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1. Introduction

In the problem of model reduction moment matching tech-
niques represent an efficient tool, see e.g. [1–3] for an overview
for linear systems. In such techniques the (reduced order) model is
obtained by constructing a lower degree rational function that ap-
proximates the original transfer function (assumed rational). The
low degree rational functionmatches the original transfer function
and its derivatives at various points in the complex plane. There
are several possible (equivalent) notions of moments for a linear
system. The first classical notion of moment has been given in [3],
based on the series expansion of the transfer function of the linear
system (see also [4–6]).

An alternative approachhas been taken in [7]where the rational
interpolation and tangential interpolation problems have been
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recast in terms of finding the projections by solving Sylvester
equations. Recently in [8], a new framework for the solution to
the realization problem has been proposed. Themomentmatching
problem has been recast in terms of the Loewner matrix and
solutions to Sylvester equations, with matrices constructed from
tangential interpolation data. The result is a reduced order model
that achieves moment matching and is minimal. More recently,
in [9,10] new definitions of moments in a time-domain framework
have been given. Hence another equivalent definition of moments
is presented in the relation with the steady-state response (if
it exists) of the system driven by a signal generator (a novel
interpretation of the results in [7]). The reduced order model that
achieves moment matching at ν points is a parametric model,
the extra parameter being tuned such that certain properties are
preserved. Based on the dual Sylvester equation, a new definition
of moment dual to the previous one is obtained. The reduced
order model that achieves moment matching at ν points is also
a parametric one. Furthermore in [11] a connection between the
different families of models is established.

In this paper we present the families of reduced order models
based on the associated notions of moment. We analyze the
controllability and the observability properties of the reduced
order models. If the models are not minimal, we obtain systems
of dimensions lower than the number of interpolation points, i.e.,
we consider the problem of pole–zero cancellations occurring in
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the reduced order models. We also state that, generically, the
lowest dimension is half of the number of interpolation points,
if the number of interpolation points is even and half plus one,
if the number of interpolation points is odd, i.e., a number of
poles and zeros less than, or equal to half of the number of
interpolation points are canceled. In other words, we provide
a selection of the free parameters that yield the solution to
the pole–zero cancellation problem. To this end, we compute
the parameters that help identify the model of minimal order
that matches a prescribed number of moments. Furthermore, the
problem of matching higher numbers of moments is studied in
the time-domain setting. Thus, the series, parallel or feedback
interconnection between the two reduced order models, obtained
with the two latter definitions of moments, is proposed, yielding
reduced order models of dimensions equal to the number of
matched moments. Under some mild assumptions these models
match the moments of the original systems at 2ν points. From a
different perspective, this approach yields a way of splitting the
moment matching problem into problems of lower dimensions,
i.e., the interconnection between N models that match ν points,
yields a reduced order model of dimension Nν, that matches Nν
moments of the original system.

The paper is organized as follows. In Section 2 we give an
overview of the notion of moment for a transfer function and of
the Krylov projection based reduced order models that match a
prescribed number of moments, as well as a brief overview of the
notion of moments in a time-domain framework. We also present
the families of parameterized reduced order models that achieve
moment matching. In Section 3 we analyze the controllability and
observability properties and the pole–zero cancellation problem,
for all the families of parameterized reduced order models that
achieve moment matching i.e., find the (sets of) parameters
such that pole–zero cancellations occur. The result consists of
subclasses of models of orders lower than the number of matched
moments (i.e., the number of chosen interpolation points). We
prove that, generically, the largest number of cancellations is
half of the number of matched moments. Performing all possible
cancellations results in models that match a number of moments
which are equal to twice their dimension. In Section 4we compute
reduced order models that match larger number of moments, by
interconnectingmodels fromdifferent classes. Thepaper endswith
some conclusions.

This paper is a preliminary step to develop a model reduction
theory for nonlinear systems continuing the work in [10]. Prelimi-
nary results are found in [12].

Notation. R is the set of real numbers and C is the set of complex
numbers. C0 is the set of complex numbers with zero real part and
C− denotes the set of complex numbers with negative real part.
A∗

∈ Cn×m denotes the transpose and complex conjugate of the
matrix A ∈ Cm×n. If A is a real matrix, then A∗

= AT , where AT

is the transpose of A. σ(A) denotes the set of eigenvalues of the
matrix A and ∅ denotes the empty set.

2. Preliminaries

We consider a single-input, single-output1 linear, time invari-
ant system described by the equations

Σ :


ẋ = Ax + Bu,
y = Cx, (1)

1 The same arguments hold for multiple-input–multiple-output systems.
with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn, C ∈ R1×n

and the associated transfer function K : C → C,

K(s) = C(sI − A)−1B. (2)

When needed, we use the notation (A, B, C) to refer to a system
described by (1). Throughout, we assume that (1) is controllable
and observable, i.e., minimal.

2.1. The notion of moment and moment matching

In this section we recall the notion of moments of a linear
system based on the associated transfer function.

Definition 1 ([3]). The 0-moment at s1 ∈ C, s1 ∉ σ(A), of sys-
tem (2) is the complex number η0(s1) = C(s1I − A)−1B. The
k-moment at s1 of system (2) is the complex number ηk(s1) =

(−1)k

k!
dk[C(sI−A)−1B]

dsk


s=s1

, k ≥ 1, integer. �

The point s1 is called an interpolation point. The approximation
problem can be formulated as follows: given system (1), the inter-
polation point s1 and k ≥ 0, find a system (Ared, Bred, Cred), where
Ared ∈ Rν×ν, Bred ∈ Rν, CT

red ∈ Rν with transfer function Kred(s) =

Cred(sI−Ared)
−1Bred, such thatηk(s1) = η̂k(s1), for k = 0, . . . , ν−1,

where η̂k(s1) are the moments of Kred(s), k = 0, . . . , ν − 1. If
s1 = ∞, then the moments are the Markov parameters and the
problem is known as partial realization. If the moments are cho-
sen at s1 = 0, then the problem is called Padé approximation, see
e.g. [3] and the references therein. Alternatively one may consider
momentmatching atmultiple interpolation points: given a system
(A, B, C) and a set of interpolation points s1, s2, . . . , sν ∉ σ(A),
find (Ared, Bred, Cred), where Ared ∈ Rν×ν, Bred ∈ Rν, Cred ∈ Rν ,
with transfer function Kred(s) = Cred(sI − Ared)

−1Bred, such that
K (j)(sk) = K (j)red(sk), for k = 1, . . . , ν and j = 0, 1, . . . , l, where
K (j) =

djK(s)
dsj

. Throughout the rest of the paper, without loss of gen-
erality we consider j = 0 and we assume that the interpolation
points are not eigenvalues of A. We also assume that ν < n.

2.2. Krylov projections

In this sectionwe recall two different notions ofmoments based
on Krylov projections. This definition allows for development of
efficient numerical algorithms for the computation of reduced
order models, i.e., the Arnoldi and Lanczos algorithms, see e.g. [1,
13–17] and references therein. These algorithms achieve moment
matching through iterative procedures, without the computation
of moments as in Definition 1.

Consider a linear system (1). Let s1, s2, . . . , sν, sν+1, sν+2, . . . ,
s2ν ∈ C, si ≠ sj, i ≠ j and let V ∈ Cn×ν and W ∈ Cn×ν be,
respectively

V = [(s1I − A)−1B (s2I − A)−1B · · · (sν I − A)−1B], (3a)
W = [(sν+1I − A∗)−1C∗ (sν+2I − A∗)−1C∗

· · · (s2ν I − A∗)−1C∗
]. (3b)

Definition 2. 1. Let θ ∈ C1×ν, θ = [θ1 θ2 · · · θν] be such that
θ = CV . The moments of system (1) at s1, s2, . . . , sν are the
elements θi, i = 1, . . . , ν. We call V the right Krylov projection
matrix.

2. Let ϑ = [ϑ1 ϑ2 · · ·ϑν]
T

∈ Cν be such that ϑ = W ∗B. The
moments of system (1) at sν+1, sν+2, . . . , s2ν are the elements
ϑi, i = ν + 1, . . . , 2ν. We callW the left Krylov projection. �



Using this definition, an interpolation problem is solved. The
following result presents the solution of the interpolation problem
as families of reduced order models (and their duals) that achieve
moment matching at ν interpolation points.

Theorem 1 ([3]). The following statements hold.

1. Let θ be the matrix containing the 0-moments of (1) at {s1, s2,
. . . , sν}. Let ξ(t) ∈ Rν and consider a linear model defined by the
equations

ΣW :


ξ̇ = W∗AVξ + W∗Bu,
η = CVξ, (4)

where V is given by relation (3a) and W ∈ Cn×ν is a matrix
satisfying W∗V = I . Let θ̂ ∈ C1×ν be the moments of (4) as in
Definition 2. Then ΣW as in (4) defines a class of reduced order
models of (1), parameterized inW, that achievemomentmatching
at s1, s2, . . . , sν ∈ C, i.e., θ = θ̂ .

2. Let ϑ be the vector containing the 0-moments of (1) at
{sν+1, sν+2, . . . , s2ν} and. Let ξ(t) ∈ Rν and consider a linear
model defined by the equations

ΣV :


ξ̇ = W ∗AVξ + W ∗Bu,
η = CVξ, (5)

where W is given by relation (3b) and V ∈ Cn is a matrix
satisfying W ∗V = I . Let ϑ̂ ∈ Cν be the moments of (5) as in
Definition 2. Then ΣV as in (5) defines a class of reduced order
models of (1), parameterized in V, that achieve moment matching
at sν+1, sν+2, . . . , s2ν ∈ C, i.e., ϑ = ϑ̂ . �

Note that not all reduced ordermodelsΣW (orΣV, respectively)
preserve properties such as stability, passivity, structure etc.
New results show that the preservation of such properties
depends on the choice of interpolation points {s1, s2, . . . , sν} (or
{sν+1, sν+2, . . . , s2ν}, respectively), see [18–22].

The definition of the matrices V andW allows for the construc-
tion of projections matrices that, used for model reduction, lead to
reduced order models that achieve matching at 2ν points. In other
words, there exists a parameter W = W such that from the class
of modelsΣW there exists a modelΣW of order ν, that matches 2ν
moments. Dually, there exists a parameter V = V such that from
the class of models ΣV there exists a model ΣV of order ν, that
matches 2νmoments. Let s1, s2, . . . , sν, . . . , s2ν ∈ C, si ≠ sj, i ≠ j,
with i, j = 1, . . . , 2ν and assume V ∗W andW ∗V are invertible, re-
spectively, with V as in (3a) and W as in (3b). Let V ∈ Cn×ν andW ∈ Cn×ν be, respectivelyW = W (V ∗W )−1, (6a)V = V (W ∗V )−1. (6b)

Note that W ∗V = I andW ∗V = I , respectively.

Theorem 2 ([3]). The following statements hold.

1. Assume W = W and let ξ(t) ∈ Rν . If θ̂ ∈ Cν are the 0-moments
of ΣW at {s1, . . . , sν} and ϑ̂ ∈ Cν are the moments of ΣW
at {sν+1, . . . , s2ν}, then ΣW ∈ ΣW is a reduced order model of
(1) achieving moment matching at {s1, . . . , s2ν}, i.e., θ = θ̂ and
ϑ = ϑ̂ .

2. Assume V = V and let ξ(t) ∈ Rν . If θ̂ ∈ Cν are the 0-
moments of ΣV at {s1, . . . , sν} and ϑ̂ ∈ Cν are the moments of
ΣV at {sν+1, . . . , s2ν}, thenΣV ∈ ΣV is a reduced order model of
(1) achieving moment matching at {s1, . . . , s2ν}, i.e., θ = θ̂ and
ϑ = ϑ̂ . �
2.3. Time-domain moment matching

In this sectionwe give a brief overview of a notion ofmoment in
a time domain setting, see [10] for a more detailed analysis. Based
on this notion families of parameterized reduced order models
are developed. The free parameters do not depend on the choice
of interpolation points and can be used for enforcing additional
properties.

Consider the linear system (1) and let the matrices S ∈

Rν×ν, L ∈ R1×ν and Q ∈ Rν×ν, R ∈ Rν be such that the pair
(L, S) is observable and the pair (Q , R) is controllable, respectively.
Consider the Sylvester equation

AΠ + BL = ΠS, (7)

in the unknownΠ ∈ Cn×ν and its dual

QΥ = Υ A + RC, (8)

in the unknown Υ ∈ Cν×n. Assume that σ(A)∩σ(S) = ∅. SinceΣ
is minimal, the Sylvester equation (7) has a unique solutionΠ and
rankΠ = ν. Assuming σ(A)∩σ(Q ) = ∅, then Eq. (8) has a unique
solution Υ and rank Υ = ν. (See e.g., [23]).

Definition 3. 1. Let φ = [φ1 φ2 · · ·φν] ∈ C1×ν be such that

φ = CΠ . (9)

We call the moments of system (1) at σ(S) the elements φi, i =

1, . . . , ν. The interpolation points are the eigenvalues of S, i.e.,
{s1, s2, . . . , sν} = σ(S).

2. Let ϕ = [ϕ1 ϕ2 · · ·ϕν]
T

∈ Cν be such that

ϕ = Υ B. (10)

We call themoments of system (1) at σ(Q ) the elements ϕi, i =

1, . . . , ν. The interpolation points are the eigenvalues of Q , i.e.,
{s1, s2, . . . , sν} = σ(Q ). �

Based on Definition 3, we define a family of parameterized models
of order ν that achieve moment matching at the interpolation
points {s1, . . . , sν} = σ(S).

Theorem 3 ([10,11]).
1. Let the pair (L, S) be observable and assume σ(A)∩σ(S) = ∅. Let
ξ(t) ∈ Rν and consider the family of linear models

ΣG :


ξ̇ = (S − GL)ξ + Gu,
η = CΠξ, (11)

parameterized in G ∈ Cν , where Π is the unique solution of (7).
Assume σ(S − GL) ∩ σ(S) = ∅. Let φ̂ ∈ C1×ν be the moments
of (11) at σ(S). Then (11) describes a family of reduced order
models of (1), parameterized in G and achievingmomentmatching
at σ(S), i.e., φ = φ̂.

2. Let the pair (Q , R) be controllable and assume σ(A)∩ σ(Q ) = ∅.
Let ξ(t) ∈ Rν and consider the family of linear models

ΣH :


ξ̇ = (Q − RH)ξ + Υ Bu,
η = Hξ, (12)

parameterized in H ∈ R1×ν , where Υ is the unique solution of
(8). Assume σ(Q − RH) ∩ σ(Q ) = ∅. Let ϕ̂ ∈ C1×ν be the
moments of (12) at σ(Q ). Then (12) describes a family of reduced
order models of (1), parameterized in H and achieving moment
matching at σ(Q ), i.e., ϕ = ϕ̂. �

Note that the moments as in Definition 1 are equivalent to the
notions in Definition 3. Selecting (L, S) and (Q , R) in canonical
forms, easy computations yield [η(s1) · · · η(sν)] = φ = ϕ.
TheMIMO case. Consider aMIMO system of the form (1), with input
u(t) ∈ Rm, output y(t) ∈ Rp, i.e., B ∈ Cn×m and C ∈ Cp×n



and the transfer function K(s) ∈ Cp×m. Let S ∈ Cν×ν and L =

[l1 l2 · · · lν] ∈ Cm×ν, li ∈ Cm, i = 1, . . . , ν, be such that the
pair (L, S) is observable. Let Π ∈ Cn×ν be the unique solution
of the Sylvester equation (7). Simple computations yield that the
moments η(si) = K(si)li, η(si) ∈ Cp, i = 1, . . . , ν of system (1) at
{s1, . . . , sν} = σ(S) are in one-to-one relation with CΠ . Consider
the following system

ξ̇ = Fξ + Gu,
ψ = Hξ,

(13)

with ξ(t) ∈ Rν, ψ(t) ∈ Rp,G ∈ Cν×m and H ∈ Cp×ν . The model
reduction problem for MIMO systems boils down to finding a ν-th
order model described by Eqs. (13) which satisfies the conditions

K(si)li = K(si)li, i = 1, . . . , ν, (14)

where K(s) = H(sI − F)−1G is the transfer function of (13).
The relations (14) are called the right tangential interpolation
conditions, see [24]. It immediately follows that the solution to
this problem is provided by a direct application of Theorem 3,
i.e., a class of reduced order MIMO models that achieve moment
matching in the sense of satisfying the tangential interpolation
conditions (14) is given byΣG = (S − GL,G, CΠ) as in (11).

Similarly, we may define the left tangential interpolation
problem and its solution. To this end, let Q ∈ Cν×ν and R =

[r∗

1 · · · r∗
ν ]

∗
∈ Cν×p, ri ∈ C1×p, i = 1, . . . , ν, be such that the pair

(Q,R) is controllable. Let Υ ∈ Cν×n be the unique solution of (8).
Hence the moments η(si) = riK(si), η(si) ∈ C1×m, i = 1, . . . , ν,
of system (1) at {s1, . . . , sν} = σ(Q) are in one-to-one relation
with Υ B. The model reduction problem boils down to finding a ν-
th order model described by Eqs. (13) which satisfy the conditions

riK(si) = riK(si), i = 1, . . . , ν. (15)

The relations (15) are called the left tangential interpolation
conditions, see [24] and the solution to this problem is provided
by a direct application of Theorem 3, i.e., a class of reduced order
MIMO models that achieve moment matching in the sense of
satisfying the tangential interpolation conditions (15) is given by
ΣH = (Q − RH,Υ B,H) as in (12).

Note finally that also in the MIMO case the models are param-
eterized in L and R, respectively. Their choice is important in es-
tablishing appropriate directions for interpolation. Throughout the
rest of the paper we discuss the SISO case, i.e., m = p = 1,
the results being easily extended to tangential interpolation for
MIMO systems. However, when necessary, we make specific re-
marks about the latter case.

2.4. On the equivalence of various families of reduced order models

The equivalence between the families of reduced order models
described by Eqs. (11), (12), (4) and (5) is now established, see [11].
In otherwords, there exist parametersG andH , respectively, which
provide a subclass of models from the classesΣW orΣV.

First we establish relations between the projections V and W
and the solutions of the Sylvester equationsΠ andΥ , respectively.

Lemma 1 ([11]). The following statements hold.

1. Consider the matrix Π , solution of the Sylvester equation (7) and
the projector V defined by Eq. (3a). There exists a square, non-
singular, matrix T ∈ Cν×ν such that Π = VT .

2. Consider the matrix Υ , solution of the Sylvester equation (8) and
the projector W defined by Eq. (3b). There exists a square, non-
singular, matrix T ∈ Cν×ν such that Υ = TW. �
Fig. 1. Graphical illustration of Theorem 4.

Theorem 4 ([11]). Consider the families of reduced order models
ΣW,ΣV,ΣG and ΣH described by Eqs. (4), (5), (11) and (12),
respectively. Then the following statements hold.

(a) For any W there exists a (unique) G such that ΣG = ΣW and
σ(S) ∩ σ(S − GL) = ∅.

(b) For any G such that σ(S)∩ σ(S − GL) = ∅ there exists aW such
that ΣG = ΣW.

(c) For any V there exists a (unique) H such that ΣV = ΣH and
σ(Q ) ∩ σ(Q − RH) = ∅.

(d) For any H such that σ(Q )∩σ(Q −RH) = ∅ there exists a V such
that ΣV = ΣH .

(e) Assume Q = S. For any H such that σ(Q )∩σ(Q −RH) = ∅ there
exists a unique G such that σ(S)∩σ(S −GL) = ∅ andΣG = ΣH
and vice versa. �

An illustration of the results expressed by Theorem 4 is given
in Fig. 1. Therein, the symbol ∃ (∃ !, respectively) denotes that for
a given model in the family fromwhere the arrow originates there
exists (exists and is unique, respectively) a model in the family
where the arrow terminates.

The parameters G and H can be selected, respectively, such
that certain properties of the approximating model, e.g., stability,
passivity, prescribed relative degree, port-Hamiltonian structure,
etc., are preserved/enforced, see e.g. [10,25,26]. The selections of
G and H are independent of the interpolation points used for
moment matching, i.e., the choices of G and H do not depend on
the definition of L and S or Q and R, respectively.

3. Minimality analysis of moment matching models

The selections of the free parameters help to identify (sub-
classes of) reduced order models that achieve moment matching
and satisfy desired properties. Following these arguments, we an-
alyze the controllability andobservability properties of the families
of models. As a result we determine the subclasses of models of or-
der less than the number of matched moments. Furthermore, we
determine the number of maximal pole–zero cancellations possi-
ble, i.e., we compute the model of the lowest order that achieves
a prescribed number of moments. Preliminary results are found
in [12].

Throughout the rest of the paper we make the following
standing assumption.

Assumption 1. The pair (L, S) is observable and the pair (Q , R) is
controllable. σ(S)∩σ(A) = ∅ and σ(Q )∩σ(A) = ∅. Furthermore,
G is such that σ(S) ∩ σ(S − GL) = ∅ and H is such that σ(Q ) ∩

σ(Q − RH) = ∅.

Assumption 1 is not restrictive, i.e., the freedom of choosing the
interpolation points allows for the controllability and observability
assumptions to be made. Furthermore, the assumptions on the
spectra of the aforementioned matrices only ensure that the
interpolation points are not among the poles of the given linear



system and the reduced order models, respectively, i.e., ensure the
moments are well defined.

We seek G and H that provide models from the classes ΣG
and ΣH , respectively, of orders lower than ν, i.e., the number of
matched moments. Furthermore, we compute G and H that yield
the (unique) lowest order models, i.e., half the number of matched
moments/interpolation points, from the classes ΣG and ΣH . The
results of this subsection solve the problem of matching a number
of moments, equal to double the order of the reduced model, from
a pole–zero cancellation point of view.

Since we assume that σ(S)∩σ(S−GL) = ∅ the pair (S−GL,G)
is controllable. However, the pair (CΠ, S − GL) is not necessarily
observable, i.e., ΣG is not necessarily minimal. However, if G is
such that ΣG has relative degree ν, then ΣG is observable. A
similar argument follows for the ΣH case, i.e., the pair (H,Q −

RH) is observable, yet the pair (Q − RH,Υ B) is not necessarily
controllable, i.e.ΣH is not necessarily minimal. If themodelsΣG or
ΣH , are notminimal, respectively, then anumber of poles and zeros
can be canceled, yielding subclasses of parameterized reduced
order models of orders less than ν.

Theorem 5. Let ΣG and ΣH be reduced order models that match ν
moments of the system (1), respectively. Let KG(s) = CΠ(sI − S +

GL)−1G be the transfer function of ΣG and let KH(s) = H(sI − Q +

RH)−1Υ B be the transfer function of ΣH . AssumeΣG andΣH are not
minimal. Let k ∈ N and let z = [z1 · · · zk]T ∈ Ck, zi ≠ zj, i =

1, . . . , k, j = 1, . . . , k be, such that zi ∉ σ(S) and zi ∉ σ(Q ). Then
the following statements hold.

(G1) Assume ν = 2k. Let

M(z) =


L(z1I − S)−1

L(z2I − S)−1

...

L(zkI − S)−1

 ∈ Ck×2k,

N(z) =


CΠ(z1I − S)−1

CΠ(z2I − S)−1

...

CΠ(zkI − S)−1

 ∈ Ck×2k,

T (z) =


N(z)
M(z)


∈ C2k×2k.

(16)

Then there exists a unique G = T−1(z)

−ű
0


, with ű =

[1 · · · 1]T , such that the numbers zi are both zeros and poles of
KG(s), i.e., k pole–zero cancellations occur in KG(s). Furthermore,
setting [κ1 κ2] = CΠT−1(z), the cancellations yield a model of
minimal order k given by

K̂(s) = −

k
i=1
κ1i


j≠i
(s − zj)

k
j=1
(s − zi)+

k
i=1
κ2i

k
j≠i
(s − zj)

, (17)

where κi = [κi1 κi2 · · · κik], i = 1, 2.
(H1) Assume ν = 2k. Let

M(z) =

(z1I − Q )−1R (z2I − Q )−1R

· · · (zkI − Q )−1R


∈ C2k×k,

N(z) =

(z1I − Q )−1Υ B (z2I − Q )−1Υ B

· · · (zkI − Q )−1Υ B


∈ C2k×k,

T (z) = [N(z)M(z)] ∈ C2k×2k.

(18)
Then there exists a unique H = [−ű 0] T−1(z), with ű =

[1 · · · 1], such that the numbers zi are both zeros and poles of
KH(s), i.e., k pole–zero cancellations occur in KH(s). Further-
more, letting


κ1
κ2


= T−1(z)Υ B, the cancellations yield a model

of minimal order k given by K̂(s), as in (17).
(G2) Assume ν = 2k + 1. Then there exists a parameterized ma-

trix G(α) ∈ C2k+1, α ∈ C, such that the numbers zi are both
zeros and poles of KG(s), i.e., k pole–zero cancellations occur
in KG(s), yielding a subclass of models ΣG(α) of minimal order
k + 1, described by KG(α)(s) as in (17), with [κ1(α) κ2(α)] =

CΠ(α)T−1(z, α), T (z, α) ∈ C(2k+2)×(2k+2).
(H2) Assume ν = 2k + 1. Then there exists a parameterized ma-

trix H(α) =

H ′(α) α


, α ∈ C,H ′(α) ∈ C1×2k, such that the

numbers zi are both zeros and poles of KH(s), i.e., k pole–zero
cancellations occur in KH(s), yielding a subclass of modelsΣH(α)
of minimal order k + 1, described by KH(α)(s) as in (17), with
κ1(α)
κ2(α)


= T−1(z, α)Υ B, where T (z, α) ∈ C(2k+2)×(2k+2). �

Proof of G1. Let ΣG be a model of order ν = 2k, non-minimal.
Then, according to Lemma A.1 we write

KG(s) = CΠ(sI − S + GL)−1G =
CΠ(sI − S)−1G
1 + L(sI − S)−1G

.

To this end, G should be such that zi, i = 1, . . . , k are zeros and
poles of KG(s), i.e.,

L(ziI − S)−1G = −1, i = 1, . . . , k,
CΠ(ziI − S)−1G = 0, i = 1, . . . , k.

Hence by (16), T (z)G =


−ű
0


. By Lemma A.3 we have that T (z) is

invertible, hence G = T−1(z)

−ű
0


. This is the unique G that yields

k pole–zero cancellations. Applying the coordinate transformation
ζ = [ζ T

1 ζ T
2 ]

T
= T (z)ξ and using the relations (A.2), ΣG is

described by the normal form

ζ̇1 = Zζ1 − űu,
ζ̇2 = Zζ2 − űη,

η = κ1ζ1 + κ2ζ2,

where Z = diag{z1, . . . , zk} and [κ1 κ2] = CΠT−1(z). Note that
zi are invariant zeros for (19). By further simple computations,
KG(s) becomes K̂(s) of degree k. Note that zi are invariant
zeros of ΣG. Furthermore, by the construction of T (z) and the
Kronecker–Capelli theorem, no further cancellations are possible.
Proof of G2. Let ν = 2k+1. Consider thematrix T (z) ∈ C2k×(2k+1)

as in (16). Let T ′(z) ∈ C2k×2k and t(z) ∈ C2k be such that T (z) =

[T ′(z) t(z)]. By construction, T (z)G =


−ű
0


. Denoting G = [G′

T
α]

T

we have T ′(z)G′
+ t(z)α =


−ű
0


. Noting that by Remark A.1,

we assume, without loss of generality, that T ′(z) is invertible. This

yields G(α) =


T ′

− 1(z)


−ű
0


− t(z)α


α


.

In order to determine KG(α)(s) of order k + 1 we consider
the augmented problem of matching at 2k + 2 points. Let β ∈

C be determined by the parameterization of G(α) and S̄(β) =

diag{S, β} ∈ C(2k+2)×(2k+2), L̄ = [L 1] ∈ C1×(2k+2). Note that
since the pair (L, S) is observable, the pair (L̄, S̄) is observable, too.
Further, let Π̄(β) = [Π p(β)] ∈ Cn×(2k+2) satisfy the Sylvester
equation AΠ̄(β) + BL̄ = Π̄(β)S̄. Then the moments of the given
system at σ(S̄) = σ(S) ∪ {β} are CΠ̄(β) = [CΠ ηβ ], ηβ =

Cp(β) = C(βI − A)−1B. Let Ḡ = [GT 0]T . The class of reduced
order models that match 2k + 2 moments at σ(S̄) are

S̄ − ḠL̄ = diag{S − GL, β}, Ḡ, H̄ = [CΠ ηβ ]. (19)



Note that K̄(s) = H̄(sI − S̄ − ḠL̄)−1Ḡ = KG(s). Let zk+1 be the addi-
tional, ‘‘dummy’’ pole/zero to be canceled, i.e., K̄(s) = K̂(s) s−zk+1

s−zk+1
.

Construct T̄ (z, zk+1, β) as in (16). Hence Ḡ = T−1(z, zk+1, β)
−űk+1
0k+1


. It follows from the even case that T̄ (z, zk+1, β) can be used

as a coordinate transformation to compute the normal form of (19)
with the invariant zeros z and zk+1. Hence, performing k + 1 can-
cellations (actually k, since zk+1 is canceled by default) yields K̂(s)
described by (17), with κ1 and κ2 replaced by [κ̄1(β), κ̄2(β)] =

CΠ̄(β)T−1(z, zk+1, β). To complete the proof of the claim, note
that from the matching condition ηβ = CΠ(βI − S)−1G(α), β de-
pends on the free parameter α, i.e., β = β(α) and so κi(β) →

κi(α), i = 1, 2 and T (z, zk+1, β) → T (z, α).
The proofs of statements (H1) and (H2) follow the same argu-

ments, hence they are omitted. �

According to [10, Proposition 1], system ΣG parameterizes all
ν-th order models that match the moments of (1) at σ(S). Hence,
there exists a unique G with at most ν/2 degrees of freedom
allowing ν/2 cancellations of poles and zeros. Above this number,
information about the ν moments is lost, resulting in loss of
matching. If ν is even, after ν/2 cancellations, we get a unique
model of minimal order ν/2, from the family ΣG that matches ν
moments. If ν = 2k+ 1, after k cancellations we obtain a family of
parameterized models of order k + 1 with one degree of freedom,
thatmatch ν = 2k+1moments. A similar argument follows for the
ΣH model. The result in Theorem 5 for si = 0, i = 1, . . . , 2ν is in
accordance with the results from the Padé approximation theory,
see e.g., [27].

Remark 1. From a practical point of view it is desired to have
transfer functions with real coefficients. Assume KG(s) has real
coefficients. If zi ∈ R, i = 1, . . . , k, employing Theorem 5, means
that we cancel k zeros and poles, hence K̂(s) as in (17) has real
coefficients, too. If some zi ∈ C−R, sinceKG(s)has real coefficients,
the complex zi’s are in complex conjugate pairs. Hence, by (17),
K̂(s) has real coefficients, too. Similar arguments hold forΣH . �

Remark 2. Consider the case in which ν ≥ n. Assume ν = n + µ.
By Theorem 3 there exists a class of parameterized models ΣG =

(S−GL,G, CΠ) thatmatch the n+µmoments CΠ at σ(S). Finding
the set ofmatricesG that allow forµ pole–zero cancellations yields
that the system Σ belongs to a subclass of models of order n
that match n + µ moments. Furthermore, if µ = ν, employing
Theorem 5, yields that the system (1) is the unique n-th order
model (from the class of models that achieve moment matching)
that matches 2nmoments given by CΠ .

If ν = n, then, by Assumption 1, the unique solutionΠ ∈ Cn×n

of (7) is invertible. Hence (7) becomes Π−1AΠ = S − Π−1BL.
Denoting by KG the transfer function of any model from the class
ΣG, yields that for G = Π−1B ⇒ K(s) = KΠ−1B(s), i.e., system
(1) is a model from the class ΣG for a specific choice of G. Similar
arguments follows for theΣH class of models. �

Remark 3. Unfortunately, the results of Theorem 5 are not gener-
ally applicable to the multiple-input, multiple-output case. How-
ever, for very conservative cases, such as k ≥ 2p, where p is the
number of outputs, there is the possibility of finding a G as in
Theorem 5, provided some rank constraints are met. However, for
instance, for the case p > 2k the problem does not even have a
solution. In this case, in order to find G such that the reduced order
model is minimal, one should follow a classic observable decom-
position of the system and retain the controllable and observable
part of the realization.
Example 1. Consider the reduced order model from [10, Example
1], i.e.,

CΠ = [η0 η1 η2], L = [1 0 0], S =

0 1 0
0 0 1
0 0 0


, (20)

with η20 +η21 +η22 ≠ 0, where η0, η1 and η2 are the given zero, first
and second order moments at zero, respectively. All parameters G
such that the model has relative degree one, are given by

G = γ


η0
η1
η2


+ δ


η1

η2 − η0
−η1


,

with γ ≠ 0 and δ ∈ R. 0 is not a pole of the model if and only if
γ ∉


−
δη1
η0
,
δη1
η2
,
δ(η0−η2)

η1


. The transfer function of the reduced

order model is

Kγ δ(s) =
(η20 + η21 + η22)s

2
+ (η0η1 + η1η2)γ − (η20 + η21δ)s − η0η1γ + η0η2γ

s3 + (γ η0 + δη1)s + γ η2 − δη1
.

If δ = −
a2γ 2

+a1γ+a0
b1γ+b0

, with

a0 = η30,

a1 = −η31η2 + 3η0η1η22 + η20η1η2 + η20η1η2 + η0η
3
1 + 2η1η30,

a2 = η41η0 + η20η
2
1η2 + η52 + 2η21η

3
2 + η20η

3
2 + η41η2

+ η30η
2
1 + η0η

2
1η

2
2,

b0 = η41 + η20η
2
2 + η20η

2
1 − η30η2 − 2η0η21η2,

b1 = η51 − η32η1η0 − η30η1η2 + η31η
2
2 + η20η

3
1,

then a pole and a zero are canceled, and a second order model is
obtained, with the transfer function given in Box I. Since 0 is not
a pole of the model, then Kγ (s) characterizes the family of lowest
order models that match the moments CΠ . Further canceling is

possible, i.e., for γ =
−1

η20+η21+η22

η20
η1
, we get K̂(s) =

−η20
η1s−η0

, that has

no information about η2, hence matching is not possible. For this
value of γ the condition that the interpolation points are not poles
of the reduced order models is not satisfied. �

Example 2. The result of Theorem 5 is generically true, however
there are other cases inwhich there exist systems of order less than
k that match, say ν = 2kmoments.

Consider the second order transfer function

K(s) =
as + b

s2 + cs + d
.

Wewant to find the parameters a, b, c, d ∈ R, such that K(0) = η0
and K(1) = η0. Indeed K(s)matches the moments η0 at 0 and 1, if
and only if a = η0(1 + c), b = η0d, d ≠ 0 and c + d ≠ −1, i.e.,

K(s) = η0
(1 + c)s + d
s2 + cs + d

. (21)

However, there exists a constant function (i.e., a transfer function
of order 0), K̂(s) = η0, that matches the moments η0 at s = 0 and
s = 1 of K(s) as in (21) (see also Fig. 2).

In general, there exists a function of order 0, i.e., a constant that
matches l moments of a rational function r(s)

p(s) , where r(s) and p(s)
are polynomials in s, i.e., the interpolation points are the zeros of
the error function. This is proven by noting that the equation

r(sj)
p(sj)

= η0, j = 1, . . . , l,

has l solutions sj, which are the zeros of the polynomial equation
r(s) − η0p(s) = 0. Hence, the constant function η0 matches l
moments of the rational function r/p.



Kγ (s) =
−γ (η21(η

2
1 + η22 − η0η2)+ η20η

2
1 − η0η

3
2 − η30η2)s + η0γ (η1η

2
2 + η31 + η20η1)+ η30

(−η21 + η0η2)s2 + (η1η0 + γ η2(η
2
0 + η21 + η22))s − η20 − γ η1(η

2
0 + η21 + η22)

Box I.
Furthermore, let r(s) = al−1sl−1
+ al−2sl−2

+ · · · + a0, ai ∈

C, i = 0, . . . , l and p(s) = sl + bl−1sl−1
+ bl−2sl−2

+ · · · + b0, bi ∈

C, i = 0, . . . , l, with 2l < k < 2k = ν. The moment matching
problem is to find the coefficients ai and bi such that

r(sj)
p(sj)

= ηj, j = 1, . . . , ν,

i.e., the rational function r/p that matches ν moments. In the
matrix form, the problem is rewritten as
Γ1
Γ2


α =


γ1
γ2


, (22)

where α = [al−1 · · · a0 bl−1 · · · b0]T ∈ C2l, γ1 = [η1sl1 · · · ηlsll]
T

∈

C2l and γ2 = [ηl+1sl1+1 · · · ηνslν]
T

∈ Cν−2l. Γ1 ∈ C2l×2l and Γ2 ∈

C(ν−2l)×2l are matrices with a Vandermonde-like structure with
elements depending on sj and ηj. Assuming Γ1 is invertible, (22)
yields α = Γ −1

1 γ1 which further yields a (restrictive) condition on
the moments ηj and sj, i.e.,

Γ2Γ
−1
1 γ1 = γ2 ⇔ γ1 ∈ ImΓ2Γ

−1
1 . (23)

In other words, there exists a rational function r/p of order l < k
that matches ν = 2k moments only if the moments and the
interpolation points satisfy condition (23). �

3.1. On the minimality of the Krylov models

Based on the minimal order results from Theorem 5 and the
equivalence results from Theorem 4 we determine the (subclasses
of) Krylov based reducedordermodels, ofminimal order, subsets of
ΣW orΣV, respectively. Hence we present a method which allows
for efficient computations of (minimal order) models, that match
a prescribed number of moments, larger than the order of the
models.

Corollary 1. The following statements hold.

1. Consider the family of ν = 2k order modelsΣW, as in (4), k ∈ N.
There exists a set of matrices W̄ such that the subclass of models
ΣW̄ ⊆ ΣW that match 2k moments, have minimal realizations
of order k. Furthermore, all models ΣW̄ have the same (unique)
transfer function of degree k.

2. Consider the family of ν = 2k order models ΣV, as in (5), k ∈ N.
There exists a set of matrices V̄ such that the subclass of models
ΣV̄ ⊆ ΣV that match 2k moments, have minimal realizations
of order k. Furthermore, all models ΣV̄ have the same (unique)
transfer function of degree k. �

Proof. LetΣḠ be the k-th order model that matches 2k prescribed

moments, where Ḡ = T−1(·)

−ű
0


, with ű = [1 · · · 1]T , with T as in

(16). By Theorem 4, there exists W̄ such thatΣW̄ = ΣḠ, i.e., by the
controllability of (1), there exists W̄ satisfying W̄ ∗B = G, W̄ ∗V =

I , with V = Π , whereΠ is the unique solution of (7). Furthermore,
noting that W̄ ∗AV = S − ḠL and CΠ = CV , which means that
KW̄ (s) = KḠ(s) = K̂(s), with K(s) as in (17), completes the proof.
The proof of the second statement is identical, hence omitted. �

Based on this result, we present a procedure to compute the
approximant which matches a number of moments equal to twice
Fig. 2. K̂(s) = 2 matches the 0-moment 2 at s = 0 and the 0-moment 2 at s = 1
of K(s) =

4s+6
s2+s+3

.

the order of the approximant. Given a linear, minimal system (1) of
order n and a set of 2ν interpolation points, ν < n, find a model of
order ν thatmatches 2νmoments at the given interpolation points.

Algorithm 1. Computation of a model of order ν that matches 2ν
moments.

• Using any efficient numerical method, compute the class of
reduced order modelsΣW, and implicitly CV .

• Solve the linear algebraic system T (·)Ḡ =


−ű
0


, with ű =

[1 · · · 1]T and T as in (16).
• Construct a projection matrix W̄ which satisfies W̄ ∗B = Ḡ.
• The reduced order model is ΣW̄ as in (4) with the transfer

function K̂(s) as in (17). �

With a little modification, Algorithm 1 can be used for the
computation of sub-families of models of order less than ν.
Furthermore, the difference to matching 2ν points is, that here,
we do not need to build double sided projections, one is sufficient
for matching the first ν moments with the rest of additional
ν moments matched through the particular instance of the
parameter G.

The results hold for ν = 2k + 1, too.

Remark 4. Consider the ν-th order model ΣW as in Theorem 2,
whichmatches 2ν points. Applying Corollary 1, there existsG ∈ Cν
such that ΣG ∈ ΣG matches 2ν moments, i.e., G = U−1 W ∗B,U
invertible. Now, consider the ν order model ΣḠ with the transfer

function (17). Then, there exists U invertible, such that
G
0


= UḠ.

By uniqueness, the transfer functions associated to the models,
satisfy KW = KG = KḠ = K̂(s), with K̂(s) as in (17). Furthermore,
let (F , Ḡ,H) be a non-minimal 2ν order realization ofΣḠ, with the
transfer function K̂(s). ΣḠ matches the 2ν prescribed moments if
there exists an invertible matrix P ∈ C2ν×2ν such that HP = CΠ
and P is the unique solution of FP + ḠL = PS (see [10]). Since P is
invertible, we have that (F , Ḡ) is controllable (see also Section 3).
However, since the pair (H, F) is not observable, pick P to be



Fig. 3. The reduced order model matching moments at 2ν interpolation points
(series connection).

the coordinate transformation that yields the following observable
decomposition

F =


F1 0
F2 F3


, P−1Ḡ =


G1
G2


, H = [H1 0],

with (F1,G1,H1)minimal. Thematching conditions yield F1 = S1−
G1L1 andH1 satisfying [H1 0]P = CΠ , where S = diag{S1, S2}, L =

[L1 L2]. The application of Theorem4 establishes a relation between
ΣW and ΣḠ with the minimal realization (S1 − G1L1,G1,H1), i.e.,
there exists an invertible matrix U , such that G1 = U−1 WB and
H1 = CVU , with V as in (3a). �

4. Interconnections of moment matching models

The families of models (11) (parameterized in G) and (12)
(parameterized in H) approximate system (1) achieving moment
matching at ν interpolation points, i.e., say {s1, . . . , sν} = σ(S)
and say {sν+1, . . . , s2ν} = σ(Q ), respectively. We assume that
sk ≠ sj, for all k = 1, . . . , ν and j = ν + 1, . . . , 2ν. In the
sequel we propose reduced order models (parameterized in G
and H) that approximate (1) and match its moments at 2ν points
{s1, . . . , s2ν}.

Assumption 2. σ(S) ∩ σ(Q ) ∩ σ(S − GL) ∩ σ(Q − RH) = ∅.

Let ϵ ∈ C1×2ν be the moments of (1) at σ(S) and σ(Q ).

Theorem 6. Let [ξ T1 (t) ξ
T
2 (t)]

T
∈ R2ν . Consider the linear model

ΣHG :

ξ̇1 = (Q − RH)ξ1 + Υ Bu,
ξ̇2 = (S − GL)ξ2 + GHξ1,
η2 = CΠξ2,

(24)

parameterized in H ∈ R1×ν and G ∈ Rν (see also Fig. 3). Assume
that the pair (Q , R − Υ B) is controllable and the pair (L − CΠ, S)
is observable. Furthermore, assume that the interpolation points are
not zeros of (1). Let ϵ̂ ∈ C1×2ν be the moments of (24) at σ(S)
and σ(Q ). Let 2ν ≤ n, then (24) is a reduced order model of (1),
that achieves moment matching at σ(S) and σ(Q ), i.e., ϵ = ϵ̂ if
and only if G and H are such that σ(S) = σ(Q − RH + Υ BH) and
σ(Q ) = σ(S − GL + GCΠ). �

Proof. To start with, the controllability and observability assump-
tions on the pairs (Q , R−Υ B) and (L−CΠ, S), respectively, imply
the existence of matrices H and G such that the eigenvalue condi-
tions are satisfied. Let KG(s) be the transfer function of (11) and
KH(s) be the transfer function of (12). Hence, the transfer func-
tion of (24) is K̂(s) = KG(s)KH(s). The model (24) achieves mo-
ment matching at si ∈ {s1, . . . , s2ν} if the error function E(s) =

K(s) − K̂(s) satisfies E(si) = 0, where K(s) is the transfer func-
tion of (1). Let si ∈ σ(Q ). Then, by Theorem 3, we have that
KH(si) = K(si). Then E(si) = K(si) − KG(si)KH(si) = K(si) −

K(si)KG(si) = K(si)(1−KG(si)). Thus, E(si) = 0 ⇔ −KG(si)+1 = 0,
i.e. si is a zero of the system 1 − K̂(si), which is equivalent to
∃ [vT1v2]

T
∈ Rν+1 such that


S − GL G
−CΠ 1

 
v1
v2


=


siv1
0


.This is equiv-

alent to si ∈ σ(S − GL + GCΠ). The other eigenvalue condition is
proven in a similar way. �
Fig. 4. The reduced order model matching moments at 2ν interpolation points
(parallel connection).

Remark 5. The assumptions that the pair (Q , R − Υ B) is control-
lable and the pair (L − CΠ, S) is observable do not affect the gen-
erality of the result, since S, L, Q and R are related to the choice
of interpolation points. Furthermore, since the pair (L, S) is chosen
observable, and since observability is a generic property, there ex-
ist v ∈ C1×ν such that (L− v, S) is observable. A similar statement
holds for the controllability of the pair (Q , R − Υ B). �

Theorem 7. Let [ξ T1 (t) ξ
T
2 (t)]

T
∈ R2ν . Consider the linear model

ΣH+G :

ξ̇1 = (Q − RH)ξ1 + Υ Bu,
ξ̇2 = (S − GL)ξ2 + Gu,
η = CΠξ2 + Hξ1,

(25)

parameterized in H ∈ R1×ν and G ∈ Rν (see also Fig. 4). Let
ϵ̂ ∈ C1×2ν be a vector containing the moments of (25) at σ(S) and
σ(Q ). Let 2ν ≤ n, then (25) is a reduced order model of (1), that
achieves moment matching at σ(S) and σ(Q ), i.e., ϵ = ϵ̂, if and only
if there exist matrices G ≠ 0 and H ≠ 0 such that si, i = 1, . . . , ν are
among the finite zeros of ΣH and sj, j = ν + 1, . . . , 2ν are among
the finite zeros of ΣG. �

Proof. Let KG(s) be the transfer function of (11) and KH(s) be the
transfer function of (12). Hence, the transfer function of (24) is
K̂(s) = KH(s)+ KG(s). The model (24) achieves moment matching
at si ∈ {s1, . . . , s2ν} if the error function E(s) = K(s) − K̂(s)
satisfies E(si) = 0, where K(s) is the transfer function of (1). Let
si ∈ σ(Q ). Then, by Theorem 3, we have that KH(si) = K(si). Then
E(si) = K(si)−KH(si)−KG(si) = K(si)−H(si)−KG(si) = −KG(si).
Thus, E(si) = 0 ⇔ −KG(si) = 0, i.e. si is a zero of KG(si). The other
zero condition is proven in a similar way. �

Remark 6. There exist matrices G and H such that the zeros are
assigned according to the conditions in Theorem7, see [10]. SinceG
assigns ν zeros, there are ν constraints on the elements of G, hence
G is unique. Similarly, H is unique and so, there is only one model
(25) that matches 2ν moments at σ(S) and σ(Q ). �

Remark 7. Both Theorems 6 and 7 can be extended to the case of
matching Nν points, resulting in models of order at most (N −1)ν.
However the conditions are more restrictive, e.g. in the parallel
connection (N − 1)ν interpolation points must be zeros of the
(N − 1)ν interconnected systems.

Based on Theorem 6 the problem of finding a reduced order
model that matches ν interpolation points, can be solved as fol-
lows. First, compute two (classes of) reduced order modelsΣG and
ΣH that match ν/2 moments, respectively and then apply The-
orem 6 to find G and H such that the series interconnection of
ΣG and ΣH matches ν moments. Further splitting the problem,
one may solve ν first order moment matching problems, result-
ing in say Kg1(s), . . . , Kgν (s) first order models, parameterized in
g1, . . . , gν . Applying Theorem 6, results in a system of ν equa-
tions in the unknowns g1, . . . , gν , i.e.,

ν
i≠j Kgi(sj) = 1. The so-

lution g1, . . . , gν is such that the (unique) model Kg1,...,gν (s) =

Kg1(s)Kg2(s) · · · Kgν (s) matches all the prescribed ν moments. Fu-
ture workwill include a thorough theoretical and numerical inves-
tigation of such arguments. �



Fig. 5. The reduced order model matching moments at 2ν interpolation points
(feedback connection).

Example 3. In this example we compute a third order model
that matches three chosen moments, using the arguments from
Remark 7. To this end, let Kg1(s) =

g1
s+g1

be such that η(0) =

Kg1(0) = 1, Kg2(s) =
g2

s−1+g2
be such that η(1) = Kg2(1) = −1

and Kg3(s) =
1
2

g3
s+1+g3

such that η(−1) = Kg3(−1) = 1/2.
Applying Theorem 6 yields g1 = 1.656, g2 = 0.567 and g3 =

−2.906. Hence the unique third order model that matches the
moments η(0), η(1) and η(−1) is defined by the transfer function
Kg1,g2,g3(s) = Kg1(s)Kg2(s)Kg3(s) =

1.365
s3−0.683s2−3.048s+1.365

. �

Theorem 8. Let [ξ T1 (t) ξ
T
2 (t)]

T
∈ R2ν . Consider the linear model

ΣHrG :

ξ̇1 = (Q − RH)ξ1 + Υ BCΠξ2 + Υ Bu,
ξ̇2 = (S − GL)ξ2 + GHξ1,
η = Hξ1,

(26)

parameterized in H ∈ R1×ν and G ∈ Rν (see also Fig. 5). Assume that
σ(Q ) does not contain any zero of the original model. Let ϵ̂ ∈ C1×2ν

be the moments of (26) at σ(S) and σ(Q ). Let 2ν ≤ n, then (26) is a
reduced order model of (1), parameterized in G and H and achieving
moment matching at σ(S) and σ(Q ), i.e., ϵ = ϵ̂, if and only if, there
exist G and H, such that sj, j = ν + 1, . . . , 2ν are among the finite
zeros of ΣG and the moments of ΣH at si, i = 1, . . . , ν match the
moments of the (positive) feedback closed-loop interconnection of ΣG
with itself. �

Proof. Let KG(s) be the transfer function of (11) and KH(s) be the
transfer function of (12). Hence, the transfer function of (24) is
K̂(s) =

KH (s)
1−KG(s)KH (s)

. The model (24) achieves moment matching at

si ∈ {s1, . . . , s2ν} if the error function E(s) = K(s)− K̂(s) satisfies
E(si) = 0, where K(s) is the transfer function of (1). Let si ∈ σ(Q ).
Then, by Theorem 3, we have that KH(si) = K(si). Then, E(si) =

0 ⇔ K(si)−
KH (si)

1−KG(si)KH (si)
= 0. Let si ∈ σ(Q ), then by assumption,

K(si) = KG(si) and we have that KG(si)K 2(si) = 0 ⇔ KG(si) = 0.
Let si ∈ σ(S), then E(si) = 0 ⇔ K(si)− (K 2(si)+ 1)KH(si) = 0 ⇔

KH(si) =
KG(si)

1+K2
G (si)

, which proves the last statement. �

Remark 8. If σ(Q ) coincides with the zeros of the original transfer
function then the parameter G is free and can be used for other
purposes, such as cancellation, resulting in lower order models.
Hence we obtain families of reduced order models of order less
than or equal to 2ν that match 2ν moments. �

5. Conclusions

In this paper we have presented several equivalent notions
of moment for linear systems. Based on these notions, we
have presented classes of parameterized reduced order models
that achieve moment matching. We have analyzed the relations
between models from different classes. We have analyzed
the controllability and observability properties of the models
belonging to each of the classes of reduced order models. We
have obtained the subclasses of models of orders lower than the
number of matched moments, based on computing the sets of
parameters that allow for pole–zero cancellations to occur in the
reduced order transfer function. Furthermore, we have computed
the (subclass of)minimal ordermodel(s), that is half of the number
ofmatchedmoments, proving that, generically, the largest number
of pole–zero cancellations is of order half the number of matched
moments. Finally, we have presented reduced order models that
match larger numbers of moments, based on series, parallel and
feedback interconnections between models from different classes,
paving the way for splitting the moment-matching problem into
problems of smaller dimensions.

Appendix A. Preliminaries for the proof of Theorem 5

Lemma A.1. Let KG(s) = CΠ(sI − S + GL)−1G be the transfer
function of the reduced order model (11). Then

KG(s) =
CΠ(sI − S)−1G
1 + L(sI − S)−1G

. � (A.1)

Proof. The following sequence of equalities hold

KG(s)(1 + L(sI − S)−1G)
= CΠ(sI − S + GL)−1G(1 + L(sI − S)−1G)
= CΠ(sI − S + GL)−1(1 + L(sI − S)−1)G.

Factoring (sI − S)−1 yields

KG(s)(1 + L(sI − S)−1G)
= CΠ(sI − S + GL)−1(sI − S + GL)(sI − S)−1G
= CΠ(sI − S)−1G,

which proves the claim. �

Lemma A.2. Let z = [z1 · · · zk]T ∈ Rk. Then

M(z)G = 0, (A.2a)
N(z)G = −ű, (A.2b)
N(z)(S − GL) = ZN(z), (A.2c)
M(z)(S − GL) = ZM(z)− űCΠ, (A.2d)

where Z = diag{z1, . . . , zk} and M(z) and N(z) are given in (16),
with ű = [1 · · · 1]T ∈ Rk. �

Proof. The relations (A.2b) and (A.2a) hold by construction. Noting
that CΠ(ziI − S)−1(S − GL) = −CΠ(ziI − S)−1(ziI − S +

GL − ziI) = −CΠ + ziCΠ(ziI − S)−1
− CΠ(ziI − S)−1GL  

0

proves

(A.2d). Furthermore, note that L(ziI − S)−1(S − GL) = −L(ziI −

S)−1(ziI − S + GL − ziI) = −L − L(ziI − S)−1GL + L(ziI −

S)−1zi = (−1 − L(ziI − S)−1G)  
0

L + L(ziI − S)−1zi. Hence relation

(A.2c) follows. �

Lemma A.3. Consider a non-minimal reduced order model ΣG that
achieves moment matching. Then, the matrix T (z) ∈ R2k×2k in (16) is
invertible. �

Proof. Assume T (z) is not invertible. Hence, further assume that
rank T (z) = 2k − 1. Then the row L(ziI − S)−1, i = 1, . . . , k is
a linear combination of the other 2k − 1 rows of T (z), i.e., there
exist aj ∈ C, j = 1, . . . , k − 1 and bi ∈ C, j = 1, . . . , k such that
L(ziI − S)−1

=
k−1

j≠i ajL(zjI − S)−1
+

k
j=1 bjCΠ(zjI − S)−1. Note

now that

L =

k−1
j≠i

ajL(zjI − S)−1(ziI − S)+

k
j=1

bjCΠ(zjI − S)−1(ziI − S).



Using (A.2c) and (A.2d) yields

L(zjI − S)−1(ziI − S)

= L(zjI − S)−1zj − L(zjI − S)−1S

= L(zjI − S)−1(S − GL)− L(zjI − S)−1S

= − L(zjI − S)−1G  
−1

L = L,

CΠ(zjI − S)−1(ziI − S)

= CΠ(zjI − S)−1zj − CΠ(zjI − S)−1S

= CΠ(zjI − S)−1(S − GL)+ CΠ − CΠ(zjI − S)−1S

= −CΠ(zjI − S)−1G  
0

L + CΠ = CΠ .

Hence L =
k−1

j≠i ajL +
k

j=1 bjCΠ , which further yields

1 −k−1

j≠i aj

L = CΠ

k
j=1 bj.

Since the pair (CΠ, S−GL) is not observable, there exists v ≠ 0
such that
λI − S + GL

CΠ


v = 0, λ ∈ C.

Hence (λI − S + GL)v = 0 ⇔ λ ∈ σ(S − GL) and Lv = 0, which
yields (λI − S)v = 0 ⇔ λ ∈ σ(S). This is a contradiction since
σ(S − GL) ∩ σ(S) = ∅. This means that T (z) is invertible. �

Remark A.1. If ν = 2k + 1, then the matrix T (z) ∈ C(2k×(2k+1))

has a full row rank, i.e., rank T (z) = 2k. The proof is similar to the
proof of Lemma A.3. �

Remark A.2. Dual results of Lemmas A.1–A.3, respectively, follow
considering the class of models ΣH as in Eqs. (12) and M(z),N(z)
and T (z) described by (18). �

Appendix B. On the matrices B −ΠG and C − HΥ

Lemma B.1. The following statements hold.

1. Consider the controllable pair (A, B), A ∈ Cn×n, B ∈ Cn. Let
(L, S), S ∈ Cν×ν, L ∈ C1×ν be an observable pair and let Π be
the solution of the Sylvester equation (7). Assuming that ν < n,
then B −ΠG ≠ 0, for all G ∈ Cν .

2. Consider the observable pair (C, A), A ∈ Cn×n, C ∈ C1×n. Let
(Q , R),Q ∈ Cν×ν, R ∈ Cν be a controllable pair and let Υ be the
solution of the Sylvester equation (8). Assuming that ν < n, then
C − HΥ ≠ 0, for all H ∈ C1×ν . �

Proof. Assume that ∃G ∈ Cν such that B − ΠG = 0 ⇔

B = ΠG. Then the controllability matrix of the pair (A, B) is
R = [B AB · · · An−1B] = [ΠG AΠG · · · An−1ΠG]. Since Π satisfies
(7), then AΠ = ΠS − BL which yields R = Π[G (S − GL)
G · · · (S − GL)n−1G]. Hence rank R ≤ min{ν, rank [G (S − GL)
G · · · (S−GL)n−1G]}, which yields rank R ≤ ν < n. This contradicts
the assumption that the pair (A, B) is controllable, hence B −

ΠG ≠ 0, ∀G. The proof of the second statement follows similar
arguments. �
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