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1. INTRODUCTION

Discontinuous and multistage processes were and are often
still managed by means of traditional and heuristic recipes,
conventional control loops, and/or manual operations. This is
mainly due to their batch nature that requires frequent manual
interventions, that is, to switch from operating to off conditions
and to enable/disable cooling and heating operations or loading/
unloading procedures. Moreover, the adopted conventional
control methodology is often only partially effective to handle the
set-point changes defined by batch production recipes and
typical semibatch operation uncertainties.
For these reasons, many authors focused on batch processes to

find efficient solutions to make them more automatic and better
controlled. Most of the times model-based control techniques
(proposed for the first time in ref 1) have been used with the aim
of improving safety and optimizing intrinsically batch
operations.2−8 Several authors have also shown the potential
for applying the dynamic optimization to batch systems,9−11

studying in detail even the most appropriate control method-
ology to be selected and employed.12,13 Moreover, both for
optimal control and dynamic optimization, the best ways to
perfom the process modeling have also been addressed.14

Nevertheless, the dynamic optimization is generally applied to
real batch systems only offline so it has several similarities to the
traditional recipe. Actually, although optimized, the set-point
profiles are calculated a priori and are usually applied to the batch
process offline. As a consequence, possible uncertainties or
condition changes are not handled during the operations,
reducing in practice the benefits of the procedure. This problem
is dramatically emphasized with long batch operations such as
fermentations or chemical vapor depositions, for example, the
Siemens process for polysilicon production that requires several
days of batch operation.15 The main reasons why the dynamic
optimization is rarely applied online may be identified as (i) the
need for a sufficiently detailed but low-computational demanding
process model; (ii) the complexity in the tuning of the control
system; and (iii) the possible fluctuations, in the process

variables, that may arise due to the interaction between the
optimization and the process control layers.
To reduce the importance of some of the above-mentioned

issues, the economic model predictive control has been
proposed. Here the economic objective function of the dynamic
optimization replaces the standard quadratic function employed
in the model predictive control.16,17 Some recent advances in this
economic optimal control field include a Lyapunov-based
economic model predictive control scheme for continuous
processes where the objective function is made explicitly time-
dependent in its economic weights.18 Moreover, a linear optimal
control methodology, where supply chain and scheduling-based ob-
jective functions are adopted, has also been studied in refs 19 and 20.
However, these advanced model predictive control methods have
been applied to batch systems in very few cases so far.
Therefore, it can be useful to investigate advanced model-

based optimization and control methods, specifically designed
for batch systems. The current paper is based on this topic.
Indeed, a novel, model-based optimization and control method
for batch and semibatch systems, the batch simultaneous model-
based optimization and control (BSMBO&C), is proposed. This
method allows both optimization and control of a discontinuous
process in real-time by means of any user-defined performance
indicator. A performance indicator is any mathematical function
that is able to properly quantify the profitability of the process
(not only economic or quadratic functions). In addition, the
proposed strategy considers both the batch process manipulated
variables and the batch cycle duration as degrees of freedom, which
can be changed in order to take the controlled system to the highest
profitability. This provides better efficiency and flexibility compared
to the one guaranteed by the standard dynamic optimization and
optimal control strategies, proposed in literature. Indeed, in the
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standard approaches the cycle duration is typically fixed and
assigned a priori. Finally, the proposed methodology is designed to
work online so it is perfectly able to handle possible perturbation
changes that may occur during the batch cycle execution. The effect
of each perturbation change can be either minimized, if negative, or
maximized, if positive.
In terms of layout the paper is organized as follows: (i) the

proposed algorithm description is provided; (ii) the implemen-
tation logics, essential to convert the method into a C++ tool,
are conveyed; (iii) two test cases, used to prove the method
effectiveness and flexibility and to compare its performance to
that of the most common existing alternatives, are reported.

2. THE BSMBO&C ALGORITHM

The BSMBO&C algorithm derives from a coupling, a general-
ization, and an extension of nonlinear model predictive control
(NMPC) strategies and dynamic real-time optimization
(DRTO) techniques. It is specifically designed to be applied to
discontinuous systems, and its aim is to provide both an online
optimization and a process control at the same time. Inside it,
the manipulated variable time-variant profiles and the batch
operational time as well are simultaneously calculated by means
of an optimization procedure, whose objective function is generic
and completely customizable. Most of the times it is reasonable
to define this objective function as an economic indicator for the
controlled process but this is not mandatory at all. For instance,
the objective function might also be a measure of the process
environmental impact or an assessment of the produced amount
of a certain product (i.e., yield, conversion, recovery) and so on.
Moreover, the objective function can also be expressed in such a
way that both online scheduling and pseudo-scheduling
problems can be dealt with (further information on this topic
is provided in section 2.2). Therefore, the BSMBO&C can be
also considered as a significant improvement, limited to batch
and semibatch systems, of a standard economic model predictive
control (EMPC) strategy. Indeed, the batch cycle duration
is added to the optimization and control problem degrees of
freedom and the optimization problem objective function
becomes completely customizable (even online scheduling and
pseudo-scheduling problems can be solved).
To introduce the mathematical formulation of BSMBO&C

scheme, let d, m, and w be the vectors of the perturbations, the
manipulated variables, and the dependent variables of a batch
process, respectively. Therefore, the process model can be
written as
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where IM is a diagonal matrix that can be either nonsingular, that
is, the process model is an ODE system, or singular, that is, the
process model is a DAE system. Once an initialization procedure,
which is needed to set the user-defined settings and the con-
trolled system initial condition, is completed, the proposed
BSMBO&C methodology turns out to be based on the iterative
application of a basic step. This step, constituted by several sub-
steps, is continuously performed until a termination condition is
fulfilled. The basic step is realized in this way:
I. An initial number of control intervals (NCI) along with the

standard width of each interval (ΔtCI0 ) is defined, or inherited
from the previous basic step, for each manipulated variable.

II. Starting from a certain time instant (t*), where the process
operating condition (i.e., d, m, and w values) is known, the
optimal manipulated variable profiles (mopt) and the optimal
residual batch operational time (ΔtBCopt) are estimated through an
optimization procedure (see section 2.2 for further details); in
performing this optimization the manipulated variable trajecto-
ries are approximated via piece-wise constant functions.
III. The optimal trends of the manipulated variables (moptt ϵ

[t*,t* + ΔtCM]) are implemented to the controlled system for a
limited BSMBO&C algorithm-defined time interval (ΔtCM) and
the response to the control action is measured and stored for
future use.
IV. The initial time value for the next basic step (tnew* ) is

evaluated by simply shifting t* of ΔtCM units of time and the
number of control intervals is updated (some details on the
update logic used for NCI can be found in section 2.1).
The algorithm stop condition is satisfied when all the manipulated

variables own a single control interval (NCI = 1) and the optimal
residual batch operational time (ΔtBCopt) is lower than or equal to the
minimum control interval standard width (ΔtCI,MIN

0 ).
To further clarify how BSMBO&C algorithm works, a block

diagram is provided in Figure 1. In that diagram the whole basic

step and all the related substeps are explained by means of logic
blocks. In detail (i) the oval-shaped blocks identify the substeps;
(ii) the rectangular-shaped blocks represent either the user-defined
data for the method initialization or the results coming from
the substeps execution; (iii) the only rhomboidal block is used to
symbolize the generic discontinuous system to be controlled.
The brief description of BSMBO&C methodology, reported

in the current section, conveys the idea that this method is
both an optimization tool and a control tool at the same time. It
also suggests that the BSMBO&C is definitely able to drive a
discontinuous process to profitable operating conditions and to
handle random perturbations entering the controlled system,

Figure 1. BSMBO&C algorithm block diagram.
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providing just-in-time optimal reactions and corrections.Moreover,
the BSMBO&C novel capability of simultaneously managing both
the time level and the manipulated variables level and the chance of
using a completely generic and customizable objective function,
make it very effective and flexible.
2.1. The Management of the Manipulated Variable

Trends Discretization. BSMBO&C algorithm approximates
the optimal manipulated variable trends by piece-wise constant
functions. For each manipulated variable a specific discretization
grid, defining the piece-wise approximant structure, is intro-
duced. A standard grid for the ith manipulated variable is
reported in Figure 2. Figure 2 suggests that each grid, thus each

manipulated variable, owns a certain number of control intervals
(NCI

i ), all equivalent in terms of width (ΔtCIi ). Both the number
and the width of the control intervals may vary during each
BSMBO&C algorithm basic step: (i) NCI

i , which starts from a
user-defined initial value (NCI

0,i) at the beginning of the
simultaneous optimization and control procedure, can be
updated at the end of the step; (ii) ΔtCIi , which is set to ΔtCI0,i at
the beginning of the step, can be adjusted several times during the
optimization substep.
It is important to highlight that every manipulated variable relates

to a specific NCI
i − ΔtCIi couple that is independent to the other

couples, i.e. eachmanipulated variable owns a discretization grid that
is different to those of the other manipulated variables. This last
feature is very important to save computational resources, thus
improving the overall algorithm efficiency. Indeed, more control
intervals can be allocated only to thosemanipulated variable profiles
that really require them to be well-approximated.
The variation in each NCI

i value is set in order to correctly handle
to two opposite situations: (i) the case in which the estimated
batch cycle duration (tBC) overlaps the control horizon of the ith
manipulated variable (i.e., NCI

i ΔtCI0,i); (ii) the case in which the ratio
between the ith manipulated variable control horizon and the
estimated residual batch cycle duration (ΔtBC) dramatically enlarges.
In the first case the NCI

i update is performed with eq 2 while in
the second case it is carried out with eq 3 (εi

0 is a dimensionless
parameter indicating the ratio between the ith manipulated
variable control horizon and an estimation of the residual optimal
batch cycle duration in starting conditions). In all the situations
in which neither the first nor the second case is the current one,
NCI

i is kept constant. It is relevant to add that the acronym f loor in
eq 2 and eq 3 stands for the approximation of a real number to
the closest lower integer number.
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It is also important to highlight that the first of the above-
mentioned cases must occur, more than once, before the
BSMBO&C stop condition is satisfied, because of the batch
nature of the system to which the algorithm is applied. The
second above-mentioned case, instead, rarely occurs and it can
only be caused by some perturbation changes effect.
The adjustment of a ΔtCIi , instead, may be necessary in some

iterations of the optimization substep, relating to each
BSMBO&C algorithm basic step. In detail, when the estimated
batch cycle duration overlaps the ith manipulated variable con-
trol horizon, the control interval width is rescaled with eq 4. It is
relevant to highlight that each ΔtCIi might be rescaled several
times during an optimization substep. Moreover an already
rescaled ΔtCIi might also be restored to its original starting value
(ΔtCI0,i), that is, its standard value, if the estimated residual batch
cycle duration goes back to be greater than the ith manipulated
variable control horizon.
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Δ
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t
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Handling the discretization of the manipulated variable optimal
profiles with the reported methodologies allows BSMBO&C
to effectively manage both the unavoidable trend of reduction
of ΔtBC (typical of discontinuous systems) and the eventual
nonmonotonic behavior of the same variable. The non-
monotonic behavior of ΔtBC may be caused by the presence of
several perturbations affecting the controlled system. Moreover,
the reported discretization management method also allows a
minimization of the inaccuracy in the computation of the optimal
manipulated variable trajectories, which may arise for the ΔtBC
variations. Indeed, the BSMBO&C can independently adapt the
width of each manipulated variable control horizon to the ΔtBC
trajectory.

2.2. The Optimization Substep Features. Let wBC be the
dependent variable values in tBC and let wCM be the dependent
variable values in (t* + ΔtCM). Moreover, let d*, m*, and w* be
the process operating point in t* and let Dc and ARc be tuning
parameters of the BSMBO&C method. For a batch system with
Nv

w dependent variables and Nv
m manipulated variables, the

optimization problem that must be solved, at each basic step of
BSMBO&C algorithm, is described in eq 5. This equation
constitutes a constrained nonlinear (nonconvex) optimization
problem where both nonlinear differential-algebraic and bound
constraints are present. Its solution can be approached with
different methodologies, but these issues are discussed in detail in
section 3. For now, it is important to focus the attention on its
mathematical structure and, in detail, on both the objective
function and the nonlinear differential-algebraic constraints
formulation.
The objective function ( fobjBSMBO&C

) is constituted by (i) two
user-defined performance functions ( f and g); (ii) a derivative
check term relating to the batch system dependent variables
(eq 5, first line); (iii) an antiringing term (eq 5, second line).
All these three terms are combined as eq 5 shows. One such

formulation has been selected because, by properly choosing f
and g and accordingly setting Dc and ARc, almost any possible
function can be achieved and so any possible optimization and
control problem can be addressed. Indeed, an online optimiza-
tion and control problem for a single batch cycle can be dealt with

Figure 2. ith manipulated variable discretization grid structure.
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by setting f to a constant value of 1 and g to an indicator of a single
batch cycle profitability. Instead, a pseudo-scheduling problem
can be managed by defining f as the number of batch cycles that
can be carried out in a predefined campaign time, at the current
cycle duration and g as an indicator of a single batch cycle
profitability. Finally, an online scheduling problem can be
addressed by setting f to the number of batch cycles required
to achieve a remaining scheduled production, at the current
production level per cycle, and g to an indicator of a single batch
cycle profitability.
It is clear that a wide range of different possibilities can be

covered, also because, in the previous lines, g is described as a
generic indicator of a single batch cycle profitability, that is, one
out of a net income, a cost, a recovery, a yield, a conversion, and
so on. Moreover, the listed cases are just examples, and other ad-
hoc sets of f and gmay be developed for specific batch systems to
which the BSMBO&Cmethod is applied. To end f and g features
description, it is very important to point out that the function
resulting from f·g must decrease if the performance of the
controlled system increases and vice versa. This can be easily
derived from eq 5 itself. It is now clear that the properties of
fobjBSMBO&C

are mainly determined by the choice of f and g.
However, the antiringing and the dependent variables derivative
check terms play a role in limiting the manipulated and the
dependent variables oscillatory behavior, respectively. Therefore,
these terms are essential to make BSMBO&C method return
feasible outputs. Indeed, neither the manipulated nor the
dependent variables can be subject to strong fluctuations on a
relatively small time scale, mainly because of the consequent and
unwanted stress on the equipment. Moreover, the dependent
variables derivative check term is also very important when
strongly sensitive systems, for example, a reactor that may be
subject to runaway problems, have to be managed. In this case,
this term helps to avoid a contingent control loss that may lead to
relevant safety issues. The Dc and ARc values, which define how
strong the effect of the antiringing and the dependent variables
derivative check terms is, must be chosen through a tuning
method. These value sets depend on both the features of the
specific controlled system and f and g functions formulation (see
section 2.3 for further details on the tuning logic).
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The other relevant term, which has to be described in this
section, is the set of differential-algebraic nonlinear constraints.
This set of equations constitutes the dynamic model of the
discontinuous system to be managed. Since nonlinear system
models are supported, the BSMBO&C method can be used
to perform an online scheduling based on nonlinear models.
This operation may lead to significant improvements over
the standard scheduling techniques based, instead, on linear
models.
In conclusion, it is clear that the structure of the optimization

substep allows the BSMBO&C algorithm to simultaneously
control and optimize a discontinuous system on the basis of any
performance criterion defined by the user. For example, single
batch cycle, pseudo-scheduling, and online scheduling problems
can be addressed. As a consequence, the BSMBO&C appears to
be very general, flexible, and customizable, and seems to define a
novel concept of universal simultaneous optimization and
optimal control too. Moreover, even very sensitive systems can
be efficiently handled thanks to the dependent variables
derivative check term that guarantees the BSMBO&C scheme
to avoid dangerous contingent control losses.

2.3. The BSMBO&C Tuning Parameters and Tuning
Rules. Since BSMBO&C algorithm is also a control method, it
requires a tuning procedure. The tuning parameters can be
identified as follows: (i) the antiringing coefficients (ARc); (ii)
the slope control coefficients (Dc); (iii) the initial number of
control intervals (NCI

0 ); (iv) the standard width of the control
intervals (ΔtCI0 ).
The tuning affects the BSMBO&C behavior as follows: (i)

increasing/decreasing Dc and ARc causes the BSMBO&C
scheme to be more/less robust but less/more performing; (ii)
increasing/decreasing NCI

0 guarantees better/worse performances
but also higher/lower computational effort; (iii) increasing/
decreasing ΔtCI0 may take to worse or better performances de-
pending on both the controlled system features and the chosen
NCI

0 (no generalization is possible in this case).
The optimal values of all the above-mentioned tuning variables

strongly depend on both the controlled system nature and the
f and g functions formulation and slightly depend on the
perturbations value. Moreover, it is almost impossible to apply
the standard error-based tuning criteria (ISE, IAE, ITAE etc.) so
a heuristic method is the only possible choice. The proposed
heuristic method is constituted by three steps: (i) NCI

0 and ΔtCI0
are fixed based on the open-loop dynamic behavior of the con-
trolled system when all the manipulated variables are fixed to a
nominal value, for example, the average between their maximum
and minimum; (ii) by starting from the orders of magnitude of
both the manipulated and dependent variables and the g func-
tion, a reasonable first attempt value for Dc and ARc is com-
puted; typically Dc and ARc can be chosen in order to cause
about 0.5−5% increase of g when the order of magnitude of a
manipulated or controlled variable changes by about 0.01−10%;
(iii) the first guess antiringing and slope control coefficients are
refined using a sensitivity analysis.
It is important to point out that, unlikeARc coefficients, only a

few of all the Dc elements have to be typically set to nonzero
values, that is, those related to particularly sensitive dependent
variables. Therefore, the total number ofDc andARc coefficients
to be determined is limited. The last important point to notice is
that both Dc and ARc are dimensional values, whose units
of measure make the antiringing and the dependent variables
derivative check term compatible with the g function dimensions.



The usage of a dimensionless g function may simplify the tuning
issues.
In conclusion, it is important to remember that the tuning

rules reported here are only simple guidelines and rules of thumb.
A more rigorous tuning method will be probably addressed in
future works.

3. BSMBO&C METHOD IMPLEMENTATION
The formal structure of the BSMBO&C algorithm has already
been described in section 2, but that abstract method has to
be implemented into a numerical code. Therefore, some
additional information on how to perform this implementation
procedure must be provided. The coding is realized in C++,
through a black-box approach (Figure 3). This choice allows the
BSMBO&C tool to provide control moves that always relate to a
feasible controlled system operating condition. Moreover, the
use of a black-box approach also allows a limit of the number of
degrees of freedom in the optimization substep, relating to each
BSMBO&C algorithm basic step. (A trial version of the C++ tool
is available for free at the SuPER group Web site (http://super.
chem.polimi.it).)
Since a black-box approach has been selected, both a NLP

optimizer and an ODE/DAE initial conditions integrator are
required. The NLP optimizer is needed to solve the optimization
substep. The ODE/DAE integrator, instead, is essential to
integrate the controlled system model inside the BSMBO&C
objective function ( fobjBSMBO&C

). Indeed, for each fobjBSMBO&C

evaluation a controlled system model integration must be
performed.
The employed optimization and integration tools must be

endowed of several features, described in detail in section 3.1,
and have been taken from the BzzMath library.21 Moreover, the
optimization substep implementation is critical in order to get a
final tool that is efficient and reliable: the methodologies
employed in its realization are detailed in section 3.2. All the
other implementation issues are more trivial and less interesting,
thus they are not described in detail.
3.1. Optimization and Integration Tool Features. Both

the NLP optimizer and the ODE/DAE initial conditions
integrator must fulfill some minimum requirements in order to
be suitable for the BSMBO&C method.

The optimizer must be sufficiently robust but, at the same
time, efficient. Moreover, it must be able to handle discontinuous
objective functions and, at least, bound constraints on the
optimization variables. The chosen BzzMath library optimizer
exploits an efficiency-improved Nelder−Mead simplex method,
coupled with a penalty function approach for the management of
the bounds on the optimization degrees of freedom. Therefore, it
meets the above-mentioned requirements and is suitable for the
BSMBO&C methodology. The reader should notice that the
chosen optimization algorithm is only able to find local minima,
even though the optimization substep may result in a nonconvex
problem. Unfortunately, using a global optimizer is not feasible
due to the subsequent excessive computational effort. However,
such a global optimization strategy is likely to be employed in the
near future thanks to both the increase in the CPUs clock and the
parallel computing.
The integration routine, instead, must be very efficient and

must be able to provide satisfying performances when the ODE/
DAE system to be solved is strongly nonlinear. The selected
solver of the BzzMath is based on efficiency-improved Gear
multivalue methods, and it is specifically designed to handle also
strongly nonlinear ODE/DAE systems. In addition, it is also
configured to solve systems with an elevated ratio between the

Figure 3. Black-box approach graphical view.

Figure 4. Graphical view of the boolean strategy for the case of a
minimum (dashed line) and a maximum (solid line) bound violation.

Figure 5. Ik
p approximation method in the weighted strategy.

Figure 6. Fed-batch reactor drawing.
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number of algebraic and differential equations. Therefore, it is
perfectly suitable for the BSMBO&C method.
In addition both the adopted optimizer and the chosen

ODE/DAE integrator exploit parallel computing: this results in a
further efficiency improvement that is inherited by the
BSMBO&C tool.
3.2. The Optimization Substep Implementation. As it is

reported in section 2.2, the optimization substep requires the

solution of a constrainedNLPproblemwith both bound constraints
and differential-algebraic nonlinear constraints. Nevertheless,
thanks to the usage of the black-box approach (Figure 3), this
very complex optimization problem is reduced to a simpler
constrained NLP with bound constraints only. Indeed, the
differential-algebraic nonlinear equations, that is, the controlled
system model, are directly employed in the computation of the
BSMBO&C objective function ( fobjBSMBO&C

), thus they are

Table 1. Process, Initial and Boundary Conditions, Reactor Structural Data, and Economic Value of the Components

Kinetic Scheme

reactions + →A B C (1)

→C D (2)

→2B E (3)

rate equations and kinetic parameters
= −⎜ ⎟⎛

⎝
⎞
⎠R k

E
RT

C Cexp1 1
0 1

a b
k1
0 = 1.0880 × 1010 m3/(kmol*s)

k2
0 = 9.2226 × 1010 1/s

= −⎜ ⎟⎛
⎝

⎞
⎠R k

E
RT

Cexp2 2
0 2

c
k3
0 = 2.1780 × 1010 m3/(kmol*s)

E1 = 8.40 × 104 kJ/kmol

= −⎜ ⎟⎛
⎝

⎞
⎠R k

E
RT

Cexp3 3
0 3

b
2 E2 = 1.02 × 105 kJ/kmol

E3 = 9.25 × 104 kJ/kmol

Boundary Variables Initial Value

fed-batch feed inlet conditions FIN= 0 m3/s TIN = 298 K
Ca
IN = 0 kmol/m3 Cd

IN = 0 kmol/m3

Cb
IN = 1 kmol/m3 Ce

IN = 0 kmol/m3

Cc
IN = 0 kmol/m3

coolant inlet conditions Fj = 1 × 10−3 m3/s Tj
IN = 340 K

Reactor Structural Parameters

vessel size HR = 2.10 m DR = 1.12 m
jacket volume Vj = 0.3859 m3

global heat transfer coefficient U = 1.085 kW/(m2·K)
Thermodynamic Data

reacting mixture components specific heat Cpa = 75.31 kJ/(kmol·K) Cpd = 204.12 kJ/(kmol·K)
Cpb = 167.36 kJ/(kmol·K) Cpe = 334.73 kJ/(kmol·K)
Cpc = 217.57 kJ/(kmol·K)

coolant specific heat Cpj = 4.186 kJ/(kg·K)
coolant density ρj = 1 × 103 kg/m3

heats of reaction ΔHR,1 = −6.3200 × 104 kJ/kmol ΔHR,3 = −1.0376 × 105 kJ/kmol
ΔHR,2 = −1.5280 × 105 kJ/kmol

Process Variable Constraints

vessel filling VR
MAX = 1.5516 m3 VR

MIN = 0 m3

reacting mixture temperature TR
MAX = 373 K TR

MIN = 320 K
jacket temperature Tj

OUT,MAX = 373 K Tj
OUT,MIN = 273 K

coolant inlet flow Fj
,MAX = 0.1 m3/s Fj

,MIN = 0 m3/s
fed-batch feed inlet flow FIN,MAX= 5 × 10−4 m3/s FIN,MIN= 0 m3/s

State Variables Initial Condition

reacting mixture components concentration Ca
0 = 1 kmol/m3 Cd

0 = 0 kmol/m3

Cb
0 = 0 kmol/m3 Ce

0 = 0 kmol/m3

Cc
0 = 0 kmol/m3

reacting mixture volume VR
0 = 0.75 m3

reacting mixture temperature TR
0 = 340 K

jacket temperature Tj
OUT,0 = 340 K

Miscellaneous Data

reacting mixture components molar mass PMa = 30 kg/kmol PMd = 130 kg/kmol
PMb = 100 kg/kmol PMe = 200 kg/kmol
PMc = 130 kg/kmol

universal gas constant R = 8.314 kJ/(kmol*K)
reacting mixture components economic value EVa = 10 €/kg EVd = 0 €/kg

EVb = 30 €/kg EVe = 0 €/kg
EVc = 100 €/kg

coolant economic value EVcoolant = 1.5 × 10−3 €/kg



automatically satisfied. Although the DAE equations have been
formally removed from the constraints list, a new issue arises and
has to be solved. Some of the bound constraints limit the feasible
regions of the controlled system dependent variables (w) but
these variables do not formally belong to the optimization
degrees of freedom any more. These bound constraints are quite
cumbersome to handle so two different methodologies have been
specifically developed for this purpose: the boolean strategy and
the weighted strategy.
To introduce the boolean strategy description, it is necessary

to specify a feature included in the BzzMath optimizer, adopted
in the implementation of the BSMBO&C algorithm. This
optimization tool let the user specify when the function to be
minimized is infeasible (a function is infeasible when its
evaluation causes a certain user-supplied infeasibility condition
to be satisfied). If an infeasibility exception is thrown inside the
minimization procedure, the optimization algorithm discards the
current trial point, leaves the current search region and makes a
new iteration. Coming now to the boolean strategy, it is based on
these simple actions (see Figure 4):
(I) In each optimization substep of each BSMBO&C basic

step, several evaluations of fobjBSMBO&C
are required, and to perform

each of these evaluations a controlled system model integration
from t* and w* to tBC and wBC is needed. For each fobjBSMBO&C

calculation, the compliance of the dependent variables to their
bound constraints is checked, using themodel integration results,
in Nbc

w points belonging to the interval (t*;tBC] (for the sake of
simplicity suppose those points to be uniformly distributed even
though the real BSMBO&C tool does not exactly work in this
way).
(II) If only one of the described bound checks fails, an

infeasibility exception is thrown, thus causing the current trial set
of manipulated variables and residual batch operational time to
be discarded.
As a consequence, the optimal set of manipulated variables

(mopt) and the optimal residual batch operational time (ΔtBCopt),
achieved at the end of each optimization substep, should be such
that the bounds on the controlled system dependent variables are
globally satisfied inside the interval (t*;tBC].
The weighted strategy, instead, is based on an event-based

penalty function method. It is similar, for some perspectives, to
the boolean strategy but a relevant novelty is introduced. The
strategy is based on these actions:
(I) In each optimization substep of each BSMBO&C basic

step, several evaluations of fobjBSMBO&C
are required, and to perform

each of these evaluations, a controlled system model integration
from t* and w* to tBC and wBC is needed. For each fobjBSMBO&C

calculation, the accordance of the dependent variable trends to
their bound constraints is checked, using the model integration
results, inside the interval (t*; tBC].
(II) If the kth dependent variable trend violates its maximum

or minimum constraint in some subintervals included in
(t*; tBC], a rough approximation of the integral of the absolute
difference between the kth dependent variable profile and its
maximum or minimum (Ik

p) is computed in these subintervals
(see Figure 5 for a graphical insight).
(III) This procedure is repeated for each dependent variable,

and a global penalty coefficient is calculated by means of a
weighted sum of the previously evaluated integrals (Ik

p).
(IV) The global penalty coefficient is scaled to the standard

BSMBO&C objective function ( fobjBSMBO&C
) order of magnitude

and to a penalty parameter (ξ) and then added to fobjBSMBO&C
itself

in order to build its penalized equivalent ( fobjBSMBO&C

p ).

(V) Only for the current iteration of the optimization substep,
fobjBSMBO&C

is replaced with fobjBSMBO&C

p , evaluated right now.
Thanks to this methodology the optimal set of manipulated

variables (mopt) and the optimal residual batch operational time
(ΔtBCopt), achieved at the end of each optimization substep, are
likely to be such that the bounds on the controlled system
dependent variables are globally satisfied or, at least, only slightly
violated, inside the interval (t*; tBC]. The presence and entity of
the possible bound violations mainly depend on the value of the ξ
coefficient but, typically, if a bound violation occurs, it equals a
relative error around 0.1−1%.
Looking now at the above-written qualitative description of

the boolean andweighted strategies, it comes out that both work in
a discrete manner (Figures 4 and 5). The first performs Nbc

w

punctual bound checks, the second computes an integral (Ik
p) by

means of a discretization based onNbc
w intervals ofΔtbcw time units.

It is clear that the higher Nbc
w is, the more accurate and reliable,

but also the more computationally expensive, both the boolean
and weighted strategies are. As a consequence, the Nbc

w parameter
must be carefully chosen based on the controlled system dynamic
features by the BSMBO&C tool user. The faster its dynamics is,
the higher the value of Nbc

w must be.
Moving now from a qualitative toward a quantitative

description of the boolean and weighted strategies, it results that
the boolean strategy does not require a mathematical formal-
ization because the qualitative and quantitative explanations are
almost identical. Instead, the weighted strategy can be formalized
in a set of equations (eq 6). Equation 6 quantitative formula-
tion is chosen in order to ease and standardize the choice
of the fobjBSMBO&C

penalty parameter (ξ), whose influence on the
numerical complexity of the optimization substep is huge.
Indeed, by using the reported formulation, ξ is dimensionless and
a value of 5−10 is satisfying for most of the practical cases (it
means that no bound violations are typically observed with such a
ξ value).
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Up to now, two different strategies for the dependent variable
bounds handling have been described, but no information
has been provided on which of the two options is the most
performing or when one of the two alternatives is more efficient
than the other. On the one hand, the boolean strategy guarantees
no dependent variable bound violations at all when the



optimization substep successfully converges, and slightly less
computational effort because, once the first bound violation
exception is thrown, the controlled systemmodel integration can
be aborted in the current fobjBSMBO&C

calculation. On the other hand,
theweighted strategy provides slightly superior results, in terms of
fobjBSMBO&C

values and significantly higher performances when the
region of the mij ∪ ΔtBC space that guarantees the absence of
dependent variable bound violations is very narrow (this
condition is often observed when the controlled system is very
sensitive).
As a result, none of the two proposed dependent variable

bounds handling methodologies is always successful, so both of
them are essential. Different controlled system dynamic
behaviors and phenomenological complexity and a different
controlled system sensitivity make either the boolean or the
weighted strategy be the right choice.
Now that proper methods to manage the dependent variable

bounds have been derived, the implementation of the op-
timization substep becomes trivial. Indeed, the NLP of eq 5
can be efficiently solved by using the black-box approach
coupled with either the boolean or the weighted strategy and the
chosen BzzMath optimizer (it is the BzzMath optimization
algorithm that directly handles the bound constraints on
both the manipulated variables and the residual batch cycle
duration).
In conclusion, a proper way to implement the optimization

substep has been presented in this section. Thanks to the
BzzMath library optimizers and integrators, the described
methodology is efficient enough to let the BSMBO&C algorithm
work online but also stable enough to guarantee sufficient control
robustness. The proof of this statement can be observed in the
results of the case studies shown in section 4.

4. BSMBO&C METHOD TEST CASES
The BSMBO&C has been described in detail in both its
algorithm formulation and its practical implementation during
the previous two sections. In the current section, instead, it is
applied to a couple of test cases with the aim of proving its real
effectiveness and comparing its performance to that of two well-
established literature-based optimization and control method-
ologies. These other two literature-based methodologies are an
offline optimization scheme, also called an offline optimal recipe-
based scheme, coupled with a PID control loop (OOS-PID); and

Figure 7. Fed-batch system in the OOS-PID (a), DRTO-PID (c), and BSMBO&C (b) layout.

Table 2. Regulatory Control System Tuning Parameters,
BSMBO&C Tuning Parameters and Allowed Batch Cycle
Duration Range

BSMBO&C tuning parameters

manipulated variables

Fj FIN

tuning
parameters

Arc 1.2656 × 107 s4/m6 2.25 × 1011 s4/m6

NCI
0 8 4

ΔtCI0 45 s 60 s
dependent/state variables

Ca Cb Cc Cd Ce VR Tj
OUT TR

tuning
parameters

Dc - - - - - - - 25.3125
s2/K2

BSMBO&C allowed batch cycle duration range

maximum and minimum batch
operational time

tBC
MAX = 2.16× 104 s tBC

MIN = 360 s

regulatory control system tuning parameters

proportional gain,
integral time
and derivative time

KC = 3.25 × 10−4 m3/(K·s) τI = 120 s τD = 0.075 s

http://pubs.acs.org/action/showImage?doi=10.1021/ie501376a&iName=master.img-006.jpg&w=358&h=292


a real-time dynamic optimization scheme coupled with a PID
control loop (DRTO-PID).
The economic model predictive control technique, instead,

has not been included in the previous list because its application
to discontinuous processes is widespread neither in literature nor
in the industrial practice so far. Moreover, a scheme where the
DRTO is coupled to the NMPC has not been added to the
previous list either. Indeed, it has been shown in ref 13 that, for

batch systems, DRTO takes to better performances if coupled
with conventional control networks.
Coming to a brief description of the two test cases, the first

(section 4.2) is based on the comparison among the BSMBO&C
algorithm performance and the OOS-PID and DRTO-PID
methodologies effectiveness. The second case study (section 4.3)
is entirely dedicated to the BSMBO&C and is aimed at proving
its flexibility and the consequent advantages coming from this

Figure 8. Single batch cycle optimization and control with no changes in TJ
IN.

http://pubs.acs.org/action/showImage?doi=10.1021/ie501376a&iName=master.img-007.jpg&w=376&h=575


feature. Moreover, while the first case study can be classified
as a single batch cycle optimization problem, the second can be
considered a pseudo-scheduling problem. No online scheduling
problems are addressed in the current paper as one such
problems will be probably studied in future works. Finally, notice
that for both test cases, a discontinuous system, which the tests
have to be based on, must be chosen. A fed-batch reactor, where
three exothermic reactions take place, has been selected. The
model of the just-mentioned system is reported in section 4.1.
4.1. Fed-Batch Reactor Modeling. As already suggested,

the case studies, described in section 4.2 and 4.3, are based on a
fed-batch reactor as a controlled system. The reactor drawing is
shown in Figure 6.
Since the reaction mixture is supposed to be in the liquid phase

and none of the mixture compounds is volatile in the allowed
process thermal range, a single-phase piece of equipment is to
be modeled. Moreover, to simplify the modeling issues, let the
reactor and the cooling jacket be completely mixed and let all the
thermodynamic properties be temperature-independent. Under
these assumptions the fed-batch model is described by eq 7. In
this equation, letNR andNC be the number of chemical reactions
and components in the reacting system, Rl, νil and ΔHR,l be the
rate of the lth reaction, the stoichiometric coefficient of the ith
component in the lth reaction and the heat of the lth reaction, U
be the global heat transfer coefficient between the reacting
mixture and the jacket cooling fluid, and Cpi, Cpj and ρj be the
specific heat of the ith component in the reacting mixture, the
coolant specific heat, and the coolant density.
The meaning of all the other employed symbols can be

inferred from Figure 6. To avoid misunderstandings, remember
also that, only for section 4, the subscript “i” refers to the general
fed-batch system component and the subscript “j” identifies the
parameters and variables related to the cooling jacket.
The ODE system reported in eq 7 requires several data to be

practically solved: a set of initial conditions, a thermodynamic
package, a kinetic scheme, and several reactor structural
parameters. This necessary information, along with the economic
value of the reacting system components, is included in Table 1.
Notice that the fed-batch reactor configuration is partially
derived from a well-known literature case in ref 22.
One last remark on the fed-batch reactor and, consequently,

on its model concerns the identification of the perturbations and
the dependent and manipulated variables. TIN, Tj

IN, and Ci
IN are

supposed to be perturbations, as it typically happens for these
kinds of equipment. Therefore, the fed-batch reactor has eight
dependent or state variables and two degrees of freedom, that is,
twomanipulated variables. In the current case, FIN and Fjmust be

chosen as manipulated variables, whereas Ci, VR, TR, and Tj
OUT

must be considered as dependent variables. Indeed, only FIN and
Fj can be physically adjusted during a batch cycle run. As a
consequence, all the optimization and control schemes applied in
the following test cases (section 4.2 and 4.3) will be compelled to
manage two manipulated variables that will be FIN and Fj.
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4.2. Test Case I. This first case study is aimed at making a
comparison among the performances of the BSMBO&C,
DRTO-PID, and OOS-PID methodologies, all applied to the
semibatch reactor described in section 4.1. Scenarios, where
both no and several perturbation changes occur, are analyzed.
However, it is necessary to describe, at first, what DRTO-PID
and OOS-PID schemes mean in this paper (the BSMBO&C
logic has been widely addressed in the previous sections).
Fewwords are spent in the description of the DRTO-PID logic

because it is widespread in literature. Here, an optimization loop,
which works over the regulatory PID-based control system,
computes in real-time, the optimal set-point for all the controllers
which, in turn, provide the regulatory control actions.
The OOS-PID method, instead, is often still used in the

industrial practice and must be explained in detail. Here, first of
all, all the perturbations, which may influence the controlled
system behavior, are set to a nominal value. Then, an offline
optimization of the batch cycle, which leads to some optimal

Table 3. Economic Profitability of a Single Batch Cycle with No Changes in TJ
IN

boolean strategy weighted strategy

OOS-PID DRTO-PID BSMBO&C OOS-PID DRTO-PID BSMBO&C

batch cycle duration [s] 15652.16 15652.16 15652.16 13948.60 13948.60 13948.60
g function [−] 0.5359 0.5373 0.5470 0.5490
net income [€] 3908.87 3898.84 3909.15 3993.81 3979.36 3994.23

Table 4. Economic Profitability of a Single Batch Cycle with Three Step-Changes in TJ
IN

boolean strategy weighted strategy

OOS-PID DRTO-PID BSMBO&C OOS-PID DRTO-PID BSMBO&C

batch cycle duration [s] 15652.16 15652.16 9457.69 13948.60 13948.60 10797.63
g function [−] 0.4802 0.5664 0.4986 0.5702
net income [€] 2568.44 3493.58 4120.88 2973.98 3627.67 4148.38



set-point trends, is performed. Finally, for each real batch cycle
that is carried out these offline calculated set-points are used as
online set-points of the PID-based regulatory control system.
Once the meanings of both DRTO-PID and OOS-PID

methods have been clarified, it is possible to define how and with
which settings these methods, along with BSMBO&C logic,
are applied, for this case study, to the semibatch reactor that has
been modeled in section 4.1. Figure 7 provides some of this
information even though some additional contents, which are
reported below, have to be added.
In terms of notation, the acronyms USI, SP, FC, and TC,

included in Figure 7, stand for user supplied information, set-
point, flow controller, and temperature controller.
By looking, once again, at Figure 7, it can be observed that the

control loop of the reactor feed controls FIN with FIN itself. In
other words, this loop identifies the controlled and manipulated
variable. Moreover, since the mixture, fed to the reactor, is in
the liquid phase, thus almost incompressible, the FCs can be
considered perfect (the set-point is always equivalent to the
controlled variable at any time instant). The reactor temperature
control loop, instead, controls TR with Fj and works with a PID
algorithm. This loop has no peculiar features. As a consequence,
the regulatory control system, which is employed in both the
DRTO-PID and OOS-PID schemes, can be described by means
of the expressions reported in eq 8. In this equation the following
notation has been employed: KC is the proportional gain, τI
is the integral time, τD is the derivative time; Fj

bias is the reactor
coolant flow bias; Fsp

IN and TR
sp are the reactor feed and the reactor

temperature set-points.
Finally, Figure 7 suggests that each controlled system

dependent variable is supposed to be measurable and known in
every time instant for both the DRTO-PID and the BSMBO&C
scheme. If some of the dependent variables are not directly
measurable, the easiest way to proceed is to suppose that their
real values correspond to the values derived from the controlled
system model.
It is clear that a tuning procedure for the PID controller,

employed in both the DRTO-PID and the OOS-PID layout, must
be chosen. This issue is not trivial since the optimal PID tuning
parameters strongly depend on the batch cycle duration that, in the
current case, can vary. The adopted tuning methodology is made
of two steps: (I) several sets of optimal tuning parameters, related
to different batch cycle durations, are evaluated by means of the
minimization of the ISE indicator; (II) a pseudo-optimal set of
PID parameters is derived from the data achieved in I.
By using this approach, the KC, τI and τD values, employed in

the current case study and summarized in Table 2, are achieved.
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Speaking now of the OOS-PID method, the only additional
information that is required to apply it in the current case study is
the set of optimal offline computed set-point profiles for FIN and
TR (this set-points set is typically called the optimized recipe).
These trajectories are approximated by means of an offline
application of the BSMBO&C method itself. The method
settings ( f, g, Arc, Dc, etc.) used here are the same employed for
the online simulations but all the perturbations, that is, TIN, Tj

IN

and Ci
IN, are set to a nominal value that is chosen to equal the

initial value (see Table 1).
For the DRTO-PID logic more additional information is

needed. Indeed, to make a meaningful comparison with the
BSMBO&C methodology, a DRTO algorithm that is based on a
black-box approach and shares the most relevant features with
the BSMBO&C has been coded ad-hoc. The shared features
include the objective function structure, including the tuning
parameters selection type, the exploited numerical methods, the
dependent variable bounds check strategies, and the manipulated
variable trends discretization approach.
The settings of this ad-hoc DRTO-PID scheme, that is, f, g,

Arc, Dc, etc., have been chosen to equal those used for the
BSMBO&C method. Finally, since in the DRTO-PID approach
the batch cycle duration (tBC) is fixed, it is set to the values that
derive from the optimal recipes evaluated for the OOS-PID
method.
At last, coming to the BSMBO&C scheme, the adopted

formulation of f and g, a set of tuning parameters, and the allowed
batch cycle duration range must be provided. The chosen f and g
functions are shown in eq 9, where the superscript “BC” stands
for “evaluated in tBC”. Instead, the tuning parameters and
the batch cycle maximum (tBC

MAX) and minimum (tBC
MIN) duration

are summarized in Table 2. It is important to highlight that f and g
are income-based functions for this test case. In detail, since a
single batch cycle problem is studied, f is set to a constant value of
1 and g is defined as the dimensionless net income coming from a
single batch cycle. This dimensionless net income is given by the
dimensional net income, coming from a single batch cycle,
divided by an order of magnitude of the maximum net income,
achievable from a single batch cycle.
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By using all the data reported in section 4 so far, four simulations
have been carried out. Each of them includes a batch cycle
execution performed with all the three optimization and control
methodologies, that is, BSMBO&C, DRTO-PID, andOOS-PID.
However, in the first two scenarios no perturbation changes
occur, that is, TIN, Tj

IN and Ci
IN are kept constant, but in the first

the boolean strategy and in the second the weighted strategy are
used. In the third and fourth scenario, instead, Tj

IN (the most
critical perturbation) is given a piece-wise constant profile with

three step-changes. Moreover, in the third simulation the boolean
strategy is adopted and in the fourth simulation the weighted
strategy is chosen. The results of the first two simulations are
reported in Table 3 and Figure 8 while the data coming from the
third and the fourth simulations are collected in Table 4 and
Figure 9. It is relevant to highlight that for all the BSMBO&C-
based scenarios addressed in the current case study the following
optimization substep features can be observed: (i) The number
of the optimization degrees of freedom varies from 3 to 13.



(ii) The total number of variables, that is, the sum of the
controlled system state variables and the optimization degrees
of freedom, falls between 11 and 21. (iii) The number of
differential-algebraic constraints equals 8. (iv) The number of
bound constraints is twice the total number of variables, that is, it
lies between 22 and 42. (v) The computational time required to

complete a single optimization substep, which corresponds to the
time required to compute a control move, is around 4 s.
For the features of the optimization substep relating to the

DRTO-PID scheme simulations, no detailed discussion is
reported. However, these features are similar to the ones already
mentioned for the BSMBO&C-based simulations.

Figure 9. Single batch cycle optimization and control with three step-changes in TJ
IN.

http://pubs.acs.org/action/showImage?doi=10.1021/ie501376a&iName=master.img-008.jpg&w=389&h=595


It is clear that the performance of the OOS-PID, DRTO-PID,
and BSMBO&C schemes is almost the same when no variations
in the reactor coolant inlet temperature occur. It can be
derived both by looking at the single batch cycle net income
in Table 3 and by observing that all the concentration and tem-
perature trends in Figure 8 are almost identical. This sounds

reasonable: when no perturbation changes occur, i.e. Tj
IN is

constant, the DRTO-PID and the BSMBO&C methods take
the reactor to an optimal operating condition that is almost
the same defined by the offline computed optimal set-point
trajectories used in the OOS-PID scheme. As a consequence,
all the three methodologies take the semibatch reactor to

Figure 10. Pseudo-scheduling optimization and control with no changes in TJ
IN.

http://pubs.acs.org/action/showImage?doi=10.1021/ie501376a&iName=master.img-009.jpg&w=389&h=594


very similar operating points and achieve very similar perfor-
mances.
The performance comparison among OOS-PID, DRTO-PID,

and BSMBO&C methods gives completely different results
when the reactor coolant inlet temperature is given a piece-wise
constant profile with three step-changes (see Table 4). Indeed,

the BSMBO&C methodology provides a much higher profit-
ability than the DRTO-PID logic which, in turn, guarantees
better incomes than the OOS-PID scheme. It appears reasonable
that BSMBO&C and DRTO-PID methods perform better than
the OOS-PID method in this circumstance. Indeed, the first two
strategies can adjust the semibatch reactor operating condition in

Figure 11. Pseudo-scheduling optimization and control with three step-changes in TJ
IN.

http://pubs.acs.org/action/showImage?doi=10.1021/ie501376a&iName=master.img-010.jpg&w=389&h=594


real-time taking into account the effect of the Tj
IN variation, while

the third strategy is not able to do the same. The OOS-PID
scheme recipe now is not optimal any more since it was op-
timized offline with the nominal value of Tj

IN. However, although
both the BSMBO&C and DRTO-PID algorithms work in real-
time, the BSMBO&C logic performs significantly better than
the DRTO-PID logic. This happens because the BSMBO&C
algorithm exploits both the manipulated variables (FIN and Fj)
and the batch operational time (tBC) as degrees of freedom while
the DRTO-PIDmethodology can only adjust FIN and Fj. The last
statement can be verified by means of a simple reasoning. At
first, by looking at the trends in Figure 9, it can be seen that
the BSMBO&C-based batch cycle ends approximately 2 h
before the DRTO-PID-based batch cycle. Second, the “c”
product concentration profile for the BSMBO&C-based batch
cycle shows a maximum at the end of the cycle while the
corresponding concentration profile for the DRTO-PID-based
batch cycle highlights a maximum about 1 h before the end of the
cycle. In addition, the semibatch system includes a side reaction
that decomposes the valuable “c” product in useless and priceless
“d” product (see kinetic scheme in Table 1). By connecting these
three pieces of information, it results that the lower income
achieved in the DRTO-PID-based batch cycle is a consequence
of an excessive degradation of the valuable “c” product caused by
an overlong batch cycle duration. Therefore, the BSMBO&C
algorithm obtains higher profitability especially thanks to its
capability of treating the batch cycle duration as an optimization
variable.
At last, some remarks on the dependent variable bounds check

strategies are provided. It appears that the weighted strategy is
slightly superior than the boolean strategy from an economic
point of view (Tables 3 and 4). Moreover, the weighted strategy
provides smoother and more low-oscillating manipulated
variable trajectories than those achieved with the boolean strategy
(Figure 9). This is compliant to what has been written in section
3.2 and suggests that the weighted strategy is typically more
suitable to be chosen if the extra computational effort, in respect
to the boolean strategy, is not an excessive drawback.
4.3. Test Case II. This second case study is completely

dedicated to the BSMBO&C algorithm and aims at proving the
intrinsic flexibility that comes from its objective function
structure (see eq 5). As for the first test case, the system on
which the case study is based is the semibatch reactor modeled in

section 4.1. Moreover, both scenarios with no perturbation
changes and scenarios with several perturbation changes are
explored. However, there is a relevant difference between the
current case study and the previous one: here a pseudo-
scheduling problem is addressed.
Before analyzing the test case in detail it is necessary to provide

the exact meaning of pseudo-scheduling problem. In detail, a
pseudo-scheduling problem is a problem for which, once a
campaign duration (tcampaign) and a batch cycle dead time (tdead)
are fixed and assigned, the aim is to maximize the net income that
can be achieved on the overall campaign. In one such problem,
it is necessary to define how many batch cycles must be carried
out and in which operating conditions each of them must be
performed. All this must be determined online, that is, the
number of batch cycles to be completed inside tcampaign and each
cycle operating conditions have to be dynamically evaluated and
updated during each of the cycles execution. It is necessary to
work online because the effect of any incoming perturbation
change has to be taken into account.
The solution of such a problem is not trivial and may be

approximated with an iterative procedure configured as follows:
(I) A new batch cycle is executed and completed under the
control of BSMBO&C method (in this circumstance, the
BSMBO&C objective function must be set to account for the
global campaign net income). (II) If the difference between
tcampaign and the sum of the durations of all the already performed
cycles is less than the duration of the latest cycle the campaign
end has been reached, otherwise a new batch cycle is started and
the described steps are repeated again.
All the BSMBO&Cmethod settings, which are needed for this

specific case, have been chosen to equal the settings used for test
case I. The only exception is the f and g functions formulation
that needs to be redefined such that the net income of the overall
batch campaign is given by f·g. Hence, f is defined as the number
of batch cycles that can be carried out in tcampaign at the current
operating conditions; g, instead, is set, as for case study I, to the
net income of a single batch cycle divided by an order of
magnitude of the maximum net income achievable in a single
batch cycle. The new formulation of f and g is provided in eq 10
(the acronym f loor stands for the approximation of a real number
to the closest lower integer number) while the adopted values for
tcampaign and tdead are summarized in Table 5.
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By exploiting all the data provided in section 4 so far, the pseudo-
scheduling problem could be addressed and solved but, for the
sake of brevity, only a simplified version of the problem is
reported here (an exact solution may be included in future
works). Indeed, let us assume that for all the batch cycles of the
campaign the perturbation trends, that is, the TIN, Tj

IN, and Ci
IN

profiles, are the same. With this assumption, the solution of
the pseudo-scheduling problem can be achieved by solving only
the first step of the iterative algorithm discussed above. Then, the
first step solution can be simply used as the solution of all the
other algorithm steps until the convergence condition is satisfied.
This is exactly what has been done here. Therefore, only four

simulations have been carried out. In the first two of them no
perturbation changes occur, that is, TIN, Tj

IN, and Ci
IN are kept

constant. However, in the first scenario the boolean strategy is
employed and in the second scenario the weighted strategy is
used. In the third and fourth simulations, instead, Tj

IN (the most
critical perturbation) is given the same piece-wise constant
profile used for the test case I. However, in the third scenario the
boolean strategy is exploited and in the fourth scenario the
weighted strategy is chosen.
Observe that here the optimization substep features, relating

to the BSMBO&C-based simulations, are essentially the same as
that having been previously described for case study I. The only



difference is that the computational time required to complete a
single optimization substep, which corresponds to the time
required to compute a control move, is lower and equals around
1.5 s. This occurs because the computational time depends
almost only on the time required to perform a BSMBO&C
objective function evaluation (BSMBO&C is implemented with
a black-box approach). This computational time is lower here
since the typical duration of a batch cycle in the current test case
is lower than that of case study I, thus the controlled system
model integration is much faster.
Coming to the results discussion, the trends for a campaign

single batch cycle, coming from the first and second simulation,
are reported in Figure 10, along with the corresponding trends
relating to the BSMBO&C method and test case I. Instead, the
profiles for a campaign single batch cycle, deriving from the third
and fourth simulation, are shown in Figure 11, along with the
corresponding profiles relating to the BSMBO&C method and
test case I. It is important to highlight that, in Figures 10 and 11,
the lines identified with the acronym “PS” are those evaluated in
the current test case while the lines identified with the acronym
“SC” are those inherited from test case I. Table 6, instead,

summarizes the economic results of the campaign, deriving from
the first two simulations. It also includes the economic results that
would be achieved if, for each campaign single batch cycle, the
operating condition was set to the corresponding one inherited from
test case I. This is done to be able to easily make comparisons.
Table 7 is the equivalent of Table 6 but it refers to the third and
fourth simulations and their equivalents inherited from test case I.

Looking at Tables 6 and 7, it appears that the campaign
management provided by the application of BSMBO&C
algorithm with the f and g configuration related to the current
case study is superior to the campaign handling that can be

achieved by reusing the results (in terms of single-batch cycle
operating conditions) computed in case study I. It means that,
limited to the current problem, the f and g formulation used
in this test case guarantees better results in respect to those
ensured by the f and g configuration used in test case I. This is
trivial to understand. Indeed, the batch cycle operating
conditions achieved in case study I have been computed to be
the optimal but only when a single batch cycle is performed.
These operating conditions are optimal no more when it comes
to deal with the management of a series of batch cycles with the
aim of maximizing the income on a fixed time interval in which
these several cycles must be completed. The reason why this last
statement is correct is that, in this situation, it may be better to
performmuchmore batch cycles with a slightly lower income per
cycle than completing a much lower number of cycles but with a
slightly higher net income per cycle. This is exactly what happens
here. It can be easily understood by observing these peculiarities:
(i) The single batch cycle durations for the simulations carried
out in the current test case are much lower than the ones related
to the simulations inherited by test case I (Figures 10 and 11).
(ii) The number of batch cycles performed in the production
campaign is much higher if the employed operating conditions
for a single batch cycle are those coming from the current case
study (Table 6 and 7). (iii) The achieved net income per cycle is
typically slightly lower if the employed operating conditions for a
single batch cycle are those coming from the current case study
(Table 6 and 7).
Figures 10 and 11 also suggest that the optimal operating

condition for a single batch cycle is significantly different
between case study I and the current test case. In detail, the
operating conditions of the current test case relate to higher
average reactor temperatures and greater reactor feed rates. This
is coherent with the need for speeding up the single batch cycle to
be able to complete more cycles inside the campaign duration.
Observe also that the single batch cycles operating conditions,

evaluated with the BSMBO&C settings relating to the current
case study, are not significantly influenced by the Tj

IN trend. It
means that the campaign profitability is slightly influenced by the
perturbation changes. This is mainly a consequence of the short
batch cycle duration that is achieved in this situation. Indeed, the
shorter the batch operational time is, the less significant the
perturbations effect typically is because the perturbations have a
limited time period to act on the system.
Finally, it is interesting to observe that the weighted strategy for

the dependent variable bounds management proves to be, once
again, slightly better performing than its boolean equivalent.
To end this section, notice that this case study has not much

importance by itself. Nevertheless, it can prove that the chosen
structure of the BSMBO&C objective function (eq 5) is so
general that very different batch production problems can be
efficiently handled, if the correct f and g formulation is provided.
Therefore, the BSMBO&C method can be declined in almost
every user-defined configuration, each being suitable to handle a
specific problem, and aims at becoming a universal model-based
control and optimization algorithm for the batch world.

5. CONCLUSIONS
A novel real-time model-based optimization and control
methodology for batch and semibatch systems, the BSMBO&C,
has been proposed. It is able to simultaneously handle the
dynamic optimization, nonlinear model predictive control, and
optimization of the batch operational time, exploiting a user-
defined objective function as performance indicator. Therefore,

Table 6. Economic Results of the Production Campaign with
No Changes in TJ

IN

boolean strategy weighted strategy

test case I test case II test case I test case II

number of batch cycles in the
campaign [−]

2 7 2 7

single batch cycle duration [s] 15652.16 4782.86 13948.60 4782.86
g function [−] 0.5373 0.5407 0.5490 0.5490
single batch cycle net income [€] 3909.15 3933.63 3994.23 3993.96
campaign net income [€] 7818.29 27535.41 7988.45 27957.75

Table 7. Economic Results of the Production Campaign with
Three Step-Changes in TJ

IN

boolean strategy weighted strategy

test case I test case II test case I test case II

number of batch cycles in the
campaign [−]

3 7 3 7

single batch cycle duration [s] 9457.69 4782.86 10797.63 4782.85
g function [−] 0.5664 0.5406 0.5702 0.5504
single batch cycle net income [€] 4120.88 3933.02 4148.38 4004.23
campaign net income [€] 12362.64 27531.13 12445.13 28029.59

Table 5. Production Campaign Duration and Batch Cycle
Dead Time

campaign duration batch cycle dead time

tcampaign = 3.6 × 104 s tdead= 360 s



it is more efficient and flexible than similar alternatives described
in literature. Indeed, the standard literature-based methods do
not consider the batch cycle duration as a degree of freedom but
fix it a priori and are typically designed to work only with either a
quadratic or an economic objective function. In the paper, at first,
the BSMBO&Cmathematical formulation has been described in
detail, then its implementation logics have been provided and
discussed, and finally its application to a couple of test cases has
been reported. The results coming from the case studies prove
that the BSMBO&C is truly more effective than the standard
methods proposed in literature. This is mainly due to its
capability of treating the batch cycle duration as a degree of
freedom. Moreover, the results coming from the test cases also
show that the BSMBO&C is more general than its literature
counterparts and suitable to be adapted to any possible need of
the final user in terms of objective function definition. This
proven flexibility and efficiency make BSMBO&C a universal
model-based optimization and control tool for batch processes. A
BSMBO&C free version can be downloaded at the Web site
http://super.chem.polimi.it.
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