreover, the simulation
horizon is discretized into time slots with a length of 1 TTI.

The simulations are run by using Matlab 2017a, while the
proposed mathematical formulation is solved by the Gurobi
solver [14]. Users are assumed to move along a straight
line towards a random direction and with a walking speed
v = 1.5 m/s. The users’ achievable rate is calculated using the
Shannon-Hartley theorem, i.e. rk[n] = log 2(1 + SINRk[n]).
For each user k, the SINR is calculated under constant
transmission power, PTx, and constant inter-cell interference,
I0, using the equation SINRk[n] = |hk[n]|2PTxd

�↵
k /�

2+I0,
where dk indicates the distance of user k, ↵ is the path loss
exponent and �

2 is the sum of the thermal noise. Moreover, a
frequency-flat fading channel with Rayleigh coefficients, i.e.
hk[n], is assumed to be between the user and the base station.
The maximum Doppler spread is calculated using Fd = vfc/c,
where fc indicates the carrier frequency of 2 GHz, c is the
speed of light and v is the walking speed.

A. Utility functions
The utility of each user is evaluated according to the

average achieved rate within the considered time window. In
order to model the utility, we designed a piece-wise linear
function (cf. Fig. 2(a)) that is defined by six parameters,
i.e. R1, R2, R3, U1, U2 and U3. We opt for such utility
functions for the sake of mathematical tractability, however,
the proposed anticipatory slicing framework can use more
complicated utility functions.

In the proposed utility function, when the actual achieved
rate is smaller than the minimum rate requirement, R1, we
assume the service not to be active and the achieved utility
value is U1  0. R2 is set to be the minimum rate for the
service to receive standard quality and corresponds to the
utility value U2. The region between R1 � R2 is designed
to have a steep slope due to the user’s sensitivity to changes
in the achieved rate, thus to QoS. Finally, R3 indicates the
achieved rate that produces the maximum utility, U3. Note
that any further increase in the achieved rate after R3 does
not affect the utility.

Similar to our previous work, [9], the heterogeneity in
envisioned 5G services is captured by considering four major
service types, i.e. elastic services, inelastic services, machine
to machine services (M2M) and background services. The
service types and their utility functions are designed as given

TABLE I
COMPARISON BETWEEN ARIMA AND FFNN IN TERMS OF ACCURACY

LEVELS AND TIME COMPLEXITIES

ARIMA FFNN
Time complexity for training process (sec) 0.428 75.03

Time complexity for prediction process (sec) 0.722 0.598
Prediction error for |WP | = 10ms (MAPE) 7.61 % 7.14 %
Prediction error for |WP | = 50ms (MAPE) 160.8 % 216.8 %

Adaptability to varying time conditions Yes No

in Fig. 2(b). Namely, elastic services do not have strict delay
or rate constraints, thus R1 = 0, U1 = 0. Moreover, it is
assumed that they do not have any upper bound on their rate
expectations, meaning R3 ! 1. Inelastic and M2M services
are modeled according to the three regions defined by R1, R2

and R3, and U1 is assumed to be lower than zero (which
means that not fulfilling these service requirements decreases
the total utility). For M2M services, it is assumed that each
piece-wise linear region captures a different type of device
group, namely, emergency, low-rate-delay-sensitive and rate
sensitive. Finally, background services are assumed to need a
very low rate. The utility achieved is mapped directly to U3

when such requirement is satisfied, consequently, R2 = R3

and U1 = 0.

B. Comparison between different prediction methods

The applicability of the considered anticipation techniques,
i.e. ARIMA and FFNN, is investigated both in terms of
prediction accuracy and time complexity. The time complexity
of each algorithm is collected from a commercially available
computer equipped with i7-4510U CPU and 16 GB RAM.
Following the general approach in literature, the total time to
run the prediction algorithms is divided into two parts, i.e. the
training time and the prediction time (cf. Table I). The training
time is the required time for the respective prediction method
to build a mathematical model in order to perform predictions.
On the other hand, the prediction time is composed of the
total time spent on making the prediction for the upcoming
renegotiation interval.

In order to evaluate the accuracy of the prediction algo-
rithm, we used the well-known mean average percentage error
(MAPE) and the mean square error (MSE), evaluated as

MAPE(%) =
100

N ⇥ |K|
X

k2K

X

n2N

|rpre
k [n]� rk[n]|

rk[n]
, (11)

MSE =
1

N ⇥ |K|
X

k2K

X

n2N

(rpre
k [n]� rk[n])

2
. (12)

Table I shows that FFNN has a higher prediction accuracy
(in terms of MAPE) for a shorter prediction horizon, while
ARIMA is more successful for longer WP . Moreover, ARIMA
can self-adapt to the changing conditions over time, such
as users’ position or speed, whereas, FFNN requires to be
retrained in order to maintain its prediction performance.
Consequently, we conclude that ARIMA is more suitable for
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TABLE II
PREDICTION ACCURACY FOR DIFFERENT VALUES OF WP AND WL

Scenario (WP ,WL) MAPE (%) MSE
(10,10) 7.61 0.101
(10,50) 7.34 2.14
(10,90) 12.81 0.69
(25,25) 76.64 1.10
(25,50) 29.86 0.84
(25,75) 28.30 0.77
(50,50) 165.9 3.70

our problem and for the remainder of the paper, we only used
ARIMA as prediction technique.

Table II outlines the accuracy of ARIMA for different WP

and WL values. Note that in the given simulation scenario, the
correlation window of the achievable rates is 100 TTIs, thus,
the analysis is limited to the WP  100 TTIs. The results
underline the importance of WL as it has direct effect on
both MAPE and MSE. Despite the usual approach of choosing
WP +WL = 100 TTIs (i.e. the correlation window), our anal-
ysis showed that for smaller WP , having a relatively too big
WL results in an overfitting problem and drastically decreases
the accuracy. Moreover the first two rows in Table II have
similar MAPE values, while they show a clear difference in
terms of MSE. Due to the square of the prediction error in (12),
bigger prediction errors are more visible in (12) with respect
to (11), meaning that if two scenarios have identical MAPE
values, in the one with the smaller MSE, the prediction errors
are more uniformly distributed. Our simulations show that the
proposed model performs approximately 3% better when using
|WL| = 50 compared to the case where |WL| = 10, despite
the huge difference in terms of MSE. This also implies that
the average error has greater impact on our algorithm than
instantaneous errors.

C. Robustness to the prediction errors

Fig. 3 reports the average total utility over all the users
for |M | = 2, for different prediction horizons and for three
different prediction approaches, i.e. no prediction, prediction
without filter (i.e. ‘no filter’) and with filter. In the scenario
without prediction, the reactive model presented in [9] is
implemented. We observe that, regardless of the length of the
prediction horizon, the application of the proposed filter is
proven to improve the performance (in terms of average total
utility) with respect to both ‘no prediction’ and ‘no filter’.
Moreover, increasing the prediction horizon (and the RI)
decreases the prediction accuracy for the ‘no filter’ scenario,
which results in lower average achieved utility. Furthermore,
we can also observe from Fig. 3, that for both the ‘no predic-
tion’ and ‘with filter’ scenarios, an increase in the total average
utility is achieved while increasing the length of RI . This
increase indicates that the proposed filter mechanism can filter
out the negative effects of low prediction accuracy and exploits
the accurate anticipatory information. Moreover, from Fig. 3
we can note that the difference among the achieved utilities
for the three scenarios is small for shorter prediction horizons.
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Fig. 3. Comparison of the average achieved utility for different WP lengths
and different scenarios, i.e. no prediction (blue bar marked with “ ? ”), no
filter (orange bar marked with “ + ”) and application of filter (yellow bar
marked with “ † ”)
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|M | for a constant network capacity

This is due to the fact that with smaller |RI| the advantages of
the prediction are less evident, since the negotiation platform
behaves similarly to a real time negotiation algorithm (‘no
prediction’). As a matter of fact, in case RI = 1 TTI the
two algorithms (i.e. with and without prediction) are identical,
since the resource negotiations are done every time slot.

Fig. 4 shows the effects of increasing |M | (and proportion-
ally |K|) on the average achieved utility for the ‘no prediction’
and ‘with filter’ cases. In this case, RI = WP = 25 TTI
and WL = 75 TTI. In this scenario, each tenant serves
|Km| = 4 users, thus, the increase in |M | corresponds
also to an increase in the network congestion. The results
show that the advantages of prediction fade as the network
becomes more congested, due to the increase in the non-elastic
users. Therefore, to exploit the full potential of prediction, the
network capacity should be expanded accordingly to the traffic
increase.

D. Business implications of anticipation

To analyze the economical impacts of anticipatory network
slicing on the envisioned market model, we propose a com-
parison in terms of the tenants’ willingness to accept a given
service quality Uk for a given price p, using the following
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TABLE III
EVALUATION OF EQ. (13) WHEN INCREASING THE NUMBER OF TENANTS

WHEN CAPACITY IS FIXED WITHOUT PREDICTION

|M1| ! |M2|
�Uk,M1
Uk,M2

�µ � pM1
pM2

�✏ Status

2 ! 3 1.1598 3.1820 YES
3 ! 4 1.1736 1.6810 YES
4 ! 5 1.1901 1.1802 NO

TABLE IV
EVALUATION OF EQ. (13) WHEN INCREASING THE NUMBER OF TENANTS

WHEN CAPACITY IS FIXEDWITH FILTER

|M1| ! |M2|
�Uk,M1
Uk,M2

�µ � pM1
pM2

�✏ Status

2 ! 3 1.2555 2.7378 YES
3 ! 4 1.2247 1.6242 YES
4 ! 5 1.1815 1.2001 YES

service acceptance inequality, presented in [9], i.e.
✓
Uk,M1

Uk,M2

◆µ


✓
pM1

pM2

◆�

. (13)

Tenants are assumed to accept a given service for a given
price if (13) holds. Otherwise, it is assumed that the tenants
are not willing to accept the price for the given service, and
consequently leave the proposed sharing framework. Table III
and Table IV show a comparison between the cases with
and without prediction, when WP = 25 TTI. We use ‘YES’
to indicate the case where (13) holds, and ‘NO’ for the
cases where it does not. By comparing the two tables, one
can observe that the application of anticipatory techniques
increases the resource efficiency, allowing tenants to achieve
higher average utilities with relatively lower costs. As a matter
of fact, we can observe that, when exploiting a prediction,
the tenants accept the price and enter the market in all
cases, whereas without a prediction it decreases to two cases
out of three. We can conclude that introducing anticipatory
information not only improves performance and efficiency in
the resource usage, but indirectly increases the market size,
i.e. the number of stakeholders involved, as the infrastructure
provider is able to serve a larger number of tenants, while
using the same infrastructure.

V. CONCLUSION

In this paper, we explored how we can enhance the effi-
ciency of dynamic network slicing by integrating anticipated
users’ channel conditions into recurring and frequent negotia-
tions between the tenants and the infrastructure providers. To
minimize the impact of inaccurate predictions, we proposed a
two-step approach and a novel filtering scheme and showed
their effectiveness with simulations. Moreover, numerical re-
sults have pointed out the importance of capacity expansion

in order to exploit the full potential of anticipatory network
slicing. Finally, our analysis has shown that the increased
resource efficiency achieved by exploiting prediction allows
the infrastructure provider to serve more tenants, while using
the same infrastructure.
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