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Analysis of beam cross section response accounting for
large strains and plasticity

Marco Morandinia,∗

aPolitecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, via La Masa
34, 20156 Milano, ITALY

Abstract

The nonlinear response of straight, constant cross section of beams is in-
vestigated by means of a semi-analytical approach. The three dimensional
displacement field is approximated, for a given cross section, using a FE ele-
ment discretization on the section combined with a Taylor expansion in the
beam axial direction. This allows to compute the beam cross section defor-
mation as a function of the stress resultant and moment resultant, without
the need to solve a three dimensional model, still allowing to account for
complex three-dimensional constitutive laws.

Keywords: beam, cross section, nonlinear, plasticity, Taylor expansion

1. Introduction

The behavior of slender structures is often approximated by means of
so-called beam models. That is, the response of a solid slender structure of
volume V , for which the deformed configuration is defined by the position
field x′ of its material points, is approximated by describing its configura-
tion with a finite number of internal degrees of freedom; most often, but
not necessarily, these degrees of freedom are the deformed position x′ of the
points on a reference line, and the parameters defining the deformed cross
section orientation α′ ∈ SO(3), an orthogonal tensor. In a nutshell, one ends
up replacing the model of a solid with the model of a line equipped with
some internal structure, be it the orientation of the beam cross section, as in
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Fig. 1, or the orientation enhanced with some additional parameters, such as
in Vlasov-like models. The model reduction is obtained either axiomatically,
i.e. by postulating the existence of a polar one-dimensional continuum (see
e.g. Pietraszkiewicz and Eremeyev, 2009; Cardona and Geradin, 1988; Mer-
lini and Morandini, 2013), or by projecting the three dimensional equilibrium
equations onto a suitably-chosen set of cross section deformation modes. The
first choice requires the definition of a constitutive law linking the generalized
deformation measures of the reduced model to their work-conjugated internal
actions; the second choice cannot easily be pursued without choosing before-
hand the cross section deformation modes, and thus implicitly defining the
generalized constitutive equation that would be needed for the first axiomatic
approach.

Figure 1: Beam idealization.

Whatever choice is taken to reduce the problem dimensionality, the result-
ing beam model should match as much as possible the deformation energy of
the solid. This is accomplished by a proper choice of the beam deformation
modes. The simplest choice is to assume that the cross section do trans-
late without any warping and change of dimension; this model, although
well known, and often used by commercial finite element codes, is bound to
the assumption that the only component of normal stress is the axial one,
Szz, so that one can assume that Szz = Eεzz, with E the Young modu-
lus. This kinematic approximation is acceptable only for homogeneous cross
sections. More advanced approaches, explicitly accounting for cross section
warping, do compute the six de Saint-Venant’s polynomial solutions, i.e. the
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six polynomial solutions for axial force, shear-bending along the two trans-
verse directions, constant torsion and simple bending along the two trans-
verse directions. The ensuing six displacement fields are used to perform the
dimensional reduction. Giavotto et al. (1983) were perhaps the first authors
to develop a robust and general numerical procedure that allows to compute
the six polynomial solutions of an arbitrary cross section. After that work
countless papers were written about the characterization of beam cross sec-
tion, mostly following (Giavotto et al., 1983) or (Berdichevsky, 1981), see
also (Hodges, 2006); a slightly different approach was adopted in (Morandini
et al., 2010) and later on in (Han and Bauchau, 2015a), both based on an
Hamiltonian setting (cfr. Mielke, 1991; Druz et al., 1996; Zubov, 2006; Ro-
manova and Ustinov, 2008). When dealing with beams loaded by distributed
forces the Taylor expansion solution for non homogeneous loaded beams pro-
posed by Ieşan (1976) is worth mentioning, see also Ieşan (2008). A review
encompassing many of the published papers can be found in (Chakravarty,
2011). Notable extensions are the application to curved beams (Borri et al.,
1992; Cesnik, 1994) and to periodic cross sections (Han and Bauchau, 2016).
Additional internal degrees of freedoms can further be introduced, helping
describing self-equilibrated decaying solutions, that may be important espe-
cially when dealing with open thin-walled cross sections, see e.g. (Garcea
et al., 2016) and references therein, Ferradi et al. (2016) and, for plasticity,
Corre et al. (2018).

The variational asymptotic method is based on Berdichevsky’s work (e.g.
Berdichevsky, 1981) and was developed by Hodges and his co-workers (see
e.g. Hodges, 2006 and references therein). It naturally leads to the charac-
terization of the four cross section deformation modes that are not function
of the cross section position along the beam axis, namely axial force, torsion,
and constant bending along the two transverse directions. The variational
asymptotic method does not easily allow to study what happens when the
shear deformation is different from zero. It is nonetheless possible to per-
form a second-order approximation and compute shear-induced deformations
as well, see e.g. (Popescu and Hodges, 2000). The procedure proposed to
account for shear deformation within the variationally asymptotic method is
not straightforward, to the point that a small theoretical error, unnoticed for
years, was discovered only recently by Yu et al. (2012); only after fixing that
error the results obtained by the variationally asymptotic code were shown
to be equal to those obtained by following (Giavotto et al., 1983).

Most of the work available in the literature cited so far is limited to small
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cross section strain. This does not imply, however, that the beam model
needs to be limited to small displacements and rotations: the section char-
acterizations is performed once for all in a co-rotational framework, usually
assuming a Green-elastic material. The use of Biot-like work-conjugated
beam strain and internal action measures allows to correctly account for ge-
ometric stiffness contributions within the beam model. As a matter of fact it
is standard practice in the multibody community to simulate the dynamics
of rotating helicopter blades using the constitutive laws obtained using the
above mentioned constitutive approaches. Few beam cross section character-
ization papers explicitly deal with nonlinear beam behavior, but are either
limited to small-strain and large-displacement problems (Han and Bauchau,
2014), to small section warping (Borri and Merlini, 1986), or to known section
normal stress field, computed from the linear solution (Merlini, 1988).

The variationally asymptotic method has been recently extended to the
nonlinear characterization of beam cross sections by Jiang and Yu (2015).
Their work is limited to a first-order asymptotic expansion. In other words,
it can deal only with constant axial force, torsion and bending. Although
the examples presented by Jiang and Yu (2015) deal only with tension and
torsion their formulation leads to correct results for constant bending too. An
extension to shear-loaded beams has been published by Jiang et al. (2018),
but with a formulation that is limited to small strains.

Some recent papers deals with cross section elasto-plastic behavior of thin-
walled beams; almost all of them, however, do assume from the beginning
a given cross section deformation field (Rigobello et al., 2013) and/or that
the only component of normal stress is the axial one, Szz (Rezaiee-Pajand
and Gharaei-Moghaddam, 2015; Chiorean, 2017). These assumptions are
well warranted for thin-walled homogeneous beams, but could lead to wrong
results with non-homogeneous cross sections. Specific approaches are also
viable for particular geometries like concrete steel tubes (Wang et al., 2014).

The literature lacks a general beam cross section characterization method
that can deal with arbitrary nonlinear constitutive laws and account, at the
same time, for variable warping fields and transverse shear.

This paper is an attempt to provide a method to approximate the nonlin-
ear response of an arbitrary beam cross section, while accounting for material
non-linearities. The degree of the approximation can be chosen arbitrarily.
The proposed approach, although general, has a clear limitation, since it ap-
proximates the beam response along the axis with a polynomial expansion
that is computed as a function of the given beam internal actions only. As
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such, it cannot account for local cross section instabilities, for necking, or for
local effects due to concentrated loads and/or constraints. It is clear that,
in order to account for these phenomena one needs to solve the global beam
elastic problem by means of a beam model enriched with carefully chosen
warping functions, that would be work-conjugated to higher order moments
of the cross section stress vector. The proposed approach is thus not suited
for studying thin-walled cross section beams undergoing local instabilities.
Nor it can be used, without modifications, to asses the actual load-carrying
capacity of any given beam if the maximum of the internal actions is reached
near a constraint or near to the point of application of a concentrated load.

2. Beam section kinematics

i2

i3

i1

z = 0

Figure 2: Local reference frame on a beam slice.

Let Ω = A × R be a right cylindrical beam, where A is the beam cross
section. The beam axis is parallel to the z coordinate. The position in the
reference and deformed configuration are x and x′. The deformation gradient
F = grad(x′) can be decomposed in two terms, the first on the section plane,
and the second given by its vector component along the beam axis,

F = gradS(x′) + x′,z ⊗ i3, (1)

where gradS(x′) = x′,x ⊗ i1 + x′,y ⊗ i2 and x′,x, x′,y and x′,z stand for the
partial derivative of x′ with respect to the coordinate x, y, z, respectively.
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Unit vectors i1, i2 and i3 are aligned with the chosen orthogonal reference
system, with i3 parallel to the beam axis. The Green-Lagrange strain tensor
is equal to

ε =
1

2

(
F TF − I

)
.

3. Virtual work principle

The virtual internal work reads

δLi =

∫
V

δε : SdV =

∫
V

δF : ŜdV

=

∫
V

δgradS(x′) : ŜdV +

∫
V

δx′,z ⊗ i : ŜdV (2)

with ε = 1
2

(
F TF − I

)
the Green-Lagrange strain tensor, Ŝ and S the first

and second Piola-Kirchhoff stress tensors, respectively. The second term of
Eq. (2) can be reworked as∫

V

δx′,z ⊗ i3 : ŜdV =

∫
V

δx′,z · Ŝ · i3dV =

∫
V

δx′,z · Ŝ · i3dV

=

∫
L

∫
A

δx′,z · Ŝ · n̄dAdz, (3)

with n̄ ≡ i3. Eq. (3) can be integrated by part as∫
L

∫
A

δx′,z · Ŝ · n̄dAdz =

∫
L

(
d
dz

∫
A

δx′ · Ŝ · n̄dA
)
dz −

∫
L

∫
A

δx′ · Ŝ,z · n̄dAdz

=

[∫
A

δx′ · Ŝ · n̄dA
]L
0

−
∫
L

∫
A

δx′ · Ŝ,z · n̄dAdz

=

[∫
A

δx′ · Ŝ · ndA
]
L

+

[∫
A

δx′ · Ŝ · ndA
]
0

+

−
∫
L

∫
A

δx′ · Ŝ,z · n̄dAdz, (4)

where n is the outward-pointing normal of the beam (with reference to Fig-
ure 2, n = n̄ for z = L and n = −n̄ for z = 0). The internal work is
therefore the sum of three main contributions: a boundary term and two
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integral terms, the first containing the derivatives along the beam axis, the
second the derivatives with respect to the section plane. The formulation is
here limited to end loads, neglecting distributed loads along the beam axis.
The virtual work of the applied external forces is thus equal to

δLe =

∫
A

δx′ (L) · f (L) dA+

∫
A

δx′ (0) · f (0) dA. (5)

The equilibrium is therefore satisfied if

−
∫
L

∫
A

δx′ ⊗ n̄ : Ŝ,zdAdz +

∫
L

∫
A

δgradS(x′) : ŜdAdz+

+

[∫
A

δx′ ·
(
Ŝ · n− f

)
dA
]
L

+

[∫
A

δx′ ·
(
Ŝ · n− f

)
dA
]
0

= 0. (6)

The first two integrals constitute the global equilibrium equations, while the
last two integrals represent the natural boundary conditions at the end of
the beam, Ŝ · n = f . The equilibrium equations along the beam is satisfied
if

−
∫
A

δx′ ⊗ n̄ : Ŝ,zdA+

∫
A

δgradS(x′) : ŜdA = 0 (7)

along the beam.
The structure of Eq. 7 solutions is well known: six rigid-body displace-

ments of the whole beam, the six so-called de Saint-Venant’s solutions, and
self-equilibrated displacement fields that, for small-strain linear elasticity,
are exponentially decaying with respect to z. Note also that for non-linear
elasticity one can, in principle, track the evolution of the exponential terms
wrt. a load parameter in order to assess the occurrence of local buckling, see
e.g. Merlini (1988). For small-strain linear elasticity the rigid-body and the
de Saint-Venant’s displacement fields are polynomial with respect to z, with
the quadratic and cubic terms accounting for bending and transverse shear,
respectively; knowledge of the polynomial solutions allows to compute the
6× 6 beam stiffness matrix and to recover the three-dimensional stress field
as a function of the beam internal actions.

Seeking a closed-form solution of Eq. 7 along the beam beam without
assuming small strains and/or small section warping can be a tough problem
to solve, especially with non-linear material models. It is however possible
to locally approximate the solution x′ at z = 0 without limiting the strain
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magnitude and thus to seek a displacement field that locally approximates
the three-dimensional solution. To this end, Eq. 7 is enforced at z = 0 only,
and no attempt is made to actually solve the differential equation along the
whole beam, thus neglecting whatever boundary conditions could be imposed
at the two beam extremities. This is clearly not sufficient to approximate
the solution along the beam. To get a better approximation, still solving
a problem only at z = 0, one can consider both Eq. 7 and it subsequent
derivatives wrt. z. The first derivative would read

−
∫
A

δx′,z ⊗ n̄ : Ŝ,zdA−
∫
A

δx′ ⊗ n̄ : Ŝ,zzdA+ (8)∫
A

δ (gradSx
′),z : ŜdA+

∫
A

δgradSx
′ : Ŝ,zdA = 0,

where the derivative δx′,z, always evaluated at z = 0, appears. Writing the
expression of any subsequent derivative is straightforward.

The sought displacement field u is approximated around z = 0 as

u(x, y, z) ≈
N∑
i=0

1

i!
ui(x, y)zi, (9)

where the unknown field ui(x, y), a function of the cross section position only,
is the i-th displacement derivative of field u(x, y, z) wrt. z evaluated at z = 0.
For example, one can adopt a linear approximation u ≈ u0+u1z, a quadratic
one, u ≈ u0+u1z+ 1

2
u2z

2, or even a cubic one, u ≈ u0+u1z+ 1
2
u2z

2+ 1
6
u3z

3.
A Galerkin method is adopted to solve the problem, with the test function
defined by δu =

∑N
i=0

1
i!
δui(x, y)zi, and δui(x, y) resorting to the same cross-

section approximation adopted for the unknown fields ui.
Equation 7, evaluated at z = 0, does not allow to compute, at the same

time, all the unknown fields ui. Rather, it suffices to compute only the 0-th
order term, u0. This should not be a surprise, since the test function δx′ at
z = 0 is nothing but δu0 alone. In order to compute both u0 and u1 one needs
to account, at the same time, for Eq. 7 and for Eq. 8, where the derivative δx′,z
evaluated at z = 0 appears. Note that this derivative is equal, for the chosen
approximation Eq. 9, to δu1. Each and every additional term added to Eq. 9
requires, in turn, an additional derivative of Eq. 7, with a corresponding
new derivative δ(∂ix′/∂zi) that, after applying the approximation Eq. 9,
corresponds to δui.

8



No boundary conditions has been considered so far. To close the problem,
the set of Eqs. 7 and of its derivatives (i.e. Eqs. 7 and 8 when N = 1 in
Eq. 9) can be complemented by six equations that impose the sought value
of the stress resultant t and moment resultant m at z = 0 together with six
additional constraints for the beam rigid body motions. The sought vectors
t and m are imposed to be equal to the resultant and moment resultant,
over the cross-section, of the normal stress vector Ŝ · n, i.e.∫

A
Ŝ · ndA = t,∫

A
x′ × Ŝ · ndA = m.

(10)

Equations 10 are enforced by using two Lagrange multiplier vectors, λ1 and
λ2. Note that Eqs. 10 involves only the first Piola-Kirchhoff stress tensor Ŝ
evaluated at z = 0; it thus depends explicitly only on the deformation gra-
dient F evaluated at z = 0, i.e. on the first two terms of the approximation,
u0 and u1. The rigid body motion constraints are imposed by forcing to zero
the projection of the cross section displacement u at z = 0 (i.e. u0) onto the
corresponding rigid body displacement fields; that is,∫

A
u0dA = 0,∫

A
x× u0dA = 0.

(11)

Equations 11 are imposed by using two additional Lagrange multiplier vec-
tors, λ3 and λ4.

For a linear approximation, N = 1, the whole set of nonlinear Eqs. 7, 8, 10
and 11 has δu0, δu1 and δλj, with j ∈ [1, 4], as independent test functions,
and u0, u1 and λj as unknowns; this set of equations can be solved as a
function of the sought internal actions t and m. No additional constraints,
besides those of Eqs. 10 and 11, are required for N ≥ 2. This allows to
compute the strain and stress distribution at any given beam section as a
function of the internal actions, regardless of the constitutive law at hand,
be it Cauchy-elastic, hyperelastic, or elasto-plastic.

A drawback of the proposed approach is that it needs explicit expressions
for N + 1 derivatives of the first Piola-Kichhoff stress tensor Ŝ with respect
to z. Limiting again the approximation to the first order, N = 1, this
means Ŝ,z and Ŝ,zz. This is not a big issue for hyperelastic materials, and
complicates the matter only slightly; however, it brings significant additional
complexity for elasto-plastic materials: one needs to compute the first and
second derivatives of the plastic multiplier in order to compute Ŝ,z and Ŝ,zz,
as detailed in Appendix A for a simple elasto-plastic constitutive laws.
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Standard Lagrange elements are used to approximate ui.

4. Validation

The proposed formulation is validated by comparing its results with those
of three-dimensional models of the beam at hand. All the examples are made,
without loss of generality, for a 1m × 1m square cross sections centered at
the origin. The two-dimensional model is made using cubic triangles with a
10× 10 subdivision of the cross section.

The three-dimensional model used for comparison has a length of 4m.
The same constraints used for the cross section analysis are applied to the
three dimensional body; that is, the section at z = 0 m is constrained by the
same Eqs. 11 defined for the two-dimensional formulation. This eases the
comparison between the results of the three dimensional model and of the
proposed formulation. The loads definition is a bit more tricky: the three
dimensional solid needs to be loaded at the two beam extremities, far from
the middle section at z = 0 m in order to damp out any local effect, in such a
way that the middle section reacts with the sought internal actions t andm.
This allows to precisely control the internal action of the three dimensional
model at z = 0 m. Details on how this is accomplished can be found in
Appendix B.

The solid mesh is made using cubic tetrahedrons with a 10 × 10 × 20
subdivision of the volume.

Both the three- and the two-dimensional models’ equations are solved
using Newton-Rhapson; the linearized equations, however, are rather ill-
conditioned for the three-dimensional model, possibly because of the highly
coupled and nonlinear additional equations enforcing both the middle cross
section internal actions and the global equilibrium. Typical deformed shapes
of the three-dimensional model are reported, without magnification of the
displacements, in Figs. 3 and 4. Figure 3 shows the torsion of an elasto-
plastic beam, and Figure 4 the combined shear-bending of an elastic beam;
arrows in the cross section represents the first stress vector Ŝ · n projected
onto linear Lagrange vector finite elements.

All the simulations are performed by leveraging the python interface of
Dolfin (Logg and Wells, 2010; Logg et al., 2012b), a library developed within
the FEniCS project (Alnæs et al., 2015; Logg et al., 2012a).

Standard third-order Lagrange elements are used for all the examples;
the displacements are not magnified for plotting the deformed shapes.
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Figure 3: Torsion of an elasto-plastic beam; εeffp is the equivalent plastic strain.

All results are obtained, unless otherwise specified, by limiting the un-
known displacement expansion Eq. 9 to a first order approximation, N = 1.

4.1. Torsion
The beam is made of an isotropic Green-elastic material, for which S =

2µε+λε : I⊗I, with µ = E/(2(1+ν)) and λ = Eν/((1+ν)(1−2ν)), where
E = 1Pa is the Young modulus and ν = 0.33 is the Poisson coefficient.
The sought moment is equal to mz = 0.03Nm. Figure 5 shows the cross
section deformed shape together with the first stress vector Ŝ · n projected
onto linear Lagrange vector finite elements. Figure 6 compares the norm of
the displacement difference between the three-dimensional solution and the
proposed approach for z = 0m (left figure) and z = 0.2 m (right figure),
normalized with respect to the maximum displacement norm ||uFEM||max =
0.023 m and ||uFEM||max = 0.083 m, respectively; the displacement of the
nearby section at z = 0.2m are approximated, for the proposed approach, as
u ≈ u0 + 0.2u1. Figure 7 plots the relative difference for the cross sections
stress vector norm ||Ŝ · n||, normalized with respect to its maximum value
||Ŝ · n||FEM max = 0.15Pa.

4.1.1. Neo-Hookean material
Although not immediately evident from the previous results, the sim-

ulation is completely non linear, and can account for nonlinear material
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Figure 4: Shear-bending of an elastic beam.

Figure 5: Torsion of a Green-elastic beam: deformed configuration and normal stress
vector Ŝ · n, mz = 0.03Nm.
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Figure 6: Torsion of a Green-elastic beam: displacement relative difference,mz = 0.03Nm;
left: z = 0 m; right: z = 0.2m.
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Figure 8: Torsion of a Green-elastic beam: deformed configuration and normal stress
vector Ŝ · n, mz = 0.03Nm, z = 0 m.

behavior as well. Consider the same beam made with an isotropic Neo-
Hookean material with internal energy per unit of reference volume w =
µ
2
(I1 − 3) + K0

2
(J − 1)2, where µ = E/(2(1 + ν)), λ = Eν/((1 + ν)(1− 2ν)),

K0 = E/(3(1 − 2ν)), J = det(F ), I1 = J−2/3(F TF ) : I, E = 1Pa and
ν = 0.33. To visually appreciate the difference with respect to the Green-
elastic material the sought moment is equal to mz = 0.1Nm, much higher
than that of the previous example, to the point that the three-dimensional
code hardly converges. Figure 8 compares the cross section deformed shape
x+u0 obtained with the proposed approach and the two different materials,
together with the first stress vector Ŝ · n.

4.1.2. Elasto-plastic material
More interesting, elasto-plastic materials can be accounted for. The

elasto-plastic material of Appendix A.1 is considered, with E the elastic ten-
sor of a Green-elastic isotropic material, E = 1Pa the elastic modulus, ν =
0.33 the Poisson coefficient, S0 = 0.01Pa the yield stress, H = Et/(1−Et/E)
the hardening parameter and Et = 0.3Pa the tangent elasto-plastic modu-
lus. Since the beam undergoes significant plastic deformations its stiffness
is reduced, and the results are computed for a moment mz = 0.009Nm.
Figure 9 compares the norm of the displacement difference between the
three-dimensional solution and the proposed approach for z = 0m (left fig-
ure) and z = 0.2 m (right figure), normalized with respect to the maxi-
mum displacement norm ||uFEM||max = .021 m and ||uFEM||max = .074 m,
respectively. Figure 10 reports the relative difference for the cross sec-
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Figure 9: Torsion of an elasto-plastic beam: displacement relative difference, mz =
0.009Nm; left: z = 0 m; right: z = 0.2m.

tions stress vector norm ||Ŝ · n||, normalized with respect to its maximum
value ||Ŝ · n||FEM max = 0.044Pa; finally, Fig. 11 plots the relative equiva-
lent plastic strain difference, normalized with respect to its maximum value
(εeffpFEM)max = 0.14. Since the plastic strain is null near the cross section
torsional center, as it should (cfr. also Fig. 12), the stress distribution is
different from that of a beam made of an elastic material. This is clear from
Fig. 13, that plots the shear component Ŝyn along the line y = 0m for the
Green-elastic and the elasto-plastic beam under the moment mz = 0.009Nm.

4.1.3. Axial force stiffening
Since the beam section code is completely nonlinear it is possible to ap-

ply complex internal actions time histories and follow the cross section de-
formation throughout. For example, Fig. 14 shows the effect of first apply-
ing a torsional moment mz = 0.06Nm and then superposing an axial force
tz = 0.6N onto the Green-elastic beam of Sec. 4.1; the axial force stiffening
effect is correctly accounted for in the simulation, so that the cross section
at z = 0.2m sees a reduced rotation while moving along the beam axis. By
projecting the in-plane components of u1 onto the rigid mode rotation rate
of the undeformed section, defined as a nonlinear function of the rotation
angle derivative α,z it is possible to compute the actual value of the rotation
derivative α,z and thus to compute the torsional compliance a,z/mz. Fig-
ure 14 plots the torsional compliance as a function of the applied moment
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Figure 14: Combined torsion and axial force of an elastic beam; left: deformed section at
z = 0.2 m, torsion without traction, mz = 0.06Nm, tz = 0N; right: deformed section at
z = 0.2 m, torsion and traction, mz = 0.06Nm, tz = 0.6N; undeformed sections in gray.

(left, with null axial force tz) and of the axial force resultant tz (right, with
constant applied moment mz = 0.06Nm).

4.2. Shear-bending
The test cases of Sec. 4.1 are characterized by a deformation field that is

constant with respect to the beam axis. This is not the case when the internal
actions have any non zero force component in the cross section plane, since
the bending moment varies linearly. The three-dimensional case of Fig. 4
allows to verify the soundness of the proposed approach whenever the beam
deformation varies due to transverse shear. The Green-elastic beam with E =
1Pa and ν = 0.33 is loaded at z = 0m with ty = 0.01N and mx = 0.008Nm.
Figure 16 compares the displacement field at z = 0m and z = 0.2m with that
of the three-dimensional model; the displacement difference is normalized
with respect to the maximum displacement norm ||uFEM||max = 0.0081 m and
||uFEM||max = 0.015 m, respectively. The displacement difference appears to
be more significant than that of the torsion cases, especially at the cross
section corners. The relative difference for the cross sections stress vector
||Ŝ · n||, normalized with respect to the maximum value ||Ŝ · n||FEM max =
0.051Pa is less marked, as shown in Fig. 17.

Although the normal stress difference obtained with the linear approxi-
mation could be judged acceptable, it is nonetheless clear that a linear ap-
proximation may not be the wisest choice for a problem that is known to
have, in linear elasticity, a cubic displacement field wrt. z. Figures 18 and 19
report the relative difference obtained by choosing a quadratic and cubic
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approximation for u, respectively (i.e. N = 2 and N = 3 in Eq. 9, with
additional unknown fields u2 and u3). It’s clear that increasing the approx-
imation order reduces the difference wrt. the three-dimensional solution.
This, however, has a non-negligible cost, as one needs to add to the set of
equations the second derivative of Eq. 7 for the quadratic approximation,
and its second and third derivatives for the cubic approximations. This, in
turn, brings the need to compute the third (quadratic approximation) and
fourth (cubic approximation) derivatives of the normal stress vector, Ŝ,zzz ·n
and Ŝ,zzzz · n, a rather tedious task. Figure 20 plots the relative difference
for the cross sections stress vector ||Ŝ · n|| obtained with the quadratic and
cubic approximations.

The convergence error of the three-dimensional solution is large for this
specific test case, likely because of the ill-conditioned set of integral con-
straints applied at the two beam extremities and at its center cross section.
Figure 21 shows the cross section deformed shape together with the first
stress vector Ŝ ·n computed for section internal actions equal to ty = 0.05N
and mx = 0.04Nm, values that are not reachable with the three-dimensional
formulation.

4.2.1. Elasto-plastic bending
The same beam, but with the elasto-plastic constitutive law of Sec. 4.1.2

is subject to a bending moment mx = 0.005 Nm. Three solutions are consid-
ered, obtained using the present formulation with a 50 × 50 mesh of linear
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Figure 21: Shear-bending of a Green-elastic beam: deformed configuration and normal
stress vector Ŝ · n for ty = 0.05N and mx = 0.04Nm.
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Figure 22: Bending of an elasto-plastic beam, mx = 0.005 Nm; left: elastic zone boundary
y position; right: bending moment mx as a function of the beam curvature.

elements and a quadratic approximation along the beam axis, a 3D finite
element model with a 50×50×24 mesh with linear elements and an approx-
imate analytical solution where the axial strain is assumed to be linear with
respect to y and a state of axial stress is assumed. Figure 22 (left) compares
the y position of the elastic zone boundary, while Fig. 22 (right) reports the
bending moment mx as a function of the estimated beam curvature. The
agreement between the three formulations if fairly good for this simple test
case. Figure 23 reports the norm of Ŝ · i1 and Ŝ · i2 stress vectors, that are
overlooked by the analytical axial stress approximation.

4.2.2. Elasto-plastic shear bending
Elasto-plastic shear bending can be accounted for as well. The same

material data are the same of Sec. 4.1.2 and 4.2.1. The cross section internal
actions are ty = 0.006N andmx = 0.0048Nm. The solid model has a reduced
length of 2 m, since otherwise the bending moment at one of the two beam
extremities could likely be too high. A 10 × 10 cubic elements mesh, with
a cubic approximation along the beam axis, is adopted for the cross section
analysis, while the three dimensional model is built with a 10 × 10 × 20
cubic elements mesh. Figure 24 compares the displacement field at z = 0m
and z = 0.2m with that of the three-dimensional model; the displacement
difference is normalized with respect to the maximum displacement norm of
||uFEM||max = 0.014 m and ||uFEM||max = 0.026 m, respectively. The error
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Figure 23: Bending of an elasto-plastic beam,mx = 0.005 Nm; left: ||Ŝ ·i1||; right: ||Ŝ ·i2||.

in the displacement is higher than that of the previous test cases; this is
especially true for the predicted displacement at z = 0.2m, where the relative
error peaks at about 20%. Figures 25 and 26 compares the displacement norm
||u|| of the FEM solution and of the proposed approach for z = 0 m and
z = 0.2 m, respectively. Figure 27 plots the relative equivalent plastic strain
difference, normalized with respect to its maximum value (εeffpFEM)max = 0.041,
while Fig. 28 allows to appreciate the actual equivalent plastic deformation
field predicted by the three dimensional FEM solution and by the proposed
approach. Figure 29 reports the cross sections stress vector ||Ŝ · n|| relative
error, normalized with respect to the maximum value ||Ŝ · n||FEM max =
0.064Pa. The maximum error for the equivalent plastic strain reaches about
10%, while the normal stress vector error is kept within 2%. Figure 30
plots the actual value of the cross section normal stress vector norm, ||Ŝ ·
n||, obtained with the FEM solution and the proposed approach. Both the
equivalent plastic strain and the normal stress vector norm error plots show
the same spatial trend, with higher plastic deformations in the middle of the
cross section, suggesting that the linearization of the plastic multiplier with
respect to z may be the major limiting factor for this test case. Finally,
Fig. 31 plots the shear normal stress component Ŝyz, that is not constant
through the cross section width.
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Figure 32: Bent beam

5. Run time

The proposed procedure allows to estimate the three dimensional strain
and stress fields at a given cross section as a function of the internal ac-
tions. As such, it does not give any information about what happens at
different cross sections. The information provided by a three dimensional
model is more comprehensive, at the expense of an increased computation
time. The run times of the proposed procedure are not comparable with
those of complete three dimensional solutions. Having an idea of the rel-
ative computational effort could nonetheless be of some interest. Consider
the 1× 1× 10 m clamped beam of Figure 32, with a Green-elastic material,
elastic modulus E = 1200Pa and Poisson coefficient ν =0.3. A dead load
per unit of reference surface f is applied in the i2 direction at the free end of
the beam, f = 10 i2 Pa. A 10× 10× 20 mesh with quadratic elements is first
used for the three dimensional analysis. After some tuning it turns out that
the fastest three dimensional solution is achieved by directly applying the
whole load and using a conjugate gradient linear solver with an incomplete
LU factorization as a preconditioner. A finer 20 × 20 × 40 mesh requires
at least two load steps to converge. After computing the three dimensional
solutions it is possible to compute the internal actions at the clamped ex-
tremity, i.e. a shear ty = 10 N together with a moment mx = −43.6 Nm for
the 10 × 10 × 20 mesh and mx = −43.5 Nm for the 20 × 20 × 40 mesh; the
different bending moment is due to the fact that the finer mesh, being more
flexible, bends a little bit more, thus reducing the applied force arm in the
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runtime
cross section mesh 3D linear quadratic cubic

10× 10 86 s 3.1 s 4.5 s 9.6 s
20× 20 2504 s 4.7 s 7.2 s 25.1 s

Table 1: Run time comparison

deformed configuration. The computed internal loads are applied to the cor-
responding 10×10 and a 20×20 two-dimensional meshes built with quadratic
elements and with linear, quadratic and cubic polynomial approximation in
the beam axis direction. All computations were performed, with only one
process, on the same hardware. Table 1 reports the time spent solving the
corresponding nonlinear problems. The significantly higher run time for the
finer mesh three dimensional solution allows for an increased resolution both
through the cross section and along the beam axis. However, the run time
ratio with respect to the two dimensional solution is not proportional to the
increase resolution along the beam axis.

6. Conclusions

A general procedure for the nonlinear approximate characterization of
beam cross sections is presented. This procedure is inspired by the approach
proposed by Morandini et al. (2010) and Han and Bauchau (2015a) and
extends it to the nonlinear case. The degree of the polynomial approximation
along the beam axis can be chosen arbitrarily.

The procedure proposed here makes no assumption whatsoever on the
cross section displacement field. No attempt is made to match the deforma-
tion of the three-dimensional solid with that of a beam model. The resulting
formulæ are, as a consequence, really simple and almost trivial, although
they hide behind them the need to derive the stress tensor with respect to
the beam axis, a rather tedious task that luckily can often be delegated to a
symbolic algebra engine. This simplicity has two consequences, however.

The first consequence is that the only meaningful link between the three
dimensional model and the reduced beam model is given by the internal ac-
tions. One can compute the deformation of the three dimensional model that
allows to achieve some given section resultants and moment resultant; it is not
possible, however, to directly compute the cross section stress resultant of the
three-dimensional model as a function of the beam model generalized strain.
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The current formulation can thus be useful to estimate the load-carrying ca-
pacity of a given cross section far from constraints and concentrated loads;
it can also be used as an inverse constitutive law for formulations based on
the Hellinger-Reissner principle, such as that proposed by Nukala and White
(2004).

The second consequence is that the computational effort is twice that
of (Jiang and Yu, 2015). This is because Jiang and Yu (2015) link the
beam model cross section rotation and axial translation to that of the three
dimensional solid, and defines the additional constant warping as a field that
is superposed to this section movement in a co-rotational setting. Here,
instead, no kinematic link is made, nor it is assumed a priori that the cross
section do rotate and translate; thus, the minimum set of unknowns is given
by the warping field and by its derivative with respect to the beam axis. If
shear deformation was accounted for by Jiang and Yu (2015) two unknown
fields would have likely been needed in their co-rotational setting, with the
best results of the present approach obtained with four unknown fields.

It should be possible, as a future development, to account for some
classes of boundary conditions and for distributed loads. Boundary condi-
tions should be enforced by appropriate constraints applied to the first term
of the expansion, u0, while distributed loads would appear at the right hand
side of the nonlinear equations, see e.g. the works by Masarati (1999, Ap-
pendix E), Lin and Dong (2006) and Han and Bauchau (2015b). A different
line of development could be to use the proposed approach for the multi-level
nonlinear analysis of beams.
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Appendix A. Elasto-plastic constitutive law derivatives

Consider a constitutive law with internal hidden variables χ. Since, de-
pending on the actual constitutive law under consideration, the internal vari-
ables can have different ranks, almost all the inner product in the following
are left unspecified. Let the internal energy at constant temperature be be
ψ(ε,χ), so that S = ψ,ε is the second Piola-Kirchhoff stress tensor and
K = ψ,χ are the thermodynamic forces. Function f(S,K) ≤ 0 is the yield
function; g(S,K) is a convex plastic potential, so that −χ̇ = λ̇g,K . The
first spatial derivative S,z and K ,z of the stress tensor S and of the forces
K with respect to z can be computed as

S,z = ψ,εε : ε,z + ψ,εχχ,z
K ,z = ψ,χε : ε,z + ψ,χχχ,z

(A.1)

where χ,z needs to be computed as function of the spatial derivative of the
plastic multiplier. Assuming to have reached the yield limit f = 0 the spatial
derivative of f is, analogously to the consistency condition,

f,S : S,z + f,KK ,z = 0 (A.2)

with the flow rule leading to

χ,z = −g,Kλ,z. (A.3)

Inserting Eqs. A.1 and A.3 into Eq. A.2 leads to

f,S : ψ,εε : ε,z − f,S : ψ,εχg,Kλ,z + f,Kψ,χε : ε,z − f,Kψ,χχg,Kλ,z = 0

and, after re-arranging the terms

(f,S : ψ,εχ + f,Kψ,χχ) g,K︸ ︷︷ ︸
A

λ,z = (f,S : ψ,εε + f,Kψ,χε)︸ ︷︷ ︸
B

: ε,z (A.4)

the derivative of the plastic multiplier can be readily computed as

λ,z =
B

A
: ε,z, (A.5)

so that the derivative of the stress tensor becomes

S,z =

(
ψ,εε − ψ,εχg,K ⊗

B

A

)
: ε,z
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and the derivative of the forces is

K ,z =

(
ψ,χε − ψ,χχg,K ⊗

B

A

)
: ε,z.

The procedure can be repeated in order to compute the second derivative
wrt. z. The first step is to derive Eq. A.1

S,zz = ψ,εεε (ε,z ⊗ ε,z) + 2ψ,εεχ
(
ε,z + χ,z

)
+ ψ,εχχ

(
χ,z ⊗ χ,z

)
+ ψ,εεε,zz + ψ,εχχ,zz

K ,zz = ψ,χεε (ε,z ⊗ ε,z) + 2ψ,χεχ
(
ε,z + χ,z

)
+ ψ,χχχ

(
χ,z ⊗ χ,z

)
+ ψ,χεε,zz + ψ,χχχ,zz

(A.6)
and the flow rule Eq. A.3

χ,zz = −g,KKK ,z ⊗ λ,z − g,Kλ,zz − g,KS : S,z ⊗ λ,z. (A.7)

The second derivative of the yield function becomes

f,SS (S,z ⊗ S,z)+2f,SK (S,z ⊗K ,z)+f,KK (K ,z ⊗K ,z)+f,SS,zz+f,KK ,zz = 0.
(A.8)

Inserting Eqs. A.6 into Eq. A.8

f,SS (S,z ⊗ S,z) + 2f,SK (S,z ⊗K ,z) + f,KK (K ,z ⊗K ,z) +

f,Sψ,εεε (ε,z ⊗ ε,z) + 2f,Sψ,εεχ
(
ε,z ⊗ χ,z

)
+

f,Sψ,εχχ
(
χ,z ⊗ χ,z

)
+ f,Sψ,εεε,zz + f,Sψ,εχχ,zz+

f,Kψ,χεε (ε,z ⊗ ε,z) + 2f,Kψ,χεχ
(
ε,z ⊗ χ,z

)
+ f,Kψ,χχχ

(
χ,z ⊗ χ,z

)
+

f,Kψ,χεε,zz + f,Kψ,χχχ,zz = 0

and collecting together all the terms that can be computed by knowing ε,z
and λ,z alone,

f,SS (S,z ⊗ S,z) + 2f,SK (S,z ⊗K ,z) + f,KK (K ,z ⊗K ,z)︸ ︷︷ ︸
f0

+

 (f,Sψ,εεε + f,Kψ,χεε) (ε,z ⊗ ε,z) +
2 (f,Sψ,εεχf,Kψ,χεχ)

(
ε,z ⊗ χ,z

)
(f,Sψ,εχχf,Kψ,χχχ)

(
χ,z ⊗ χ,z

)


︸ ︷︷ ︸
f1

+

(f,Sψ,εε + f,Kψ,χε)︸ ︷︷ ︸
fε≡B

: ε,zz + (f,Sψ,εχ + f,Kψ,χχ)︸ ︷︷ ︸
fχ

χ,zz = 0
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one gets
fχχ,zz +B : ε,zz + f0 + f1 = 0. (A.9)

Inserting now Eq. A.7 into Eq. A.9 leads to

−fχg,KKK ,z ⊗ λ,z − fχg,KSS,z ⊗ λ,z + f0 + f1︸ ︷︷ ︸
f2

+fε : ε,zz = fχg,Kλ,zz,

from which
λ,zz =

f2
fχg,K

+
fε

fχg,K
: ε,zz. (A.10)

Appendix A.1. Particularization to J2 plasticity
The formulæ of Appendix A become much simpler for a plasticity model

based on the additive decomposition of the Green-Lagrange strain tensor
into its elastic and plastic parts, ε = εe + εp and with linear hardening.
This model is characterized by two different internal variables, i.e. the plas-
tic deformation and the effective plastic strain, that is equal to the plastic
multiplier:

χ1 = εp,

χ2 = εeffp = λ.

The yield function is given by

f =

√
3

2
s : s− (S0 +K) = 0 (A.11)

where s = S − 1
3
S : I and S0+K is the yield equivalent stress. The forces

are the opposite of the stress tensor and the increment of yield stress

K1 = −S,
K2 = K.

The internal energy is given by

ψ(ε,χ) =
1

2
(ε− εp) : E : (ε− εp) +

1

2
Hεeffp εeffp .

and an associated flow rule is assumed, i.e. f ≡ g.
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As it is well known, this model makes sense only for small strains; with
moderately large strains one should resort to the multiplicative decomposi-
tion of the deformation gradient into an elastic and plastic part, F = F eF p

(see e.g. Simo and Hughes, 1998) or, at least, to a constitutive law written
as a function of the logarithmic strains (Papadopoulos and Lu, 1998, 2001).
Using the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress
tensor puts no limit to the rotation of the model; still, strains must be rela-
tively small in order to get results matching the behavior of isotropic mate-
rials. Despite this limitation, the model has been chosen here because, with
its simplicity, allows to easily check the effectiveness of the proposed formu-
lation not only for hyperelastic constitutive laws, but also for elasto-plastic
materials.

Following the notation of Appendix A the scalar A and second order
tensor B of Eq. A.4 become

A = (f,S : ψ,εχ + f,Kψ,χχ) g,K

= f,S : E : f,S +H

= f,S : E : f,S +H,

B = f,S : ψ,εε + f,Kψ,χε

= f,S : E

The derivative of the stress tensor is equal to

S,z =

(
E− E : f,S ⊗

B

A

)
︸ ︷︷ ︸

E,z

: ε,z

= E,z : ε,z. (A.12)

Computing now the coefficients of Eq. A.9 one gets

f0 = f,SS (S,z ⊗ S,z)

and

f1 = 0
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because all the third derivatives of ψ are null.Then, since

f ε ≡ B
= f,S : E

and

fχχ,zz = −f,S : E : εp,zz −Hλ,zz

Eq. A.9 becomes (
f,S : E : f,SS : −S,zλ,z

+f1 + f0

)
+

f,S : E : ε,zz =

−f,S : E : f,SS : S,zλ,z + f,SS (S,z ⊗ S,z)︸ ︷︷ ︸
f0

+f,S : E : ε,zz =

(f,S : E : f,S +H)λ,zz

so that the second derivative λzz of the plastic multiplier is

λ,zz =

−f,S : E : f,SS : S,z ⊗ λ,z + f,SS (S,z ⊗ S,z)︸ ︷︷ ︸
f0

+f,S : E : ε,zz

(f,S : E : f,S +H)

=
−f,S : E : f,SS : E,z : ε,z ⊗ B

A
: ε,z + f,SS pppp (E,z : ε,z ⊗ E,z : ε,z) + f,S : E : ε,zz

(f,S : E : f,S +H)

and

εp,zz =f,SS : S,z ⊗ λ,z + f,Sλ,zz

=f,SS : E,z : ε,z ⊗
B

A
: ε,z+

f,S
1

(f,S : E : f,S +H)

[ (
−f,S : E : f,SS : E,z ⊗ B

A

) pppp (ε,z ⊗ ε,z) +

f,SS pppp (E,z : ε,z ⊗ E,z : ε,z) + f,S : E : ε,zz

]
=Ã pppp (ε,z ⊗ ε,z) + f,SB̃ : ε,zz,

where tensor Ã collects all the terms that multiply (ε,z ⊗ ε,z) and B̃ = (f,S :
E)/A. Since both E and E,z = (E−E : f,S⊗f,S : E∗ 1

A
) have major symmetry,
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B = f,S : E = BT , A = f,S : E : f,S +H and C = f,S : E = CT . The fourth
order tensor Ã can thus be rewritten as

Ã = f,SS : E,z ⊗
B

A
+
f,S
A

[(
−f,S : E : f,SS : E,z ⊗

B

A

)
+ E,z : f,SS : E,z

]
so that

S,zz = ψ,εεε (ε,z ⊗ ε,z) + 2ψ,εεχ
(
ε,z + χ,z

)
+ ψ,εχχ

(
χ,z ⊗ χ,z

)
+ ψ,εεε,zz + ψ,εχχ,zz

= E : (ε,zz − εp,zz)

=
(
E− E : f,S ⊗ B̃

)
: ε,zz − E : Ã pppp (ε,z ⊗ ε,z) . (A.13)

Equations A.12 and A.13 make clear that, while the first derivative S,z of
the stress tensor depends only on the first derivative of the strain tensor, the
second derivative S,zz is a function of both ε,z and ε,zz.

Appendix B. Three-dimensional solid loads

As explained in Sec. 4 the validation is performed by comparing the re-
sults obtained with the proposed approach with those obtained with a three
dimensional model that is loaded at its two extremities in such a way that
the middle section at z = 0 m reacts with the sought internal actions t and
m. To this end, distributed loads are applied at its two extremity section A1

and A2, with a constant contribution (λF1 on A1 and λF2 on A2) added to
two follower linearly varying normal contributions (proportional to λM11 and
λM12 on A1, λM21 and λM22 on A2) and to a follower torsion-like contribution
(proportional to λM13 on A1 and λM23 on A2):

tA1 = λF1 +

(
F−T i2∥∥F−T i2∥∥x1 − F−T i1∥∥F−T i1∥∥x2

)
λM13 +

F−T i3∥∥F−T i3∥∥(x2λM11 + x1λM12),

tA2 = λF2 +

(
F−T i2∥∥F−T i2∥∥x1 − F−T i1∥∥F−T i1∥∥x2

)
λM23 +

F−T i3∥∥F−T i3∥∥(x2λM21 + x1λM22).

The values of vectors λF(1,2)
and λM(1,2)

are computed by imposing twelve
equations. The first six equations states that the resultant of the loads on
one of the two faces must be equal to sought value of the stress resultant t
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and that the moment resultant of the same loads, computed with respect to
the origin, must be equal to the sough moment resultant m:∫

A1

tA1dA = t,∫
A1

x× tA1dA = m.

The missing six equations impose that the overall resultant and moment
resultant of the external loads must be null:∫

A1

tA1dA+

∫
A2

tA2dA = 0,∫
A1

x× tA1dA+

∫
A2

x× tA2dA = 0.

Appendix C. Implementation

A reference implementation for the Neo-Hookean hyperelastic material
is reported below. Note that dealing with elasto-plastic materials is signifi-
cantly harder in Dolfin, since one has to explicitly deal with the stress evalu-
ated at different integration points and to write his own code for the return
mapping; to this end, the fenics-solid-mechanics library, currently available
from https://bitbucket.org/fenics-apps/fenics-solid-mechanics/src/master/, was
modified and extended with the formulae of Appendix A.1. More in de-
tail (see e.g. Logg and Wells (2010); Logg et al. (2012b); Alnæs et al.
(2014) for an introduction to the Unified Form Laguage UFL, the Fenics
Form Compiler FFC and, more generally, to Dolfin), Dolfin provides an ab-
straction for fields that can be evaluated only at integration points, the so-
called Quadrature elements. Three additional classes are built starting from
this abstraction, in such a way that their instances can be used within an
UFL form and understood by the FFC form compiler. The first one, called
UFLQuadratureFunction, allows to evaluate the values of an arbitrary UFL
expression at the integration points of any given element; this is used for
computing the Green-Lagrange strain tensor ε and its derivatives wrt. z
at the integration points. The second one, called QuadratureFunction, is
used to return the stress tensor, its derivatives wrt. z and all the required
tangent moduli, as computed by the return mapping procedure. The third
one, HistoryData, is used to store the values of hidden variables, such as
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the plastic strain εp, both for the current and the last converged load step.
Whenever the form assembly requires, for a given element, the value of any
of these QuadratureFunction class instances, a standard hand-coded return
mapping procedure is called, the current values of the HistoryData variables
are updated, and the computed values are returned to the calling procedure.
Caching of results allows to avoid repetitive calls, at the element level, of the
return mapping procedure.

# Copyright 2018 Marco Morandini
#
# This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify
# i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
# the Free Sof tware Foundation , e i t h e r ve r s i on 3 o f the License , or
# ( at your opt ion ) any l a t e r ve r s i on .
#
# This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u s e fu l ,
# but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Pub l i c License f o r more d e t a i l s .
#
# You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c License
# along wi th t h i s program .
# I f not , see <h t t p s ://www. gnu . org / l i c e n s e s />.

from d o l f i n import ∗
# cub ic e lements in p lane
element_order = 3
parameters [ " form_compiler " ] [ " quadrature_degree " ] = 4
FOR_IA = Constant ( ( 0 . , 0 . , 0 . ) )
MOM_IA = Constant ( ( 0 . , 0 . , 0 . ) )
E = Constant ( 1 . )
nu = Constant ( 0 . 3 3 )
mu = E / ( 2 . 0 ∗ ( 1 . 0 + nu ) )
lmbda = E∗nu / ( ( 1 . 0 + nu )∗ ( 1 . 0 − 2 .0∗nu ) )
def grad3d (u , up ) :

"Return␣3d␣ grad i en t . "
g = grad (u)
return as_tensor ( [ [ g [ 0 , 0 ] , g [ 0 , 1 ] , up [ 0 ] ] , [ g [ 1 , 0 ] , g [ 1 , 1 ] , \

up [ 1 ] ] , [ g [ 2 , 0 ] , g [ 2 , 1 ] , up [ 2 ] ] ] )
def DefGradient (u , up ) :

"Return␣3d␣ deformation ␣ grad i en t . "
g = grad (u)
return as_tensor ( [ [ g [ 0 , 0 ]+1 . , g [ 0 , 1 ] , up [ 0 ] ] , \
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[ g [ 1 , 0 ] , g [ 1 , 1 ]+1 . , up [ 1 ] ] , [ g [ 2 , 0 ] , g [ 2 , 1 ] , up [ 2 ] + 1 . ] ] )
def ep s i l o n ( de fgrad ) :

"Return␣ symmetric ␣3D␣deformation ␣ tenso r . "
return 0 . 5∗ ( dot ( de fgrad .T, de fgrad)− I d en t i t y ( 3 ) )

def pos3d (POS) :
return as_vector ( [POS[ 0 ] , POS[ 1 ] , 0 . ] )

def AbaqusNeoHookean1pkStress ( de fgrad ) :
"Return␣NeoHookean␣ (Abaqus␣ ve r s i on ) ␣1␣PK␣ s t r e s s ␣ t enso r . "
C10 = mu / 2 .
K0 = E / ( 3 . ∗ ( 1 . − 2 . ∗ nu ) )
F = defgrad
F = va r i ab l e (F)
J = det (F)
Fdev = pow(J , −1./3.) ∗ F
I1 = pow(J , −2./3.) ∗ t r (F .T∗F)
p s i = C10 ∗ ( I1 − 3 . ) + (J − 1 . ) ∗ ( J − 1 . ) ∗ K0 / 2 .
first_PK = d i f f ( ps i , F)
return f irst_PK

#10x10 mesh centered in (0 , 0)
mesh = UnitSquareMesh (10 , 10)
ALE.move(mesh , Constant ( [ −0 .5 , −0 .5 ] ) )
# ax i a l coord ina te
Z_ELEMENT = FiniteElement ( "R" , mesh . u f l_ c e l l ( ) , 0)
Z_SPACE = FunctionSpace (mesh , Z_ELEMENT)
Z = Function (Z_SPACE)
Z . i n t e r p o l a t e ( Constant ( 0 . ) )
UF3_ELEMENT = VectorElement ( "CG" , mesh . u f l_ c e l l ( ) , element_order , 3)
# Lagrange mu l t i p l i e r s needed to compute
# the s t r e s s r e s u l t a n t s and moment r e s u l t a n t s
R3_ELEMENT = VectorElement ( "R" , mesh . u f l_ c e l l ( ) , 0 , 3)
RLAGR_ELEMENT = VectorElement ( "R" , mesh . u f l_ c e l l ( ) , 0 , 6)
FU36_ELEMENT = MixedElement (UF3_ELEMENT, UF3_ELEMENT, \

R3_ELEMENT, R3_ELEMENT, \
RLAGR_ELEMENT, UF3_ELEMENT, UF3_ELEMENT)

FU36_SPACE = FunctionSpace (mesh , FU36_ELEMENT)
FU36 = Function (FU36_SPACE, name="u" )
FU36_s = s p l i t (FU36)
VU36 = TestFunction (FU36_SPACE)
TU36 = Tria lFunct ion (FU36_SPACE)
VU36_s = s p l i t (VU36)
# deformed po s i t i o n = undeformed po s i t i o n + disp lacement
POS = MeshCoordinates (mesh )
POSp = pos3d (POS) + FU36_s [ 0 ]
# vec to r f i e l d s need to compute s t r e s s r e s u l t a n t s
# and impose c on s t r a i n t s
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Torsion = as_tensor ([−POS[ 1 ] , POS[ 0 ] , 0 . ] )
Flex_y = as_tensor ( [ 0 . , 0 . , −POS [ 0 ] ] )
Flex_x = as_tensor ( [ 0 . , 0 . , POS [ 1 ] ] )
X_translat ion = as_tensor ( [ 1 . , 0 . , 0 . ] )
Y_translat ion = as_tensor ( [ 0 . , 1 . , 0 . ] )
Z_trans lat ion = as_tensor ( [ 0 . , 0 . , 1 . ] )
# disp lacement approximation
U = FU36_s [ 0 ]
U += FU36_s [ 1 ] ∗ Z
U += 0.5 ∗ FU36_s [ 5 ] ∗ Z ∗ Z
U += 1 . / 6 . ∗ FU36_s [ 6 ] ∗ Z ∗ Z ∗ Z
# f i r s t and second d e r i v a t i v e o f d i sp lacement wrt Z
dUdz = d i f f (U, Z)
dUdz2 = d i f f (dUdz , Z)
# deformation g rad i en t
F = DefGradient (U, dUdz)
dFdz = d i f f (F , Z)
dFdz2 = d i f f (dFdz , Z)
delta_F = de r i v a t i v e (F , FU36 , VU36)
delta_Fn = delta_F [ : , 2 ]
delta_F1 = delta_F [ : , 0 ]
delta_F2 = delta_F [ : , 1 ]
delta_Fs = as_tensor ( [ [ delta_F1 [ 0 ] , delta_F2 [ 0 ] ] , \

[ delta_F1 [ 1 ] , delta_F2 [ 1 ] ] , \
[ delta_F1 [ 2 ] , delta_F2 [ 2 ] ] ] )

delta_Fndz = d i f f ( delta_Fn , Z)
delta_Fndz2 = d i f f ( delta_Fndz , Z)
ddelta_Fsdz = d i f f ( delta_Fs , Z)
ddelta_Fsdz2 = d i f f ( ddelta_Fsdz , Z)
ddelta_Fsdz3 = d i f f ( ddelta_Fsdz2 , Z)
# 1 PK s t r e s s t ensor and i t s d e r i v a t i e v e s
S = AbaqusNeoHookean1pkStress (F)
Sn = S [ : , 2 ]
S1 = S [ : , 0 ]
S2 = S [ : , 1 ]
Ss = as_tensor ( [ [ S1 [ 0 ] , S2 [ 0 ] ] , [ S1 [ 1 ] , S2 [ 1 ] ] , [ S1 [ 2 ] , S2 [ 2 ] ] ] )
dSndz = d i f f (Sn , Z)
dSndz2 = d i f f ( dSndz , Z)
dSndz3 = d i f f ( dSndz2 , Z)
dSndz4 = d i f f ( dSndz3 , Z)
dSsdz = d i f f ( Ss , Z)
dSsdz2 = d i f f ( dSsdz , Z)
dSsdz3 = d i f f ( dSsdz2 , Z)
# equ i l i b r i um equa t ions
Eq = − dot (VU36_s [ 0 ] , dSndz ) ∗ dx + inner ( delta_Fs , Ss ) ∗ dx
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Eq −= dot (VU36_s [ 1 ] , dSndz ) ∗ dx + inner ( ddelta_Fsdz , Ss ) ∗ dx
Eq −= dot (VU36_s [ 0 ] , dSndz2 ) ∗ dx + inner ( delta_Fs , dSsdz ) ∗ dx
Eq −= dot (VU36_s [ 5 ] , dSndz ) ∗ dx + inner ( ddelta_Fsdz2 , Ss ) ∗ dx
Eq −= dot (VU36_s [ 1 ] , dSndz2 ) ∗ dx + inner ( ddelta_Fsdz , dSsdz ) ∗ dx
Eq −= dot (VU36_s [ 1 ] , dSndz2 ) ∗ dx + inner ( ddelta_Fsdz , dSsdz ) ∗ dx
Eq −= dot (VU36_s [ 0 ] , dSndz3 ) ∗ dx + inner ( delta_Fs , dSsdz2 ) ∗ dx
Eq −= dot (VU36_s [ 6 ] , dSndz ) ∗ dx + inner ( ddelta_Fsdz3 , Ss ) ∗ dx
Eq −= dot (VU36_s [ 5 ] , dSndz2 ) ∗ dx + inner ( ddelta_Fsdz2 , dSsdz ) ∗ dx
Eq −= dot (VU36_s [ 5 ] , dSndz2 ) ∗ dx + inner ( ddelta_Fsdz2 , dSsdz ) ∗ dx
Eq −= dot (VU36_s [ 1 ] , dSndz3 ) ∗ dx + inner ( ddelta_Fsdz , dSsdz2 ) ∗ dx
Eq −= dot (VU36_s [ 5 ] , dSndz2 ) ∗ dx + inner ( ddelta_Fsdz2 , dSsdz ) ∗ dx
Eq −= dot (VU36_s [ 1 ] , dSndz3 ) ∗ dx + inner ( ddelta_Fsdz , dSsdz2 ) ∗ dx
Eq −= dot (VU36_s [ 1 ] , dSndz3 ) ∗ dx + inner ( ddelta_Fsdz , dSsdz2 ) ∗ dx
Eq −= dot (VU36_s [ 0 ] , dSndz4 ) ∗ dx + inner ( delta_Fs , dSsdz3 ) ∗ dx
# equ i va l ence o f i n t e r n a l a c t i on s
Force = dot (VU36_s [ 2 ] , Sn ) ∗ dx − dot (VU36_s [ 2 ] , FOR_IA) ∗ dx
Force += dot (FU36_s [ 2 ] , d e r i v a t i v e (Sn , FU36 , VU36) ) ∗ dx
Moment = dot (VU36_s [ 3 ] , c r o s s (POSp, Sn ) ) ∗ dx
Moment −= dot (VU36_s [ 3 ] , MOM_IA) ∗ dx
Moment += dot (FU36_s [ 3 ] , d e r i v a t i v e ( c r o s s (POSp, Sn ) , FU36 , VU36) ) ∗ dx
LinearForm = Eq + Force + Moment
# con s t r a i n t s on average r i g i d body motions
LinearForm += VU36_s [ 4 ] [ 0 ] ∗ FU36_s [ 0 ] [ 0 ] ∗ dx
LinearForm += FU36_s [ 4 ] [ 0 ] ∗ VU36_s [ 0 ] [ 0 ] ∗ dx
LinearForm += VU36_s [ 4 ] [ 1 ] ∗ FU36_s [ 0 ] [ 1 ] ∗ dx
LinearForm += FU36_s [ 4 ] [ 1 ] ∗ VU36_s [ 0 ] [ 1 ] ∗ dx
LinearForm += VU36_s [ 4 ] [ 2 ] ∗ FU36_s [ 0 ] [ 2 ] ∗ dx
LinearForm += FU36_s [ 4 ] [ 2 ] ∗ VU36_s [ 0 ] [ 2 ] ∗ dx
LinearForm += VU36_s [ 4 ] [ 3 ] ∗ dot (FU36_s [ 0 ] , Tors ion ) ∗ dx
LinearForm += FU36_s [ 4 ] [ 3 ] ∗ dot (VU36_s [ 0 ] , Tors ion ) ∗ dx
LinearForm += VU36_s [ 4 ] [ 4 ] ∗ dot (FU36_s [ 0 ] , Flex_x ) ∗ dx
LinearForm += FU36_s [ 4 ] [ 4 ] ∗ dot (VU36_s [ 0 ] , Flex_x ) ∗ dx
LinearForm += VU36_s [ 4 ] [ 5 ] ∗ dot (FU36_s [ 0 ] , Flex_y ) ∗ dx
LinearForm += FU36_s [ 4 ] [ 5 ] ∗ dot (VU36_s [ 0 ] , Flex_y ) ∗ dx
# number o f increments and t a r g e t i n t e r n a l a c t i on s
num_incs = 20
FIN_Tx = 0 .
FIN_Ty = 0.05
FIN_N = 0 .
FIN_Mx = 0.04
FIN_My = 0.0
FIN_Mz = 0 .
# loop over load s t e p s
for i in range (1 , num_incs + 1 , 1 ) :

# ass i gn the a c t ua l va lue o f sought i n t e r n a l ac t i on
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# for t h i s load s t ep
FOR_IA. a s s i gn ( Constant ( (FIN_Tx / num_incs ∗ i , \

FIN_Ty / num_incs ∗ i , FIN_N / num_incs ∗ i ) ) )
MOM_IA. a s s i gn ( Constant ( (FIN_Mx / num_incs ∗ i , \

FIN_My / num_incs ∗ i , FIN_Mz / num_incs ∗ i ) ) )
# ac t u a l l y s o l v e the non l inear problem
s o l v e ( LinearForm==0, FU36)
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